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1 Introdu
tion

This investigation resulted from attempts to understand braided surfa
es, in parti
ular Bennequin and

strongly quasipositive surfa
es. Similar to the 
ase of 
anoni
al surfa
es [St℄, we were trying to develop

some stru
tural properties. As it turned out, even in the simplest 
ase of Euler 
hara
teristi
 0, the

answer is revealingly 
ompli
ated, in that these surfa
es are essentially equivalent to integer-labeled grid

diagrams D for knots. However, despite protruding su
h 
omplexity, this 
onne
tion leads to some new

viewpoints, and assimilates a number of known and new results. We present them here as an initiation

for further study (see the sequel [JLS℄, and [MS+℄). An outline of the paper is as follows.

After 
ompiling preliminaries in �2, we give some simple but useful observations in �3 on 
rossing

number and writhe of grid diagrams. In parti
ular, we determine the maximal 
rossing number of a

re
tilinear polygon of given size exa
tly in the multi-
omponent 
ase (Lemma 3.1) and nearly exa
tly in

the one-
omponent 
ase (Proposition 3.3 and Computation 3.4). As a 
onsequen
e we obtain an upper

bound of the 
rossing number of a link L in terms of its ar
 index (see Corollary 3.7).
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2 2 De�nitions and Preliminaries

In �4 we re�ne the grid-band 
onstru
tion [Nu℄ to understand that Euler 
hara
teristi
 0 braided

surfa
es are essentially grid diagrams D, with a framing atta
hed, whi
h we write as λ(D). When the

surfa
e is strongly quasipositive, then

λ(D) = −TB(D) (1.1)

is identi�ed, up to sign, with the Thurston-Bennequin invariant of D. We will establish this in Theorem

4.9 from introdu
ing a weight model for the Thurston-Bennequin invariant from a grid diagram (Lemma

4.4). As we explain, in 
onforman
e with (1.1), we will usually write λ(K) = −TB(K), for the maximal

Thurston-Bennequin invariant TB(K) of K.

We give some simple appli
ations, in
luding estimates of λ(K) in relation to ar
 index and bridge

number (Theorem 4.8 and Lemma 4.18), and Rudolph's determination of the strong quasipositivity of

twisted annuli A(K, t) (Corollary 4.13). This is then extended to twisted positively/negatively 
lasped

Whitehead doubles W±(K, t) and Bing doubles B(K, t) (Corollary 4.15).

In �5 we dis
uss the braid index b(K) and its variants for Bennequin and strongly quasipositive surfa
es,
and how the ar
 index a(K) is fundamentally 
onne
ted to a braid index b(A(K, t)) (see Corollary 5.1

and Conje
ture 5.8). As a bi-produ
t, we 
an reprove (and slightly improve) Ohyama's [Oh℄ inequality

(Corollary 5.5). We also study the framing diagram Φ(K) of a knot K (De�nition 4.12) and its 
one

stru
ture (Theorem 5.10).

Se
tion �6 deals with the jump fun
tion jv of sli
e-torus invariants v. After we reprodu
e the

Livingston-Naik [LvN℄ estimate (Proposition 6.3), we extend it with a 
ondition (6.9) on a knot K that re-

solves the Bennequin-sharpness problem (2.9) for its Whitehead doubles (Corollary 6.4). We also establish

(see Lemma 6.5) that positive knots K satisfy this 
ondition.

In �7 we only brie�y motivate a more general theory, of �grid-embedded graphs� for braided surfa
es

of smaller (i.e., negative) Euler 
hara
teristi
. It should also be noted from the start that grid diagrams of

links 
an be treated by essentially the same approa
h, without very major modi�
ations, but for te
hni
al

reasons we sti
k mostly to knots. Some study of links has been begun in [MS+℄.

This is the �rst part of work divided into three parts for length reasons. The se
ond part [JLS℄ will

deal extensively with appli
ations of the HOMFLY-PT polynomial. The �nal part [St3℄, given by the

se
ond author, deals with extensions from strong quasipositivity to quasipositivity. Many of the results

here serve as a motivation for their later analogues and generalizations. (This will be expli
itly indi
ated

wherever relevant.)

2 De�nitions and Preliminaries

2.1 Generalities

We say an inequality `a ≥ b' is sharp or exa
t if a = b and stri
t (or unsharp) if a > b. We use #E for the


ardinality of a �nite set E and ⌊x⌋ for `greatest integer' part of x ∈ Q. We also a�ord a few standard

abbreviations like `l.h.s.' (for `left hand-side'), `w.r.t.' (for `with respe
t to') and `w.l.o.g.' (for `without

loss of generality').

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are


alled as follows.

�
�
�✒

❅❅

❅❅■

positive

��

��✒

❅
❅

❅■

negative

smoothing

=⇒ �

�✒

❅

❅■

smoothed out

(2.1)



2.3 Braids and braided surfa
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The sign of a positive/negative 
rossing is assigned to be ±1 a

ordingly. Let c±(D) be the number

of positive, respe
tively negative 
rossings of a link diagram D, so that the 
rossing number of D is

c(D) = c+(D)+ c−(D) and its writhe is w(D) = c+(D)− c−(D). We write s(D) for the number of Seifert


ir
les of D, whi
h are the 
ir
les obtained after smoothing all 
rossings of D. We write c(K) for the

rossing number of a knot K, the minimal 
rossing number of all diagrams of K. The mirror image of K
will be written !K, and the mirror image of diagram D (in the form obtained by swit
hing all 
rossings of

D) will be !D. If K =!K (up to orientation), we 
all K amphi
heiral . We use `©' to denote the unknot

(trivial knot) in formulas.

The symbol `#' is used for 
onne
ted sum. (This should be distinguishable from the 
ontext from the

use of `#' as `
ardinality'.) The number of 
omponents of a link L is denoted κ(L). The bridge number

br(L) of L is the minimal number of Morse maxima of L (or equivalently, of any diagram of L). The

(Seifert) genus g(L) resp. Euler 
hara
teristi
 χ(L) of a knot or link L is said to be the minimal genus

resp. maximal Euler 
hara
teristi
 of a Seifert surfa
e of L. We have

2g(L) = 2− κ(L)− χ(L) .

Similarly write χ4(L) for the smooth 4-ball (maximal) Euler 
hara
teristi
 and

2g4(L) = 2− κ(L)− χ4(L) .

(In the following 4-ball genera and sli
eness will always be understood smoothly.) A knot K is sli
e

if g4(K) = 0, or equivalently, χ4(K) = 1. We will refer to the following basi
 fa
t: if κ(L) = 2 and

χ4(L) = 2, then both 
omponents of L must be sli
e (knots), and have linking number 0.

2.3 Braids and braided surfa
es

We write Bn for the braid group on n strands or strings . The relations between the Artin generators σi,

i = 1, . . . , n− 1 are given by

� σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and

� σiσj = σjσi for 1 ≤ i < j − 1 ≤ n− 2.

In diagrams we will orient braids left to right and number strings 1, . . . , n from top to bottom, for

example:

✲

✲
✲

✲
.

.

. ✲

σ2

1

2

3

4

n

✲
✲
✲
✲

.

.

. ✲

σ−1
1

1

2

3

4

n

The relations 
an then be drawn as follows:

.

.

. ✲
✲
✲
✲
✲

.

.

.

.

.

. ✲
✲
✲
✲
✲

.

.

.

σiσi+1σi = σi+1σiσi+1

.

.

.

✲
✲

.

.

.

✲
✲

.

.

.

.

.

.

.

.

.

.

.

.

✲
✲

✲
✲

σiσj = σjσi, |i− j| > 1
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There is a permutation homomorphism π : Bn → Sn, sending ea
h σi to the transposition of i and
i+ 1.

