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1 Introduction

This investigation resulted from attempts to understand braided surfaces, in particular Bennequin and
strongly quasipositive surfaces. Similar to the case of canonical surfaces [St], we were trying to develop
some structural properties. As it turned out, even in the simplest case of Euler characteristic 0, the
answer is revealingly complicated, in that these surfaces are essentially equivalent to integer-labeled grid
diagrams D for knots. However, despite protruding such complexity, this connection leads to some new
viewpoints, and assimilates a number of known and new results. We present them here as an initiation
for further study (see the sequel [JLS], and [MS+]). An outline of the paper is as follows.

After compiling preliminaries in §2, we give some simple but useful observations in §3 on crossing
number and writhe of grid diagrams. In particular, we determine the maximal crossing number of a
rectilinear polygon of given size exactly in the multi-component case (Lemma 3.1) and nearly exactly in
the one-component case (Proposition 3.3 and Computation 3.4). As a consequence we obtain an upper
bound of the crossing number of a link L in terms of its arc index (see Corollary 3.7).



2 2 Definitions and Preliminaries

In §4 we refine the grid-band construction [Nu] to understand that Euler characteristic 0 braided
surfaces are essentially grid diagrams D, with a framing attached, which we write as A(D). When the
surface is strongly quasipositive, then

AD) = -TB(D) (1.1)

is identified, up to sign, with the Thurston-Bennequin invariant of D. We will establish this in Theorem
4.9 from introducing a weight model for the Thurston-Bennequin invariant from a grid diagram (Lemma
4.4). As we explain, in conformance with (1.1), we will usually write A\(K) = —TB(K), for the maximal
Thurston-Bennequin invariant TB(K) of K.

We give some simple applications, including estimates of A(K) in relation to arc index and bridge
number (Theorem 4.8 and Lemma 4.18), and Rudolph’s determination of the strong quasipositivity of
twisted annuli A(K,t) (Corollary 4.13). This is then extended to twisted positively /negatively clasped
Whitehead doubles W4 (K, t) and Bing doubles B(K,t) (Corollary 4.15).

In §5 we discuss the braid index b(K') and its variants for Bennequin and strongly quasipositive surfaces,
and how the arc index a(K) is fundamentally connected to a braid index b(A(K,t)) (see Corollary 5.1
and Conjecture 5.8). As a bi-product, we can reprove (and slightly improve) Ohyama’s [Oh] inequality
(Corollary 5.5). We also study the framing diagram ®(K) of a knot K (Definition 4.12) and its cone
structure (Theorem 5.10).

Section §6 deals with the jump function j, of slice-torus invariants v. After we reproduce the
Livingston-Naik [LvN] estimate (Proposition 6.3), we extend it with a condition (6.9) on a knot K that re-
solves the Bennequin-sharpness problem (2.9) for its Whitehead doubles (Corollary 6.4). We also establish
(see Lemma 6.5) that positive knots K satisfy this condition.

In §7 we only briefly motivate a more general theory, of “grid-embedded graphs” for braided surfaces
of smaller (i.e., negative) Euler characteristic. It should also be noted from the start that grid diagrams of
links can be treated by essentially the same approach, without very major modifications, but for technical
reasons we stick mostly to knots. Some study of links has been begun in [MS+].

This is the first part of work divided into three parts for length reasons. The second part [JLS] will
deal extensively with applications of the HOMFLY-PT polynomial. The final part [St3], given by the
second author, deals with extensions from strong quasipositivity to quasipositivity. Many of the results
here serve as a motivation for their later analogues and generalizations. (This will be explicitly indicated
wherever relevant.)

2 Definitions and Preliminaries

2.1 Generalities
We say an inequality ‘a > b’ is sharp or ezact if a = b and strict (or unsharp) if a > b. We use #F for the
cardinality of a finite set E and |z| for ‘greatest integer’ part of z € Q. We also afford a few standard

abbreviations like ‘Lh.s.” (for ‘left hand-side’), ‘w.r.t.” (for ‘with respect to’) and ‘w.l.o.g.” (for ‘without
loss of generality’).

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are

called as follows.
y y smoothing > <
AN / —

positive negative smoothed out
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The sign of a positive/negative crossing is assigned to be +£1 accordingly. Let ¢y (D) be the number
of positive, respectively negative crossings of a link diagram D, so that the crossing number of D is
¢(D) = c4(D)+c_(D) and its writhe is w(D) = c4 (D) — c_ (D). We write s(D) for the number of Seifert
circles of D, which are the circles obtained after smoothing all crossings of D. We write ¢(K) for the
crossing number of a knot K, the minimal crossing number of all diagrams of K. The mirror image of K
will be written ! K, and the mirror image of diagram D (in the form obtained by switching all crossings of
D) will be !D. If K =!K (up to orientation), we call K amphicheiral. We use ‘Q)’ to denote the unknot
(trivial knot) in formulas.

The symbol ‘#’ is used for connected sum. (This should be distinguishable from the context from the
use of ‘#’ as ‘cardinality’.) The number of components of a link L is denoted x(L). The bridge number
br(L) of L is the minimal number of Morse maxima of L (or equivalently, of any diagram of L). The
(Seifert) genus g(L) resp. Euler characteristic x(L) of a knot or link L is said to be the minimal genus
resp. maximal FEuler characteristic of a Seifert surface of L. We have

29(L) = 2 = w(L) = x(L)-
Similarly write x4(L) for the smooth 4-ball (maximal) Euler characteristic and
294(L) =2 — (L) — xa(L) .
(In the following 4-ball genera and sliceness will always be understood smoothly.) A knot K is slice

if g4(K) = 0, or equivalently, x4(K) = 1. We will refer to the following basic fact: if k(L) = 2 and
X4(L) = 2, then both components of L must be slice (knots), and have linking number 0.

2.3 Braids and braided surfaces

We write B,, for the braid group on n strands or strings. The relations between the Artin generators o,
i=1,...,n—1 are given by

® 0,0;410; = 0410041 for 1 § 7 S n — 2 and

e g0 =0j0;for1 <i<j—1<n-2.

In diagrams we will orient braids left to right and number strings 1,...,n from top to bottom, for
example:
G /Gt
2 — 2 —
D G
4 ———> 4 —————>
n ——— > n —— >
o2 oy !

The relations can then be drawn as follows:

0;0i4+10; = 0;410i0;41 0,05 = 0404, |’L —j| >1
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There is a permutation homomorphism © : B, — S,, sending each o; to the transposition of 7 and
14 1.
We define band generators in B,, by

— -1
04,5 = 0‘1'...0']‘_20']‘_10‘]-72...0'1- s (2.2)

For example 027 € By looks

Notice that 0; ;11 = 0;. A presentation of a braid 5 € B,, in the form

!
B = H O—iik}jk (2:3)
k=1
is called a band presentation. (See e.g. [BKL].) Usually, it will be more legible to use the symbol
[ij] = 0i;

when writing band generators in formulas. Similarly we use —[ij] = g, jl. In certain cases, we even omit
the brackets. (See Definition 4.6, where we will extend suitable words in [ij], without negative exponents,
also to encode grid diagrams.) Also, when j =i + 1, we often simply write i for o; and —i for o; ! when
no ambiguity arises.

The image of 5 under the abelianization B,, — Z is the writhe (or exponent sum) of 3, and is written
w(B). Note that w(3) can also be calculated as the exponent sum in a band presentation (2.3).

A braid S € B, whose closure (8 is the link L is a braid representative of L. Similarly a word for g
gives a (braid closure) diagram D = 3 of L. When £ is a word, then w(3) = w(8). A band presentation
£ naturally spans a Seifert surface of L = B Following Rudolph, we call this a braided surface of L. For
example, n = 6 and [ = 6,

—

£

for the 6-braid f = 01,403502403601,502,6. The diagram shows the closure L = B It is easily seen
that the six ‘elliptic’ disks joined two by two with six twisted bands form a natural Seifert surface of L.
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Rudolph [Ru] proves that every Seifert surface is a braided surface. If a braided surface is of minimal
genus for L, it is called a Bennequin surface of L [BM2].