We de�ne band generators in Bn by

σi,j = σi . . . σj−2σj−1σ
−1
j−2 . . . σ

−1
i , (2.2)

For example σ2,7 ∈ B9 looks

✲
✲
✲
✲
✲
✲
✲
✲
✲

Noti
e that σi,i+1 = σi. A presentation of a braid β ∈ Bn in the form

β =

l∏

k=1

σ±1
ik,jk

(2.3)

is 
alled a band presentation. (See e.g. [BKL℄.) Usually, it will be more legible to use the symbol

[ij] = σi,j

when writing band generators in formulas. Similarly we use −[ij] = σ−1
i,j . In 
ertain 
ases, we even omit

the bra
kets. (See De�nition 4.6, where we will extend suitable words in [ij], without negative exponents,
also to en
ode grid diagrams.) Also, when j = i+ 1, we often simply write i for σi and −i for σ−1

i , when

no ambiguity arises.

The image of β under the abelianization Bn → Z is the writhe (or exponent sum) of β, and is written

w(β). Note that w(β) 
an also be 
al
ulated as the exponent sum in a band presentation (2.3).

A braid β ∈ Bn whose 
losure β̂ is the link L is a braid representative of L. Similarly a word for β
gives a (braid 
losure) diagram D = β̂ of L. When β is a word, then w(β̂) = w(β). A band presentation

β naturally spans a Seifert surfa
e of L = β̂. Following Rudolph, we 
all this a braided surfa
e of L. For
example, n = 6 and l = 6,

✲
✲
✲
✲
✲
✲

for the 6-braid β = σ1,4σ3,5σ2,4σ3,6σ1,5σ2,6. The diagram shows the 
losure L = β̂. It is easily seen

that the six `ellipti
' disks joined two by two with six twisted bands form a natural Seifert surfa
e of L.
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Rudolph [Ru℄ proves that every Seifert surfa
e is a braided surfa
e. If a braided surfa
e is of minimal

genus for L, it is 
alled a Bennequin surfa
e of L [BM2℄.

A link is 
alled quasipositive if it is the 
losure of a braid β of the form

β =

µ∏

k=1

wkσikw
−1
k (2.4)

where wk is any braid word and σik is a (positive) standard Artin generator of the braid group. (In [Ru4℄

there is some overview of this topi
.) If the words wkσikw
−1
k are of the form σik,jk , so that

β =

µ∏

k=1

σik,jk , (2.5)

then they 
an be regarded as embedded bands. Links whi
h arise this way, i.e., su
h with positive band

presentations , are 
alled strongly quasipositive links .

Bennequin's inequality [Be, Theorem 3℄ states

−χ(L) ≥ w − n (2.6)

for an n-strand braid representative of L of writhe w. If there is a braid representative β of L making

(2.6) an equality, we 
all both L and β Bennequin-sharp. This inequality was later extended to

−χ(L) ≥ −χ4(L) ≥ w − n (2.7)

(see e.g. [IS, St2℄). In an analogous way we de�ned that L and β are sli
e-Bennequin-sharp.

It implies that a strongly quasipositive surfa
e, i.e., obtained from a positive band presentation, is

minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of

writhe w. Thus the surfa
e S 
onstru
ted from the band presentation yields, with (2.7),

−χ(L) ≤ −χ(S) = w − n ≤ −χ4(L) ≤ −χ(L) .

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

χ4(L) = χ(L) . (2.8)

The Bennequin sharpness 
onje
ture (see [FLL, St2℄) asserts

L is Bennequin-sharp ⇐⇒ L is strongly quasipositive . (2.9)

For some related results, see [JLS℄.

The se
ond author's e�ort to determine the quasipositivity of the (prime) 13 
rossing knots [St4℄ also

provides some eviden
e for a �4-ball� version of the Bennequin sharpness 
onje
ture (2.9):

L is sli
e-Bennequin-sharp ⇐⇒ L is quasipositive . (2.10)

In pra
ti
al terms, every proof of non-quasipositivity of a knot passes via showing that it is not sli
e-

Bennequin-sharp. Note again that ⇐= follows immediately from (2.7), and it is =⇒ whi
h is open.

De�nition 2.1 � Let b(K) be the braid index of K, the minimal number of strings of a braid repre-

sentative of K.

� Let bb(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin

surfa
e of K.

� When K is strongly quasipositive, let bsqp(K) be the minimal number of strings to span a strongly

quasipositive surfa
e of K (only positive bands).
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� Further, for a Seifert surfa
e S, let b(S) be the minimal string number on whi
h S is spanned as a

braided surfa
e.

� If S is a strongly quasipositive surfa
e, let bsqp(S) be the minimal string number on whi
h S is

spanned as su
h (i.e., arises from a positive band presentation).

We have then (with the right inequality only valid for strongly quasipositive K)

b(K) ≤ bb(K) ≤ bsqp(K) , (2.11)

and by de�nition, with S being a Seifert surfa
e of K,

bb(K) = min{ b(S) : χ(S) = χ(K) } , bsqp(K) = min{ bsqp(S) : S strongly quasipositive } . (2.12)

We will further dis
uss these relations in �5 and [JLS℄. We also feature the following result. It 
on�rms

an expe
tation originally formulated for n = b(L) by Jones [J, end of �8℄ (later also referred to as the

�weak� form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro 
onje
ture [DP, LaM℄) For every link L, there is a number

wmin(L), so that every braid representative β of L on n strands of writhe w satis�es

|w − wmin(L)| ≤ n− b(L) . (2.13)

Generally speaking, we will use this theorem to advan
e theoreti
al appli
ations in our work, but for

pra
ti
al ones, another tool will be 
ru
ial, the HOMFLY-PT polynomial. As announ
ed, its treatise will

be moved out to [JLS℄.

2.4 Sli
e-torus invariants

We brie�y re
all Livingston's [Lv℄ formalism of �sli
e-torus invariant�. An integer-valued invariant v on

knots (i.e., not ne
essarily de�ned for multi-
omponent links) is a sli
e-torus invariant if

� v(K) = −v(!K), and v(−K) = v(K), where −K is K with the reverse orientation

� additivity under 
onne
ted sum: v(K1#K2) = v(K1) + v(K2)

� 
rossing swit
h rule: v(K+)− v(K−) ∈ {0, 1}

� v(K) ≤ g4(K) (or equivalently 2v(K) ≤ 1− χ4(K)), and

� v satis�es Bennequin's inequality:

2v(K) ≥ w − n+ 1

for a braid representative of K on n strings and writhe w.

These properties are not minimal (i.e., some follow from spe
ial 
ases or 
ombinations of others), but

they are what we will use in �6. (We emphasize that it is not assumed v to be de�ned on multi-
omponent

links κ(K) > 1 in any way.)

There are two known instan
es of su
h an invariant, the Ozsváth-Szabó τ invariant, and (half of)

Rasmussen's invariant s. Thus the 
on
ept was introdu
ed mainly to give these two a uniform treatment.

(The halved signature σ/2 satis�es the �rst four of the above �ve properties, but not the last.)

From the superposition of

2g(K) = 1− χ(K) ≥ 1− χ4(K) ≥ 2v(K) ≥ w − n+ 1
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with (2.6), it is straightforward that

if v(K) < g(K), then K is not Bennequin-sharp . (2.14)

In relation (see the remark below (2.10)), it follows that when a knot K is quasipositive, then

v(K) = g4(K) , (2.15)

and

when K is strongly so, then v(K) = g4(K) = g(K). (2.16)

We will refer to these standard fa
ts a few times below.

2.5 Grid diagrams and ar
 index

An ar
 presentation of a knot or a link L is an ambient isotopi
 image of L 
ontained in the union of

�nitely many half planes, 
alled pages, with a 
ommon boundary line in su
h a way that ea
h half plane


ontains a properly embedded single ar
.

✻

θ = 0

✻

θ = π

10

✻

θ = π

5

✻

θ = 3π

10

✻

θ = 2π

5

✻

θ = π

2

✻

A grid diagram (or, for simpli
ity simply 
alled grid often below) is a knot or link diagram whi
h is


omposed of �nitely many horizontal edges and the same number of verti
al edges su
h that verti
al edges

always 
ross over horizontal edges. We assume that horizontal/verti
al positions of verti
al/horizontal

edges are pairwise distin
t. In parti
ular, away from 
rossings edges only meet at 
orners, and verti
es

are pairwise distin
t. Up to the adjustment of heights of horizontal and widths of verti
al edges, a grid

diagram is thus what 
an be 
omposed in the plane by the tiles

(2.17)

See, for example, [AL℄, and also 
ompare with �7.