A link is called quasipositive if it is the closure of a braid 3 of the form
o
8 = Hwkaikwgl (2.4)
k=1

where wy, is any braid word and o;, is a (positive) standard Artin generator of the braid group. (In [Ru4]
there is some overview of this topic.) If the words wgo;, wy ' are of the form o;, j,, so that

w
5 = H Tig\dn s (25)
k=1

then they can be regarded as embedded bands. Links which arise this way, i.e., such with positive band
presentations, are called strongly quasipositive links.

Bennequin’s inequality [Be, Theorem 3] states
—X(D) > w—n (2.6)

for an n-strand braid representative of L of writhe w. If there is a braid representative 5 of L making
(2.6) an equality, we call both L and 8 Bennequin-sharp. This inequality was later extended to

—X(L) = =xa(L) 2w —n (2.7)

(see e.g. [IS, St2]). In an analogous way we defined that L and S are slice-Bennequin-sharp.

It implies that a strongly quasipositive surface, i.e., obtained from a positive band presentation, is
minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of
writhe w. Thus the surface S constructed from the band presentation yields, with (2.7),

—X(L) < —x(S)=w—n < —xa(L) < —x(L).

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

The Bennequin sharpness conjecture (see [FLL, St2]) asserts
L is Bennequin-sharp <= L is strongly quasipositive. (2.9)

For some related results, see [JLS].

The second author’s effort to determine the quasipositivity of the (prime) 13 crossing knots [St4] also
provides some evidence for a “4-ball” version of the Bennequin sharpness conjecture (2.9):

L is slice-Bennequin-sharp <= L is quasipositive. (2.10)

In practical terms, every proof of non-quasipositivity of a knot passes via showing that it is not slice-
Bennequin-sharp. Note again that <= follows immediately from (2.7), and it is = which is open.

Definition 2.1 e Let b(K) be the braid index of K, the minimal number of strings of a braid repre-
sentative of K.

e Let by(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin
surface of K.

e When K is strongly quasipositive, let bsqp(K) be the minimal number of strings to span a strongly
quasipositive surface of K (only positive bands).
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e Further, for a Seifert surface S, let b(S) be the minimal string number on which S is spanned as a
braided surface.

e If S is a strongly quasipositive surface, let bgq,(S) be the minimal string number on which § is
spanned as such (i.e., arises from a positive band presentation).

We have then (with the right inequality only valid for strongly quasipositive K)
b(K) < by(K) < bugp (K. (2.11)
and by definition, with S being a Seifert surface of K,
bp(K) = min{ b(S) : x(5) = x(K) }, bsgp(K) = min{ bsgp(S) : S strongly quasipositive }. (2.12)

We will further discuss these relations in §5 and [JLS]. We also feature the following result. It confirms
an expectation originally formulated for n = b(L) by Jones [J, end of §8] (later also referred to as the
“weak” form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro conjecture [DP, LaM]) For every link L, there is a number
Wpmin (L), so that every braid representative 5 of L on n strands of writhe w satisfies

lw — wynin (L) < 1 — b(L). (2.13)

Generally speaking, we will use this theorem to advance theoretical applications in our work, but for
practical ones, another tool will be crucial, the HOMFLY-PT polynomial. As announced, its treatise will
be moved out to [JLS].

2.4 Slice-torus invariants

We briefly recall Livingston’s [Lv] formalism of “slice-torus invariant”. An integer-valued invariant v on
knots (i.e., not necessarily defined for multi-component links) is a slice-torus invariant if

e v(K)=—v(K), and v(—K) = v(K), where —K is K with the reverse orientation

additivity under connected sum: v(K1#Ks) = v(K1) + v(K2)

e crossing switch rule: v(K ) —v(K_) € {0,1}

v(K) < g4(K) (or equivalently 2v(K) < 1 — x4(K)), and

v satisfies Bennequin’s inequality:
0(K)>w—-—n+1

for a braid representative of K on n strings and writhe w.

These properties are not minimal (i.e., some follow from special cases or combinations of others), but
they are what we will use in §6. (We emphasize that it is not assumed v to be defined on multi-component
links k(K) > 1 in any way.)