It is not hard to see that every knot admits a grid diagram (
ompare with the proof of Lemma 4.18).

The �gure below explains that every knot admits an ar
 presentation.

✻
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We set the size µ(D) of a grid diagram to be the number of verti
al or (equivalently) horizontal

segments (but not both together). A grid (diagram) of size µ will also be shortly 
alled a µ-grid .

In general, we will a�ord the sloppiness of abolishing the distin
tion between an ordinary and a grid

diagram, whenever the grid stru
ture is unne
essary. Thus, for instan
e, c(D) 
an mean the 
rossing

number of both an ordinary and grid diagram, whereas µ(D) would imperatively assume that D is given

a grid shape.

Let a(L) be the ar
 index of L, the minimal µ(D) over all grid diagrams D of L. It is the minimal

number of pages among all ar
 presentations of a link L [J+, J+2℄.

We note that the following was proved by Cromwell [Cr℄. For two links L1, L2,

a(L1#L2) = a(L1) + a(L2)− 2 . (2.18)

For knots Li, it also follows from a relationship

a(K) = λ(K) + λ(!K) , (2.19)

derived by Dynnikov-Prasolov [DP℄, 
on
erning the Thurston�Bennequin invariant (see �4 for notation,

Theorem 5.14 and Corollary 4.11), and the additivity of the invariant [EH, To℄.

2.6 Knot tables

For notation from knot tables, we follow Rolfsen's [Ro, Appendix℄ numbering up to 10 
rossings, ex
ept

for the removal of the Perko dupli
ation.

For 11 to 16 
rossings we use the tables of [HT℄ (whi
h for 11 to 13 
rossing knots are now also

on KnotInfo [LvM℄), while appending non-alternating knots after alternating ones of the same 
rossing

number. Thus, for instan
e, 11a[k] = 11[k] for 1 ≤ k ≤ 367, and 12n[k] = 121288+[k] for 1 ≤ k ≤ 888.

If it is relevant, mirror images will be distinguished on a 
ase-by-
ase basis. Spe
i�
ally, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored . The 
onvention for 10132 is �xed in

Example 4.10. (This knot will ar
hetype 
ertain phenomena that be
ome in
reasingly relevant in [JLS℄.)

3 Upper bound of Crossing number

A planar grid polygon 
an be de�ned as the planar proje
tion of a link grid diagram. Similarly we spe
ify

its size by the number of horizontal/verti
al edges. It is obvious that a grid polygon determines uniquely

(when 
rossing 
onvention is �xed) a grid diagram, and vi
e versa. A grid polygon 
an have multiple


omponents (i.e., PL-immersed 
ir
les). Su
h obje
ts are of interest in dis
rete geometry; see for example

[BOS, SG, KLA℄. They are named re
tilinear polygons, but for us it is (very) relevant that self-
rossings

are allowed (i.e., the polygons are not simple).

Lemma 3.1 Every, possibly multiple-
omponent, planar grid polygon of size m has the following upper

bounds on the number of interse
tions.

{
(m2 − 2m)/2 m is even

(m− 1)2/2− 1 m is odd

(3.1)

These bounds are sharp.

Proof. What 
ould be a 
onundrum be
omes self-evident after introdu
ing the right way of 
ounting


rossings. We will group 
rossings w.r.t. their horizontal segment l. We 
onsider the horizontal segments

from the middle high segment upward. Whenever l is su
h a segment and lh is a horizontal segment above
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l, we de�ne the weight wl(lh) ∈ {0, 1, 2} to be the number of neighboring verti
al edges of lh interse
ting

l. Then
#{ interse
tions of l } =

∑

lh above l

wl(lh) . (3.2)

This 
ounting works be
ause for ea
h verti
al edge lv interse
ting l, exa
tly one of its two neighboring

horizontal edges lh is above l. Thus

#{ interse
tions of l } ≤ 2#{ lh : lh above l } . (3.3)

Now this sum will a

ount to

#{ interse
tions of upper horizontal edges } ≤ 2

(m−1)/2∑

k=0

k (3.4)

for the upper (m+ 1)/2 edges l when m odd. The lower (m− 1)/2 edges l 
an be handled by 
hoosing lh
to be below l, giving a similar sum

#{ interse
tions of lower horizontal edges } ≤ 2

(m−3)/2∑

k=0

k . (3.5)

For m even one has 4

m/2−1∑

k=0

k instead of (3.4)+(3.5). Dire
t 
al
ulation gives

#{ interse
tions of polygon } ≤

{
(m2 − 2m)/2 m is even

(m− 1)2/2 m is odd

(3.6)

It remains to argue why for m odd, (m− 1)2/2 interse
tions are not possible. This would mean that

the middle horizontal edge e satis�es we(e
′) = 2 for every other horizontal edge e′. But there are at least

two edges e′ for whi
h this is not possible, namely those 
onne
ted to the two verti
al edges adja
ent to

e. This 
ompletes the proof of (3.1). For the sharpness of the bounds, see Example 3.2 and Proposition

3.3. �

Example 3.2 If we allow multiple 
omponents of the polygon, and 
onsider m even, then the bound in

(3.6) is sharp

When we restri
t to 1-
omponent polygons, we know the following.

Proposition 3.3 For every m > 2, there exists a 1-
omponent planar grid polygon Πm of size m with

(m− 1)2/2−





1 m is odd

5/2 m ≡ 0 mod 4
7/2 m ≡ 2 mod 4

(3.7)


rossings.
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Proof. Consider the Lissajous

1

polygon Λ(m1,m2).

Λ(3, 5) Λ(4, 5) Λ(3, 7)

This gives a grid polygon of size m = m1 +m2. When m1 and m2 are even and m1 −m2 = 2, we also
need the modi�ed Lissajous polygon Λ′(m1,m2).

Λ′(4, 6) Λ′(6, 8)

Then 
hoose

Πm =





Λ(m−1
2 , m+1

2 ) m is odd

Λ(m2 − 1, m
2 + 1) m ≡ 0 mod 4

Λ′(m2 − 1, m2 + 1) m ≡ 2 mod 4

. (3.8)

The 
rossing number of these polygons (3.7) follows by expli
it 
al
ulation. They are 1-
omponent by

dire
t inspe
tion. (In general, Λ(m1,m2) appears to be 1-
omponent when m1 and m2 are relatively

prime.) �

These examples leave not mu
h room for improvement. For odd m, (3.1) settles their maximality.

When m is even, by modifying the argument at the end of the proof of Lemma 3.1 to the middle two

horizontal edges, it is also easy to 
on
lude that (3.1) 
annot be made sharp by a 1-
omponent polygon.

Thus the examples of Proposition 3.3 
an be improved by at most 1 
rossing for m ≡ 0 mod 4 and by at

most 2 
rossings for m ≡ 2 mod 4.

Computation 3.4 Still, verifying whether the (1-
omponent) polygons Πm have maximal 
rossings (for

even m) is not entirely trivial. We wrote a 
omputer program to test this, whi
h in fa
t found the

family Λ′
in (3.8). For m = 4, 6 there are ex
eptional maximal 
rossing polygons Λ′(2, 2) =

1

We 
hose this name sin
e they appear as re
ti�
ations of Lissajous 
urves, although this 
orresponden
e is not pre
ise

for every (m1,m2).
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(as 
ompared to Λ(1, 3)) , and , as 
ompared to Λ′(2, 4) = . We know that

the polygons (3.8) have maximal 
rossings for even m with 8 ≤ m ≤ 24.

Certainly, we are interested more in grid diagrams of links, with 
rossing information, and in that 
ase

Lemma 3.1 easily modi�es to show the following.

Lemma 3.5 Every grid link diagram D of size µ(D) = m has writhe |w(D)| ≤ (m− 1)2/4.