There are two known instances of such an invariant, the Ozsvath-Szabé 7 invariant, and (half of)
Rasmussen’s invariant s. Thus the concept was introduced mainly to give these two a uniform treatment.
(The halved signature o /2 satisfies the first four of the above five properties, but not the last.)

From the superposition of

29(K)=1—-x(K)>1—-x4(K) >20(K)>w—-n+1
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with (2.6), it is straightforward that
if v(K) < g(K), then K is not Bennequin-sharp. (2.14)
In relation (see the remark below (2.10)), it follows that when a knot K is quasipositive, then
o(K) = gu(K), (2.15)

and
when K is strongly so, then v(K) = g4(K) = g(K). (2.16)

We will refer to these standard facts a few times below.
2.5 Grid diagrams and arc index
An arc presentation of a knot or a link L is an ambient isotopic image of L contained in the union of

finitely many half planes, called pages, with a common boundary line in such a way that each half plane
contains a properly embedded single arc.

o
N

4

9=0 0= o=1 0= 9 =2 0=

H
[=]
[ME]

1

o

A grid diagram (or, for simplicity simply called grid often below) is a knot or link diagram which is
composed of finitely many horizontal edges and the same number of vertical edges such that vertical edges
always cross over horizontal edges. We assume that horizontal/vertical positions of vertical /horizontal
edges are pairwise distinct. In particular, away from crossings edges only meet at corners, and vertices
are pairwise distinct. Up to the adjustment of heights of horizontal and widths of vertical edges, a grid
diagram is thus what can be composed in the plane by the tiles

a5 H =S

See, for example, [AL], and also compare with §7.

[ SREENE i

(2.17)

It is not hard to see that every knot admits a grid diagram (compare with the proof of Lemma 4.18).
The figure below explains that every knot admits an arc presentation.

el
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We set the size p(D) of a grid diagram to be the number of vertical or (equivalently) horizontal
segments (but not both together). A grid (diagram) of size p will also be shortly called a p-grid.

In general, we will afford the sloppiness of abolishing the distinction between an ordinary and a grid
diagram, whenever the grid structure is unnecessary. Thus, for instance, ¢(D) can mean the crossing
number of both an ordinary and grid diagram, whereas (D) would imperatively assume that D is given
a grid shape.

Let a(L) be the arc index of L, the minimal u(D) over all grid diagrams D of L. It is the minimal

number of pages among all arc presentations of a link L [J+, J+2].

We note that the following was proved by Cromwell [Cr|. For two links Ly, Lo,
a(Li#L2) = a(Lq1) +a(La) — 2. (2.18)
For knots L;, it also follows from a relationship
a(K) = MNK)+ MIK), (2.19)

derived by Dynnikov-Prasolov [DP], concerning the Thurston—Bennequin invariant (see §4 for notation,
Theorem 5.14 and Corollary 4.11), and the additivity of the invariant [EH, To].

2.6 Knot tables

For notation from knot tables, we follow Rolfsen’s [Ro, Appendix| numbering up to 10 crossings, except
for the removal of the Perko duplication.

For 11 to 16 crossings we use the tables of [HT] (which for 11 to 13 crossing knots are now also
on KnotInfo [LvM]), while appending non-alternating knots after alternating ones of the same crossing
number. Thus, for instance, 11a[k] = 11 for 1 < k < 367, and 12n[k] = 1258545 for 1 < k < 888.

If it is relevant, mirror images will be distinguished on a case-by-case basis. Specifically, for the (2, n)-
torus knots, we will say that the knot is positively /negatively mirrored. The convention for 10132 is fixed in
Example 4.10. (This knot will archetype certain phenomena that become increasingly relevant in [JLS].)

3 Upper bound of Crossing number

A planar grid polygon can be defined as the planar projection of a link grid diagram. Similarly we specify
its size by the number of horizontal/vertical edges. It is obvious that a grid polygon determines uniquely
(when crossing convention is fixed) a grid diagram, and vice versa. A grid polygon can have multiple
components (i.e., PL-immersed circles). Such objects are of interest in discrete geometry; see for example
[BOS, SG, KLA]. They are named rectilinear polygons, but for us it is (very) relevant that self-crossings
are allowed (i.e., the polygons are not simple).