Proof. It is essentially the same proof as for Lemma 3.1, ex
ept noting that (3.2) modi�es to

∑
( signs of interse
tions of l ) ≤

∑

lh above l, wl(lh) = 1

wl(lh) , (3.9)

be
ause signs of 
rossings on l 
oming from lh with wl(lh) = 2 
an
el out. Then the estimates (3.3) and

(3.6) exa
tly halve. �

Example 3.6 If we allow multiple 
omponents of the link, and 
onsider m even, then again the bound

in Lemma 3.1 (in the form of halving (3.6)) is sharp, as shows the (m/2,m/2)-torus link:

At the 
ost of de
reasing the number of 
rossings by O(m), one may obtain a knot, like the (m/2,m/2+
1)-torus knot, or adjust m to be odd.

This is an immediate 
onsequen
e of Lemma 3.1.

Corollary 3.7 For every link L,

c(L) < (a(L)− 1)2/2 , (3.10)

where c(L) is the 
rossing number and a(L) is the ar
 index. �

In 
ontrast to the well-known bounds in [BP, JP℄ (see the proof of Corollary 5.5), it is striking that

an upper estimate of the 
rossing number of a link in terms of its ar
 index has apparently never been

previously 
onsidered in the literature.

Remark 3.8 While some redu
tions of the bound (3.10) may be possible under link isotopy (whi
h is

re�e
ted in Cromwell's moves [AHT, Cr℄), we have failed to signi�
antly improve upon this estimate. This

(
ombinatorial) problem develops serious enough to merit a separate a

ount if later progress is made. We

note, though, that in Example 3.6, the featured torus links appear in minimal 
rossing number diagrams,

so that the right of (3.10) 
annot be redu
ed by more than a fa
tor of 2 (asymptoti
ally in a(L)).
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4 Thurston-Bennequin invariant

4.1 Weight model for the Thurston-Bennequin invariant

The main topi
 of this work starts from the observation that a braided surfa
e of Euler 
hara
teristi
 0,

whi
h is a K-knotted annulus, is essentially a grid diagram of the underlying 
ompanion knot K.

De�nition 4.1 Let for a knot K and integer t,

� A(K, t) be the (link of the) t-framed K-knotted annulus,

� W+(K, t) and W−(K, t) the t-framed Whitehead doubles of K with positive and negative 
lasp, and

� B(K, t) the t-framed Bing double of K.

We will usually abuse the distin
tion between the annulus and the link whi
h is its boundary.

To disambiguate among di�erent 
onventions for framing used elsewhere, we emphasize that t is here
the linking number of the two 
omponents of A(K, t). Thus, for example, A(©, 1) is the positive (right-
hand) Hopf link, and A(©,−1) the negative one. This de�nition of framing has the opposite sign to the

one used by other authors (e.g., [DM℄), where they take the writhe w(D) = −t of a diagram D of K from

whi
h A(K, t) is 
onstru
ted as the bla
kboard-framed (reverse) 2-parallel.

Also, W+(©, 1) is the positive (right-hand) trefoil, and W+(©,−1) = W−(©, 1) the �gure-8-knot.

We 
an understand W+(K, t) resp. W−(K, t) as the result of plumbing a positive resp. negative Hopf band
into A(K, t) and taking the knot whi
h is the boundary of the resulting Seifert surfa
e. In a similar way,

we 
an understand B(K, t) as the 2-
omponent link whi
h is obtained by plumbing both a positive and a

negative Hopf band into A(K, t) and taking the boundary. Thus for instan
e B(©, 0) is the 2-
omponent

unlink, and B(©, 1) is the Whitehead link.

Let D be a grid diagram of a knot K. Repla
ing ea
h verti
al segment with a half twisted band as

shown below, we get a braid in band presentation, denoted by βD. Then the 
losure β̂D bounds a twisted

annulus. Therefore β̂D = A(K, t) for some t.

⇒

✲
✲
✲
✲
✲
✲

D βD

β̂D

⇒ ✲
✲
✲
✲
✲
✲

(4.1)

This 
orresponden
e was previously noted by Rudolph (see [Ru3, Fig 1℄) and later by Nutt (
ompare

with [Nu, Theorem 3.1℄), and will be referred to as grid-band 
onstru
tion.

Consider the situation that the band presentation is positive. Then obviously A(K, t) for the resulting
framing t is strongly quasipositive. A question is what is the framing t, whi
h we will write as

t = λ(D) , (4.2)

in dependen
e of the diagram D, and how to read λ(D) o� D. To explain the formula for λ(D), given
below as (4.5), we �x some notation.
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Let the weight of a grid diagram D be

Z(D) =
1

2

∑

e edge of D

sgn(e) , (4.3)

where the signs of the edges are determined as follows:

sgn(e) =

{
1 e is verti
al

±1, 0 e is horizontal and one of the following forms

0 +1 −1 0
(4.4)

Example 4.2

D

Z(D) =
1

2


(1 + · · ·+ 1)︸ ︷︷ ︸

verti
al, L to R

+(0 + 0 + 1 + 0 + 0)︸ ︷︷ ︸
horizontal, B to T


 = 3

Remark 4.3 This weight formula (4.3) 
an be generalized to non-positive band presentations by letting

ea
h verti
al edge have the sign of the 
orresponding band. But we will treat this more general 
ase only

o

asionally here.

We then 
an identify the framing t in (4.2).

Lemma 4.4 With w(D) being the writhe, we have

λ(D) = Z(D)− w(D) . (4.5)

Proof. One 
an see that when the Seifert 
ir
les of the 
losed braid diagram β̂D of A(K, t) are made

small, one obtains a diagram of A(K, t), where the band obtained by thi
kening D is twisted. By a

straightforward 
ombinatorial observation, the twisting of the band is given by Z(D). The untwisted

band built from D 
arries the framing −w(D) itself. This gives (4.5). �

Remark 4.5 One has a 
ertain freedom to vary the dire
tion from whi
h to read the bands of the braid

representative βD of A(K, t) o� the grid diagram D of K. We explain our 
onvention here in an example

to make 
lear how band presentations are used for spe
i�
 knots below. While horizontal and verti
al

edges are easily inter
hangeable in grids, disks and bands are far less so in braid band presentations. The


hange of dire
tion will give di�erent t, but will 
hange K only up to mirroring.

The default dire
tion of reading will be from the left. Reading the grid diagram D in (4.1) from the

left gives the word [14][35][24][36][15][26] , with [ij] = σi,j of (2.2). Reading D from the right is meant

to give the reverse order of (band) letters. This is the result of reading from the left a grid diagram D′
,

whi
h is obtained from the mirror image !D after a �ip (π rotation along the verti
al axis). Reading D
from the bottom gives the word [46][25][13][24][36][15] , whi
h arises when reading from the left !D after

a rotation by −π/2. Reading from the top again reverses these letters and results in reading from the

left D after the 
ombination of a �ip (along the horizontal axis) and −π/2 rotation. Note that thus we


onsider braid strands numbered right to left when reading a grid diagram from the right and from the

top (while left to right otherwise).
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De�nition 4.6 Also, we 
an use the band presentation of βD to spe
ify the grid diagram D itself. The

mirroring of D is �xed by default by saying that βD should be obtained when reading D from the left.

This means that we 
an write the grid diagram D in (4.1), even omitting bra
kets, as

14 35 24 36 15 26 .

Sin
e we deal with grids of size 10 or more, let us also already �x here that we use initial 
apital Latin

letters A,B,C, . . . to denote two-digit integers 10, 11, 12, . . . , so that for example, 4C = [4, 12] = σ4,12.