Lemma 3.1 Every, possibly multiple-component, planar grid polygon of size m has the following upper
bounds on the number of intersections.

(3.1)

(m? —2m)/2  m is even
(m—1)2/2—-1 misodd

These bounds are sharp.

Proof. What could be a conundrum becomes self-evident after introducing the right way of counting
crossings. We will group crossings w.r.t. their horizontal segment . We consider the horizontal segments
from the middle high segment upward. Whenever [ is such a segment and [, is a horizontal segment above



I, we define the weight w;(I) € {0,1,2} to be the number of neighboring vertical edges of I}, intersecting
. Then
#{ intersections of [ } = Z wi(lp) - (3.2)
Iy, above [
This counting works because for each vertical edge [, intersecting [, exactly one of its two neighboring
horizontal edges [;, is above [. Thus

#{intersections of [ } < 2#{1} : I, abovel}. (3.3)

Now this sum will account to

(m—1)/2
#{ intersections of upper horizontal edges } < 2 Z k (3.4)
k=0

for the upper (m —+ 1)/2 edges I when m odd. The lower (m —1)/2 edges [ can be handled by choosing I,
to be below [, giving a similar sum

(m—3)/2
#{ intersections of lower horizontal edges } < 2 Z k. (3.5)
k=0

m/2—1
For m even one has 4 Z k instead of (3.4)+(3.5). Direct calculation gives
k=0

(m? —2m)/2 m is even

(m—1)2/2  mis odd (3.6)

#{ intersections of polygon } < {

It remains to argue why for m odd, (m — 1)?/2 intersections are not possible. This would mean that
the middle horizontal edge e satisfies w,(e’) = 2 for every other horizontal edge e’. But there are at least
two edges e’ for which this is not possible, namely those connected to the two vertical edges adjacent to
e. This completes the proof of (3.1). For the sharpness of the bounds, see Example 3.2 and Proposition
3.3. |

Example 3.2 If we allow multiple components of the polygon, and consider m even, then the bound in
(3.6) is sharp

When we restrict to 1-component polygons, we know the following.

Proposition 3.3 For every m > 2, there exists a 1-component planar grid polygon II,, of size m with

1 misodd
(m—1)2/2— {55 m=0mod4 (3.7)
T/ m=2mod4

crossings.
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Proof. Consider the Lissajous’ polygon A(mq,ms2).

A(3,5) A(4,5) A(3,7)

This gives a grid polygon of size m = m1 + ms. When my and my are even and m; — mo = 2, we also
need the modified Lissajous polygon A'(m1,ms2).

A'(4,6) A'(6,8)
Then choose
A(d mtl) m is odd
O, =¢A(F-1,%+1) m=0mod4 . (3.8)
N(E—-1,%+1) m=2mod4

The crossing number of these polygons (3.7) follows by explicit calculation. They are 1-component by
direct inspection. (In general, A(mi, mo) appears to be l-component when m; and mso are relatively
prime.) O

These examples leave not much room for improvement. For odd m, (3.1) settles their maximality.
When m is even, by modifying the argument at the end of the proof of Lemma 3.1 to the middle two
horizontal edges, it is also easy to conclude that (3.1) cannot be made sharp by a 1-component polygon.
Thus the examples of Proposition 3.3 can be improved by at most 1 crossing for m = 0 mod 4 and by at
most 2 crossings for m = 2 mod 4.

Computation 3.4 Still, verifying whether the (1-component) polygons II,,, have maximal crossings (for
even m) is not entirely trivial. We wrote a computer program to test this, which in fact found the

family A’ in (3.8). For m = 4,6 there are exceptional maximal crossing polygons A’(2,2) = |

'We chose this name since they appear as rectifications of Lissajous curves, although this correspondence is not precise
for every (m1,m2).
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(as compared to A(1,3)), and , as compared to A'(2,4) = B We know that

the polygons (3.8) have maximal crossings for even m with 8 < m < 24.

Certainly, we are interested more in grid diagrams of links, with crossing information, and in that case
Lemma 3.1 easily modifies to show the following.

Lemma 3.5 Every grid link diagram D of size u(D) = m has writhe |w(D)| < (m — 1)?/4.

Proof. It is essentially the same proof as for Lemma 3.1, except noting that (3.2) modifies to

Z (signs of intersections of 1) < Z wi(ly), (3.9)

lh above l, wl(lh) =1

because signs of crossings on ! coming from 5, with w;(l;) = 2 cancel out. Then the estimates (3.3) and
(3.6) exactly halve. O

Example 3.6 If we allow multiple components of the link, and consider m even, then again the bound
in Lemma 3.1 (in the form of halving (3.6)) is sharp, as shows the (m/2,m/2)-torus link:

it

At the cost of decreasing the number of crossings by O(m), one may obtain a knot, like the (m/2, m/2+
1)-torus knot, or adjust m to be odd.

This is an immediate consequence of Lemma 3.1.

Corollary 3.7 For every link L,
c(L) < (a(L) —1)%/2, (3.10)

where ¢(L) is the crossing number and a(L) is the arc index. O

In contrast to the well-known bounds in [BP, JP] (see the proof of Corollary 5.5), it is striking that
an upper estimate of the crossing number of a link in terms of its arc index has apparently never been
previously considered in the literature.

Remark 3.8 While some reductions of the bound (3.10) may be possible under link isotopy (which is
reflected in Cromwell’s moves [AHT, Cr]), we have failed to significantly improve upon this estimate. This
(combinatorial) problem develops serious enough to merit a separate account if later progress is made. We
note, though, that in Example 3.6, the featured torus links appear in minimal crossing number diagrams,
so that the right of (3.10) cannot be reduced by more than a factor of 2 (asymptotically in a(L)).
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4 Thurston-Bennequin invariant

4.1 Weight model for the Thurston-Bennequin invariant

The main topic of this work starts from the observation that a braided surface of Euler characteristic 0,
which is a K-knotted annulus, is essentially a grid diagram of the underlying companion knot K.

Definition 4.1 Let for a knot K and integer ¢,

e A(K,t) be the (link of the) t-framed K-knotted annulus,
o W, (K, t)and W_(K,t) the t-framed Whitehead doubles of K with positive and negative clasp, and
e B(K,t) the t-framed Bing double of K.

We will usually abuse the distinction between the annulus and the link which is its boundary.

To disambiguate among different conventions for framing used elsewhere, we emphasize that ¢ is here
the linking number of the two components of A(K,t). Thus, for example, A((, 1) is the positive (right-
hand) Hopf link, and A(O), —1) the negative one. This definition of framing has the opposite sign to the
one used by other authors (e.g., [DM]), where they take the writhe w(D) = —t of a diagram D of K from
which A(K,t) is constructed as the blackboard-framed (reverse) 2-parallel.

Also, W4 ((,1) is the positive (right-hand) trefoil, and W, (0O, —1) = W_((,1) the figure-8-knot.
We can understand W, (K, t) resp. W_(K,t) as the result of plumbing a positive resp. negative Hopf band
into A(K,t) and taking the knot which is the boundary of the resulting Seifert surface. In a similar way,
we can understand B(Kt) as the 2-component link which is obtained by plumbing both a positive and a
negative Hopf band into A(K,t) and taking the boundary. Thus for instance B((),0) is the 2-component
unlink, and B((O, 1) is the Whitehead link.

Let D be a grid diagram of a knot K. Replacing each vertical segment with a half twisted band as
shown below, we get a braid in band presentation, denoted by Sp. Then the closure Sp bounds a twisted

annulus. Therefore Bp = A(K,t) for some t.
B
D Bp
"|/—>
_ —\~
s :ﬁd Yic ~ . h;
_/ A — o —

I L ]f__j /_j_ _ (4.1)

This correspondence was previously noted by Rudolph (see [Ru3, Fig 1]) and later by Nutt (compare

J
with [Nu, Theorem 3.1]), and will be referred to as grid-band construction.