Let br(D) be the verti
al bridge number of D, whi
h is the number of sign-0 horizontal edges of D of

one of either types in (4.4)

br(D) := #




0

 = #




0




Lemma 4.7 We have

br(D) ≤ Z(D) ≤ µ(D)− br(D) , (4.6)

and thus

br(D)− (µ(D) − 1)2/4 ≤ λ(D) ≤ (µ(D) + 1)2/4− br(D) . (4.7)

Proof. The left inequality in (4.6) holds be
ause ea
h pie
e of the knot between two verti
al extrema


ontributes at least 1 to the weight sum, and we have 2br(D) su
h pie
es. The right inequality holds

be
ause there are 2br(D) edges in D with sign 0. By using Lemma 3.5,

−(µ(D)− 1)2/4 ≤ w(D) ≤ (µ(D) − 1)2/4 . (4.8)

Then, with (4.6), (4.5) and (4.8), we obtain (4.7). �

Let a(K) be the ar
 index of K, the minimal µ(D) over all grid diagrams D of K. Take a minimal

grid diagram µ(D) = a(K). Then, with (4.6), (4.5) and (4.8), we have

br(D)− (a(K)− 1)2/4 ≤ λ(D) ≤ (a(K) + 1)2/4− br(D) .

Thus we have, using the bridge number br(K) of K from �2.2:

Theorem 4.8 There exists a number λmin(K) with

br(K)− (a(K)− 1)2/4 ≤ λmin(K) ≤ (a(K) + 1)2/4− br(K) , (4.9)

su
h that for all t ≥ λmin(K), we have that A(K, t) is strongly quasipositive on bsqp(A(K, t)) ≤ a(K) +
t− λmin(K) strands .

We will use λmin(K) often in the following. Two 
aveats are in order regarding this notation. The `min'

refers to the minimum with respe
t to number of strings of the surfa
e A(K, t) (or horizontal segments in

the grid diagram of K), not the framing t itself. And, it is not assumed that λmin is unique. At least for

the unknot K,

both b(A(©, 0)) = b(A(©, 1)) = 2, thus λmin(©) = 0, 1. (4.10)

This spe
ial behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness

and minimality of λmin(K) was settled, as will be dis
ussed below; see Theorem 5.14. But we do not wish

to ex
lude K = © 
onsistently. We prefer to maintain the symbol λmin(K), stipulating that formulas

involving λmin(K) are meant to hold whatever of either values (4.10) is 
hosen for K = ©. For K 6= ©,

the reader may assume that

λmin(K) = λ(K) , (4.11)
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though we will not use this before stating Theorem 5.14.

Proof of Theorem 4.8. When µ is augmented by 1, we 
an always augment by 1,

1 =⇒
1

1
1

(4.12)

resp. preserve

1 =⇒
1

−1
1

(4.13)

any given framing λ(D) by the above two moves. (Apply an adjusting PL-map on the half-planes above

and below the newly formed horizontal edge.) We 
all these moves in the following positive and negative

stabilization, resp. Thus, λ(D) augments by 1 under positive stabilization, and negative stabilization

does not 
hange λ(D). (Neither stabilization 
hanges w(D). Note that the diagram D1 of A(K, t)
obtained from D always has s(D1) = µ(D) Seifert 
ir
les and writhe w(D1) = µ(D).) The 
laim follows

for a(K) + t − λmin(K) strands from positive stabilization, and for larger strand number by (further)

negative one. �

The Thurston-Bennequin invariant TB(D) of a grid diagram D 
an be de�ned as is being identi�ed

in the following theorem.

Theorem 4.9 For any grid diagram D, the quantity Z(D) 
ounts the NW- or SE-
orners of D.

Z(D) = #




NW-
orners


 = #




SE-
orners




(4.14)

Thus (1.1) holds.

Proof. The argument for (4.14) is a 
ombinatorial observation.

Obviously (4.14) is a 
laim about planar re
tilinear (1-
omponent) polygons (�3). Thus 
rossings of

the grid diagram 
an be ignored. Every 1-
omponent planar re
tilinear polygon 
an be redu
ed to a

planar re
tangle by polygonal removal of (a) re
tilinear kinks (Reidemeister I move) and (b) horizontal

segments as in a (positive or negative) destabilization (4.12) and (4.13), and its ±π/2-rotated versions for

verti
al segments. (Note that these moves 
an be applied now, up to some planar adjustment, even if the

removed segments have interse
tions on them.) It is easy to observe that (4.14) is invariant under these

simpli�
ations, and holds for the re
tangle.

On
e we know (4.14), we obtain (1.1) straightforwardly from the 
hara
terization of TB(D) given in

[LvN℄ or [Ng℄ (or see [Ru3, p. 159℄). �

Example 4.10 The [J+℄ diagram D′
of 10132,

10132
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read from the right (see Remark 4.5), gives the 9-strand band presentation

βD = [25][14][37][26][15][48][79][38][69] , (4.15)

where D = flip (!D′). We have µ(D) = 9, Z(D) = 3, w(D) = 2, br(D) = 3 and λ(D) = 1. Thus (4.15)

gives a (positive) band presentation of A(10132, 1). The mirroring of 10132, determined by D, is so that it

has the HOMFLY-PT polynomial of the positively mirrored 51. We �x this mirroring in the sequel, also

for later referen
e in [JLS℄. Note that it is thus opposite to Rolfsen's [Ro, Appendix℄ mirroring.

We also remark the following straightforward 
onsequen
e of Theorem 4.9.

Corollary 4.11 When the grid diagram !D is obtained from D by swit
hing all 
rossings, and a −π/2
rotation, then λ(D) + λ(!D) = µ(D).

Proof. The writhe terms of D and !D in (4.5) 
an
el out. Thus λ(D)+λ(!D) = Z(D)+Z(!D). By taking
the average of the two 
orner 
ounts in (4.14) for D and its −π/2 rotation, we see that Z(D) + Z(!D) is
half the number of all 
orners of D, whi
h is µ(D). �

4.2 Appli
ation to strong quasipositivity

Let TB(K) be the maximal Thurston-Bennequin invariant of K, an invariant often 
onsidered in 
onta
t

geometry [FT, LvN, Ng, Ma, Ru3℄:

TB(K) := max {TB(D) : D is a diagram of K } .

We also spe
ify a region whi
h will play an important role throughout the rest of the paper (and

beyond).

De�nition 4.12 We de�ne the framing diagram Φ(K) of K as a subset of R2
by

Φ(K) := { (µ, t) : A(K, t) has a strongly quasipositive band representation on µ strands } .

The following result of Rudolph [Ru3, Proposition 1℄ then follows dire
tly from Theorem 4.9. (Note

our di�erent sign 
onvention for t.)

Corollary 4.13 When K is not the unknot, then

λ(K) := min{ t : A(K, t) is strongly quasipositive } = −TB(K) , (4.16)

and more pre
isely,

A(K, t) is strongly quasipositive ⇐⇒ t ≥ −TB(K) . (4.17)

Proof. When A(K, t) has a positive band presentation, then every disk is 
onne
ted by at least two

bands. Disks 
onne
ted by one band 
an be removed, and su
h 
onne
ted by no band do not exist unless

K = © (and t = 0), whi
h was ex
luded. Sin
e χ(A(K, t)) = 0, it follows that every disk is 
onne
ted by

exa
tly two bands, whi
h means that the band presentation of A(K, t) gives rise to a grid diagram of K.

It is also well known that every integer t ≥ −TB(K) 
an be realized as Thurston-Bennequin invariant

of some grid diagram of K. (We mentioned this above; see (4.12).) Note in passing that undoing the

removal of disks 
onne
ted by one band is, up to 
onjuga
y, positive braid stabilization. This also shows

that

(µ, t) ∈ Φ(K) =⇒ (µ+ 1, t) ∈ Φ(K) , (4.18)

whi
h equals the e�e
t of the negative grid stabilization (4.13). �
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The following diagram illustrates the e�e
t of the positive grid stabilization within Φ(K):

✲

number of strands µ

✻
twist t

s

s

s

s

s

s

s

s

s

s

s

s

s

s

For the unknot K, we have

−TB(©) = 1 but λ(©) = 0 . (4.19)

The problem with (4.16) there is that A(K, 0) has the empty positive band presentation (on two strands),

but we do not 
onsider this band presentation 
orresponding to a grid diagram. For this reason, the

unknot will repeatedly require spe
ial attention below. Despite the identi�
ation (4.16), λ(K) will o

ur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,

even when we ex
lude K = ©.