Consider the situation that the band presentation is positive. Then obviously A(K,¢) for the resulting
framing t is strongly quasipositive. A question is what is the framing ¢, which we will write as

t=\D), (4.2)

in dependence of the diagram D, and how to read A\(D) off D. To explain the formula for A(D), given
below as (4.5), we fix some notation.
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Let the weight of a grid diagram D be
Z0)== 3 seale), (4.3)
e edge of D
where the signs of the edges are determined as follows:

() 1 e is vertical
sgn(e) =
& +1, 0 e is horizontal and one of the following forms

Example 4.2

D
1
‘ Z(D):§ 14+---+1)+0+0+14+0+0)| =3
vertical, L. to R horizontal, B to T

Remark 4.3 This weight formula (4.3) can be generalized to non-positive band presentations by letting
each vertical edge have the sign of the corresponding band. But we will treat this more general case only
occasionally here.

We then can identify the framing ¢ in (4.2).

Lemma 4.4 With w(D) being the writhe, we have

A(D) = Z(D) — w(D). (4.5)

Proof. One can see that when the Seifert circles of the closed braid diagram Sp of A(K,t) are made
small, one obtains a diagram of A(K,t), where the band obtained by thickening D is twisted. By a
straightforward combinatorial observation, the twisting of the band is given by Z(D). The untwisted
band built from D carries the framing —w(D) itself. This gives (4.5). O

Remark 4.5 One has a certain freedom to vary the direction from which to read the bands of the braid
representative Sp of A(K,t) off the grid diagram D of K. We explain our convention here in an example
to make clear how band presentations are used for specific knots below. While horizontal and vertical
edges are easily interchangeable in grids, disks and bands are far less so in braid band presentations. The
change of direction will give different ¢, but will change K only up to mirroring.

The default direction of reading will be from the left. Reading the grid diagram D in (4.1) from the
left gives the word [14][35][24][36][15][26], with [ij] = o;; of (2.2). Reading D from the right is meant
to give the reverse order of (band) letters. This is the result of reading from the left a grid diagram D’,
which is obtained from the mirror image !D after a flip (7 rotation along the vertical axis). Reading D
from the bottom gives the word [46][25][13][24][36][15] , which arises when reading from the left |D after
a rotation by —m/2. Reading from the top again reverses these letters and results in reading from the
left D after the combination of a flip (along the horizontal axis) and —x/2 rotation. Note that thus we
consider braid strands numbered right to left when reading a grid diagram from the right and from the
top (while left to right otherwise).
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Definition 4.6 Also, we can use the band presentation of Sp to specify the grid diagram D itself. The
mirroring of D is fixed by default by saying that Sp should be obtained when reading D from the left.
This means that we can write the grid diagram D in (4.1), even omitting brackets, as

14 35 24 36 15 26.

Since we deal with grids of size 10 or more, let us also already fix here that we use initial capital Latin
letters A,B,C, ... to denote two-digit integers 10,11, 12,. .., so that for example, 4C = [4,12] = 04,12.

Let br(D) be the vertical bridge number of D, which is the number of sign-0 horizontal edges of D of

one of either types in (4.4)
O |—,
o) =# | ] | =# -

Lemma 4.7 We have
br(D) < Z(D) < (D) — br(D), (4.6)

and thus
br(D) — (u(D) = 1)2/4 < (D) < (u(D) +1)2/4 — br(D). (4.7)

Proof. The left inequality in (4.6) holds because each piece of the knot between two vertical extrema
contributes at least 1 to the weight sum, and we have 2br(D) such pieces. The right inequality holds
because there are 2br(D) edges in D with sign 0. By using Lemma 3.5,

—(1(D) = 1)*/4 < w(D) < (u(D) —1)*/4. (4.8)

Then, with (4.6), (4.5) and (4.8), we obtain (4.7). O

Let a(K) be the arc index of K, the minimal (D) over all grid diagrams D of K. Take a minimal
grid diagram p(D) = a(K). Then, with (4.6), (4.5) and (4.8), we have

br(D) — (a(K) —1)?/4 < X(D) < (a(K) + 1)?/4 — br(D).
Thus we have, using the bridge number br(K) of K from §2.2:

Theorem 4.8 There exists a number A, (K) with
br(K) — (a(K) = 1)*/4 < Apin(K) < (a(K) +1)/4 = br(K) (4.9)

such that for all ¢ > X\, (K), we have that A(K,t) is strongly quasipositive on bsqp(A(K,t)) < a(K) +
t — Anin (K) strands.