Remark 4.14 It is possible to derive similar properties for links K. Then a framing t is needed for ea
h


omponent, and the relationship in Corollary 4.13 be
omes slightly more involved, as be
ome the framing

diagram of De�nition 4.12 and its properties. We do not wish to deal extensively with (banded) links

here. In the 
ase of torus links, the se
ond author has begun a separate 
ollaboration proje
t [MS+℄.

However, in situations where the surfa
e stru
ture is forgotten, more self-
ontained extensions to links K
do emerge, as for Corollaries 5.4, 5.5, and 5.6.

In the following appli
ation we assume that K 6= ©. For K = ©, all the links in De�nition 4.1 are

(alternating) 2-bridge links, and su
h 
an be handled ad ho
 for strong quasipositivity (see e.g. [Ba℄).

Corollary 4.15 Let K be a non-trivial knot. Then

(a) W+(K, t) is strongly quasipositive if and only if t ≥ −TB(K), and
(b) W−(K, t) and B(K, t) are never strongly quasipositive.

Proof. The minimal genus surfa
e ofW±(K, t) is unique. This is proved byWhitten [Wh℄, but follows also

from a result of Kobayashi [Ko℄: the plumbing S1 ∗S2 is a unique minimal genus surfa
e if and only if one

of S1,2 is a unique minimal genus surfa
e and the other one is a �ber surfa
e. The minimal genus surfa
e

of W±(K, t) is a Hopf band plumbed into the annulus A(K, t) (whi
h is obviously the unique minimal

genus surfa
e of A(K, t); 
ompare below De�nition 4.1). Kobayashi's version also shows that plumbing

two Hopf bands into A(K, t) gives a unique minimal genus surfa
e for B(K, t). It follows from Rudolph's

results on Murasugi sum [Ru2℄ that W−(K, t) and B(K, t) are never strongly quasipositive: their unique

minimal genus surfa
e Murasugi desums into pie
es, not all of whi
h are strongly quasipositive. Also,

W+(K, t) is strongly quasipositive if and only if A(K, t) is. (For W− see also the proof of Corollary 6.4.)

�
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Sin
e we will need this repeatedly later, let us already here noti
e that the Hopf plumbing W+(K, t) =
A(K, t) ∗H 
an be realized by doubling a(ny) positive band in a band presentation of A(K, t).

Example 4.16

✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲

41 A(41, 3) W+(41, 3)

A similar remark applies to W−(K, t) whenever a band presentation of A(K, t) has a negative band.

However, it is important to note that this is not the only way to generate positive band presentations

of Whitehead doubles. (A di�erent example for a trefoil Whitehead double is given in [Be, �g p. 121

bottom℄.) We will dis
uss Whitehead doubles further in �6.

Here, we give a simple appli
ation of the weight model, in estimating the Thurston-Bennequin invariant.

De�nition 4.17 De�ne pbr(D), the plane-bridge number of D as the minimal number of Morse maxima

(or minima, i.e., half of the minimal number of Morse extrema) over all smooth di�eomorphi
 images of

D in S2
. Obviously br(K) ≤ pbr(D).

Lemma 4.18 For any diagram D of K, we have λ(K) ≤ 2c−(D) + pbr(D).

Proof. First, we 
an make D into a grid diagram by straightening out edges, and repla
ing wrong


rossings, i.e., those with the horizontal strand on top, as follows.

=⇒

(4.20)

(Again, as for the stabilization moves that o

urred in the proof of Theorem 4.8, some small PL adjustment

is needed.) This does not 
hange the number of bridges.

Next, the horizontal adjustment te
hnique (4.21) 
an be used to delete a horizontal edge e of label ±1
without 
rossing on it, again by applying a suitable PL-map on the half-planes above and below e. This
is the reverse of the stabilization moves, but we may need in advan
e to displa
e possible verti
al edges

above or below e. (If ne
essary, extend the box A resp. B drawn in the following �gures until above resp.

below the entire grid diagram, to ensure that all edges enter the box horizontally.)
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A

B

=⇒

A

B B

A

=⇒

B

A

(4.21)

The inequality we wish to prove about the diagram resulting after a move (4.21) is equivalent to the

one about the original diagram. We may therefore assume hen
eforth that all ±1 signed horizontal edges

are interse
ted by a 
rossing. Thus

c(D) ≥ µ(D)− 2br(D) . (4.22)

Also, we 
an see

Z(D) ≤ µ(D)− br(D) ,

by using that in (4.3) there are 2br(D) edges of label 0.

Then

λ(K) ≤ Z(D)− w(D)

≤ µ(D)− br(D)− w(D)

≤ c(D) + br(D)− w(D)

= 2c−(D) + br(D) .

The rest follows by minimization. �

A 
ounterpart to Lemma 4.18 will emerge later from the HOMFLY-PT polynomial, and is only an-

noun
ed here.

Lemma 4.19 ([JLS℄) For any diagram D of K, we have λ(K) > −2c+(D)− pbr(D).

5 Braid indi
es

We dis
uss some relation regarding the braid indi
es in De�nition 2.1. (Remember the 
omparison with

[Ru3, Fig. 1℄ and [Nu, Se
tion 3.3℄.) As noti
ed, Bennequin's inequality (2.6) implies that a strongly

quasipositive surfa
e is a Bennequin surfa
e, thus for K strongly quasipositive, we have (2.11). We know

that bb(K) > b(K) is possible [HS℄, but the examples K known are not strongly quasipositive. Rudolph


onje
tures that

bsqp(K) = b(K) (5.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16


rossings (see [St2℄). By the proof of the Jones-Kawamuro 
onje
ture (Theorem 2.2), a Bennequin surfa
e

of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

bb(K) = b(K) (5.2)

implies (5.1) for strongly quasipositive knots K. The problem (5.2) is extensively studied in [St2℄.

Sin
e a band presentation of A(K, t) always 
omes from a grid diagram of K, and with a 
on�rmative

noti
e about the unknot, we have:

Corollary 5.1

min{bb(A(K, t)) : t ∈ Z } = a(K) . (5.3)

Moreover, there are at least a(K) + 1 
onse
utive integers t whi
h realize the minimum.
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Proof. The 
ase that K is the unknot 
an be handled dire
tly: the minimizing t are t = −1, 0, 1.

When K is not the unknot, every maximal Euler 
hara
teristi
 (equal to 0) band presentation of

A(K, t) 
omes from a grid diagram of K. This shows

min{bb(A(K, t)) : t ∈ Z } ≥ a(K) .

To see the reverse inequality, take a minimal grid diagramD of K. This gives a positive band presentation

βD of A(K, t) for t = λmin(K). Now 
onse
utively turn the a(K) bands negative, whi
h gives band

presentations of Bennequin surfa
es for A(K, t) where t = λmin(K), . . . , λmin(K)− a(K). �

Also, be
ause 
hoosing positive bands will give a band presentation of a strongly quasipositive annulus,

we have with Corollary 4.13:

Corollary 5.2 min{bsqp(A(K, t)) : t ≥ λ(K) } = a(K) . �

Forgetting the surfa
e stru
ture then yields an inequality of (ordinary) braid indi
es:

Corollary 5.3

min{b(A(K, t)) : t ∈ Z } ≤ min{b(A(K, t)) : t ≥ λ(K) } ≤ a(K) (5.4)

Moreover, there are at least a(K)+1 
onse
utive integers t whi
h realize the inequality b(A(K, t)) ≤ a(K).
�

The braid index of a link A(K, t) is obviously not less than the sum of the braid indi
es of 
onstituent


omponents. Thus from Corollary 5.3, we also immediately have an inequality, whi
h was noti
ed by

Cromwell [Cr℄ (with the extension to links K as explained in Remark 4.14):

Corollary 5.4 (Cromwell) For every knot K, we have 2b(K) ≤ a(K). �

We obtain then the (slight) re�nement of Ohyama's inequality [Oh℄, as also explained in the introdu
-

tion.

Corollary 5.5 For every knot K, we have b(K) ≤ c(K)/2 + 1, and if K is non-alternating, then b(K) ≤
c(K)/2.

Proof. It is known that a(K) ≤ c(K) + 2, as proved in [BP℄, and a(K) ≤ c(K) for K non-alternating

[JP℄. �

Sin
e b(K) ≥ br(K), it further follows:

Corollary 5.6 For any knot K, we have 2(br(K) − 1) ≤ c(K). If K is non-alternating, then 2br(K) ≤
c(K). �

In the obvious extension to links, 
onne
ted sums of Hopf links show that the (�rst) inequality is

sharp. But there is a more pre
ise 
onje
ture, apparently due to Fox [Fo℄, and later studied and extended

by Murasugi [Mu℄. For knots K, it states

3(br(K)− 1) ≤ c(K) .

These useful impli
ations are worth noting, but we will see below that it is mu
h more important to

work with (5.4) rather than its simpli�ed variant of Corollary 5.4.

We are next going dis
uss what (say, strongly quasipositive) framings λ are possible for given grid size

µ, and in parti
ular whether λmin, the framing for a minimal (size a(K)) diagram (see Theorem 4.8) is

unique. Sin
e µ bounds the braid index of A(K, t), and all have the same χ, Birman-Menas
o [BM℄ imply

that for given λ, only �nitely many µ are possible. We will later prove in [JLS℄ a more pre
ise statement

(Finite-Cone-Theorem 5.11).
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Question 5.7 (a) Is b(A(K, t)) ≥ a(K) for any t?
(b) At least, is b(A(K, t)) ≥ a(K) for any strongly quasipositive A(K, t)?

We reformulate part (a) here as a 
onje
ture, with the insight gained from Corollary 5.3.

Conje
ture 5.8

a(K) = min
t∈Z

b(A(K, t)) (5.5)

If part (b) fails, then it would give an example A(K, t) answering negatively Rudolph's question (5.1).

To formalize this topi
 better, we introdu
e notation relating to the two grid stabilizations (4.12) and

(4.13).

De�nition 5.9 We de�ne the 
one C(µ, t) ⊂ Z+ × Z by

C(µ, t) = { (s, λ) : s ≥ µ, t ≤ λ ≤ t+ s− µ } .

We say (µ, t) is the tip of the 
one.

✲

µ number of strands

✻

t

twisting

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

·
·
·




· · ·

C(µ, t)

We 
an summarize some properties we have derived regarding the region Φ(K) of De�nition 4.12.

Theorem 5.10 (a) The framing diagram Φ(K) of K (see De�nition 4.12) is a union of 
ones.

(b) It 
ontains at least one 
one of the form C(a(K), λmin(K)) and one of the form C(µ, λ(K)).
(
) It 
ontains no points with t < λ(K) and µ < a(K).
(d) Every point (µ, t) ∈ Φ(K) satis�es

br(K)− (µ− 1)2/4 ≤ t ≤ (µ+ 1)2/4− br(K) . (5.6)

�

This estimate (5.6), that 
omes from (4.7), is rather 
rude, due to our insu�
ient 
ontrol over the

writhe. One problem with (4.8) is that, while it 
an be (at least asymptoti
ally) sharp on either side,

this unlikely happens (simultaneously) for diagrams D of the same link. Methods to address the writhe

variation exist, based on Thistlethwaite's work on the Kau�man polynomial, but they will lead to no

pleasant results here. A far more e�
ient te
hnique will be introdu
ed later in [JLS℄, whi
h ultimately

leads to mu
h sharper bounds than (5.6), espe
ially whenK is �xed and µ is large. However, we emphasize

that neither (5.6), nor the inequalities in Lemmas 4.18 and 4.19, follow from alternative estimates we obtain

(or, to the best of our knowledge, other known results).

We announ
ed that we will prove later in [JLS℄ the Finite-Cone-Theorem.
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Theorem 5.11 (Finite-Cone-Theorem [JLS℄) The framing diagram Φ(K) is a union of �nitely many


ones.

The following Jones-Kawamuro type of 
onje
ture (
ompare with Theorem 2.2) is then suggestive.

Question 5.12 IfK is non-trivial, is Φ(K) a single 
one? (This 
one would have to be then C(a(K), λmin(K))
with λmin(K) = λ(K).)

Example 5.13 A

ording to (4.10), we have

Φ(©) = C(2, 0) ∪ C(2, 1)

being the union of two 
ones.

The spe
ial 
ase for µ = a(K) in Question 5.12 (an analogue of the �weak� form of the Jones-Kawamuro


onje
ture) was already raised in [Ng℄ in the language of grid diagrams D and Thurston-Bennequin

invariants TB(D). It was answered in [DP, Corollary 3℄.

Theorem 5.14 (Dynnikov-Prasolov [DP℄) The Thurston-Bennequin invariant of minimal grid diagrams

of a given knot K is always equal to TB(K).

We will return to this statement in [JLS℄. Note that the unknot 
reates no ex
eption here, when using

TB instead of λ and avoiding the dis
repan
y (4.19).

6 Jump invariant

Turning to Whitehead doubles, Ozsváth-Szabó de�ned a number jτ (K), the jump invariant of τ , with

τ(W+(K, t)) =

{
1 t ≥ jτ (K)
0 t < jτ (K)

. (6.1)

The existen
e of su
h a number 
an be seen easily from Livingston's properties of sli
e-torus invariants

(�2.4). We have g(W+(K, t)) = 1, so for strongly quasipositive T = W+(K, t) we have τ(T ) = 1 (see

(2.16)). Also W+(K, t) → W+(K, t − 1) and W+(K, t) → © by a positive-to-negative 
rossing 
hange,

thus τ(T ) ∈ {0, 1}. It is not immediately 
lear that τ 6≡ 1, i.e., jτ (K) > −∞, but this is known, and we

will also be able to derive it in Proposition 6.3.

It is important, for reasons (6.14) that will transpire below, that τ 
an be repla
ed by (half of)

Rasmussen's invariant s, or any other (possible) sli
e-torus invariant v. In parti
ular, for any su
h v we

have the behavior of (6.1), leading to de�ning the jump number jv(K), as studied in [LvN℄. In fa
t, note

that one 
an de�ne jσ for the signature σ as well (after some modi�
ation (σ+1)/2 to �t values 0, 1), but
for obvious reasons jσ(K) = 1 regardless of K. Corollary 4.15 shows then that there are many Whitehead

doubles T whi
h are not strongly quasipositive despite σ(T ) = 2g(T ) = 2. We obtain then the following.

Corollary 6.1 For any sli
e-torus invariant v, we have

jv(K) ≤ λ(K) . (6.2)

Proof. By Corollary 4.15, W+(K, t) is strongly quasipositive for t ≥ λ(K), thus from (2.16), we have

v(W+(K, t)) = 1 for t ≥ λ(K). �

Example 6.2 Equality does not always hold. An example for v = τ is T = W+(31, 3) = 1445575, whi
h is

a Whitehead double of the negative (left-hand) trefoil 31. There τ(T ) = 1, but T = 1445575 is not strongly
quasipositive. We have λ(31) = 6 (see [LvM℄).
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Now we 
an also easily re
over the Livingston-Naik result [LvN℄.

Proposition 6.3 For any sli
e-torus invariant v, we have

−λ(!K) < jv(K) ≤ λ(K) . (6.3)

Proof. The right inequality in (6.3) was given in Corollary 6.1. To obtain the left inequality, we prove

that

v(W+(K, t)#W+(!K,−t)) ≤ 1 . (6.4)

We remind that both 
onne
ted sum fa
tors have v-invariant 0 or 1.

Assume (6.4) is proved. Then sin
e v(W+(!K,−t)) = 1 for −t ≤ −λ(!K) for the same reasons as

Corollary 6.1, we need from (6.4) that v(W+(K, t)) = 0 for t ≤ −λ(!K), so we have the left inequality in

(6.3).

To prove (6.4), assume by 
ontradi
tion that l.h.s. is 2. Thus χ4(W+(K, t)#W+(!K,−t)) ≤ −3.

By 
onne
ting with a band as indi
ated in Figure 1, we obtain a 2-
omponent link in Figure 2, with

presumably

χ4[(6.7)] ≤ −2 . (6.5)

K!K

✲

✻ ❄

✲ ✲

framing −t framing t

❅❅■

(6.6)

Figure 1: Spli
e at the pla
e indi
ated by the arrow, by adding a band

But the disk region of (6.7) represents an annulus of the sli
e knot K#!K with framing t − t = 0.
However, pay attention that there is an orientation issue here. When K is non-invertible, then K#!K is

sli
e only if !K is oriented in a proper way. To resolve this issue, noti
e that the 
onstru
tion of W+(K, t)
does not depend on the orientation of K, and moreover, W+(K, t) is easily seen to be invertible regardless

of whether K is or not. This means one 
an suitably 
hoose orientations of W+(K, t),W+(!K,−t) when
their 
onne
ted sum in (6.4) is built. The v invariant obviously is not a�e
ted by this 
hoi
e. Then by

smoothing out any one of the four displayed 
rossings in (6.7), we obtain the unframed Whitehead double

(6.8) = W+(K#!K, 0) of a sli
e knot, in Figure 3, whi
h must be sli
e itself and thus have χ4 = 1. But
from (6.5), we would need χ4[(6.8)] ≤ −1, a 
ontradi
tion. �

We have then the following 
ontribution to the Bennequin sharpness 
onje
ture (2.9).

Corollary 6.4 Assume there is a sli
e-torus invariant v so that (6.2) is sharp for K:

λ(K) = jv(K) . (6.9)

Then for every t,

W±(K, t) is Bennequin-sharp ⇐⇒ W±(K, t) is strongly quasipositive . (6.10)
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K# !K

✲

✲ ✲✲

Sli
e, framing 0, and χ4 ≥ 0

✁
✁✁☛

(6.7)

Figure 2: One of the four 
rossings should be smoothed out, and then one nugatory 
rossing removed

K# !K

✲

✲ ✲

(6.8)

Figure 3: Sli
e knot, χ4 = 1

Proof. If K is the unknot, then W±(K, t) are twist knots, so alternating, and for them (2.9) is resolved;

see [FLL, St2℄. (Or one 
an make an expli
it 
he
k.) Thus we assume below that K 6= ©.

We �rst deal with W+. If (6.9) holds, then be
ause of Corollary 4.15,

W+(K, t) is not strongly quasipositive ⇐⇒ v(W+(K, t)) = 0 . (6.11)

Furthermore, g(W+(K, t)) = 1, thus by (2.16),

v(W+(K, t)) = 0 =⇒ W+(K, t) is not Bennequin-sharp . (6.12)

Combining (6.11) and (6.12) gives the `=⇒' dire
tion in (6.10). The reverse dire
tion,

not Bennequin-sharp =⇒ not strongly quasipositive, (6.13)

is among the standard 
ausalities following from Bennequin's inequality (2.6) (see the remark above (2.8)).

For W− noti
e that it unknots by a negative-to-positive 
rossing 
hange, so that v(W−) ≤ 0, while
g(W−) = 1 (unless K is the unknot, and t = 0, a 
ase that 
an be handled extra). Thus W−(K, t) 
annot
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be Bennequin-sharp by (2.14). Then neither 
an it be strongly quasipositive by (6.13). Compare with

Corollary 4.15(b), for whi
h this reasoning thus gives an alternative proof.

This means that (6.10) holds for W− as an equivalen
e of false assertions for whatever K (and t),
regardless of the 
ondition (6.9). �

Of 
ourse, when v is e�e
tively 
omputable, so is jv(K). But at least for v = τ , there is a more 
losed

expression. Hedden [He℄ has found that

jτ (K) = 1− 2τ(K) , (6.14)

whi
h further elu
idates Example 6.2. But the pi
ture for Rasmussen's invariant remains less 
lear.

We 
an �t (6.14) into the general relationship

λ(K) = −TB(K) ≥ 1− 2τ(K) = jτ (K) ≥ χ4(K) . (6.15)

For the leftmost inequality, whi
h is due to Plamenevskaya, see the proof of Theorem 1.5 in [He2℄. One


an use (6.15) to easily obtain the property (6.3) for v = τ , whi
h motivated treating there a general v
rather than only fo
ussing on this spe
ial instan
e. The relationship (6.14) also identi�es when (6.9) holds

for v = τ , namely whi
h o

urs when

λ(K) = 1− 2τ(K) . (6.16)

This raises the question what knots satisfy (6.16). There is one noteworthy 
lass.

Lemma 6.5 Every positive knot K satis�es (6.16).

Proof. A positive diagram D of K 
an be Morsi�ed as done by Tanaka [Ta2℄. One 
an view a positive

diagram D, with w(D) = c(D), as a front diagram; we put ea
h positive 
rossing so that it is in the

form

��

❅
❅
❅❘

��✒
, and put ea
h Seifert 
ir
le to form a front diagram, so that it 
ontributes exa
tly one left

and exa
tly one right 
usp. Thus w(D) = c(D) and in (4.5) (after a −π/4 rotation) Z(D) = s(D). By

Theorem 4.9,

−λ(K) ≥ −λ(D) = c(D)− s(D) = 2g(K)− 1 ,

where the last equality 
omes from Seifert's algorithm.

Next, it is known by Yokota [Yo℄ that for K positive, an with F being the Kau�man polynomial,

min dega F (K) = 2g(K) . (6.17)

Then, with the known bound

2

(see [FT, Fe, Ta, JLS℄)

λ(K) ≥ −min dega F (K) + 1 , (6.18)

we have

−λ(K) ≥ 2g(K)− 1 = min dega F (K)− 1 ≥ −λ(K) .

This gives that λ(K) = 1−2g(K), and �nally τ(K) = g(K) when K is positive (or more generally strongly

quasipositive). �

Using joint work of the se
ond author with T. Ito, one 
an extend this 
orollary to 
ertain (type II)

almost positive knots. (This 
an be proved by formulas of Rutherford [Rt℄.) But we also know that strong

quasipositivity is not su�
ient for (6.16).

Example 6.6 Consider K = 161379216, the 
losure of the 3-braid

1 1 [13℄ 2 1 [13℄ 2 1 [13℄ 2,

2

We normalize F here so that for the right-hand trefoil, min deg
a
F = 2.
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161379216

It has min dega F (K) = 7 (and g4(K) = 4), thus by (6.18) we 
an 
on
lude that (6.16) fails even for

strongly quasipositive K. (This is the only strongly quasipositive example K up to 16 
rossings with

min dega F (K) < 2g4(K), so it unders
ores the value of the tabulation reported in [St2, Appendix℄.)

A further series of instan
es satisfying (6.16), whi
h will play a spe
ial role in [St3℄, and were 
onsidered

also in [Tr℄, are sli
e knots K with

λ(K) = 1 . (6.19)

They 
an be suspe
ted to be quasipositive. But for (6.16) quasipositivity not ne
essary, as shows the

below example.

Example 6.7 The knot K = 121628 has λ = 1 and τ = 0 (see [LvM℄), thus were it to be quasipositive, it

would have τ = g4 = 0, so it would be sli
e. But this is easily ruled out from the Milnor-Fox 
ondition;

the determinant det(121628) = 17 is not a square.

7 Con
lusion

The work des
ribed here started with the simple question: how does a braided surfa
e of Euler 
hara
-

teristi
 0 look like? While there seems little hope to give a 
lassi�
ation result, the attempt unfolded a


onne
tion into a variety of issues. We en
ountered many suggestive but di�
ult to resolve questions,

whose examination would require deepening this 
onsideration.

For smaller Euler 
hara
teristi
, one obtains instead of a grid diagram a �grid-embedded (trivalent)

graph�. It 
an be des
ribed as a PL spatial embedding of a trivalent graph whose diagram 
an be built

up with the tiles in (2.17), and the two extra tiles

but not

Developing a similar theory of grid-embedded graphs will thus also be a long � but nevertheless perhaps

very interesting � undertaking.
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