We will use Ay, (K) often in the following. Two caveats are in order regarding this notation. The ‘min’
refers to the minimum with respect to number of strings of the surface A(K,t) (or horizontal segments in
the grid diagram of K), not the framing ¢ itself. And, it is not assumed that A, is unique. At least for
the unknot K,

both b(A(O,0)) = b(A(O, 1)) = 2, thus Apnin(O) =0, 1. (4.10)

This special behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness
and minimality of A, (K) was settled, as will be discussed below; see Theorem 5.14. But we do not wish
to exclude K = (O consistently. We prefer to maintain the symbol Ay, (K), stipulating that formulas
involving Apmin (K) are meant to hold whatever of either values (4.10) is chosen for K = (. For K # O,
the reader may assume that

Amin (K) = MK), (4.11)
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though we will not use this before stating Theorem 5.14.

Proof of Theorem 4.8. When p is augmented by 1, we can always augment by 1,

(4.12)

resp. preserve

(4.13)

any given framing A(D) by the above two moves. (Apply an adjusting PL-map on the half-planes above
and below the newly formed horizontal edge.) We call these moves in the following positive and negative
stabilization, resp. Thus, A(D) augments by 1 under positive stabilization, and negative stabilization
does not change A(D). (Neither stabilization changes w(D). Note that the diagram D; of A(K,t)
obtained from D always has s(D;) = u(D) Seifert circles and writhe w(D;) = u(D).) The claim follows
for a(K) 4+ t — Amin(K) strands from positive stabilization, and for larger strand number by (further)
negative one. O

The Thurston-Bennequin invariant T B(D) of a grid diagram D can be defined as is being identified
in the following theorem.

Theorem 4.9 For any grid diagram D, the quantity Z(D) counts the NW- or SE-corners of D.
Z(D)=# ‘ NW-corners | = # SE-corners (4.14)

Proof. The argument for (4.14) is a combinatorial observation.

Thus (1.1) holds.

Obviously (4.14) is a claim about planar rectilinear (1-component) polygons (§3). Thus crossings of
the grid diagram can be ignored. Every 1-component planar rectilinear polygon can be reduced to a
planar rectangle by polygonal removal of (a) rectilinear kinks (Reidemeister I move) and (b) horizontal
segments as in a (positive or negative) destabilization (4.12) and (4.13), and its +m/2-rotated versions for
vertical segments. (Note that these moves can be applied now, up to some planar adjustment, even if the
removed segments have intersections on them.) It is easy to observe that (4.14) is invariant under these
simplifications, and holds for the rectangle.

Once we know (4.14), we obtain (1.1) straightforwardly from the characterization of TB(D) given in
[LvN] or [Ng] (or see [Ru3, p. 159)]). O

Example 4.10 The [J+] diagram D’ of 10132,
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read from the right (see Remark 4.5), gives the 9-strand band presentation
Bp = [25][14][37][26][15][48][79][38][69] , (4.15)

where D = flip (1D’). We have u(D) =9, Z(D) = 3, w(D) = 2, br(D) = 3 and A(D) = 1. Thus (4.15)
gives a (positive) band presentation of A(10132,1). The mirroring of 10132, determined by D, is so that it
has the HOMFLY-PT polynomial of the positively mirrored 5;. We fix this mirroring in the sequel, also
for later reference in [JLS]. Note that it is thus opposite to Rolfsen’s [Ro, Appendix] mirroring.

We also remark the following straightforward consequence of Theorem 4.9.

Corollary 4.11 When the grid diagram !D is obtained from D by switching all crossings, and a —m/2
rotation, then A\(D) + A(!D) = u(D).

Proof. The writhe terms of D and !D in (4.5) cancel out. Thus A(D)+A(1D) = Z(D)+ Z(!D). By taking
the average of the two corner counts in (4.14) for D and its —7/2 rotation, we see that Z(D) + Z(ID) is
half the number of all corners of D, which is u(D). O

4.2 Application to strong quasipositivity

Let TB(K) be the mazimal Thurston-Bennequin invariant of K, an invariant often considered in contact
geometry [FT, LvN, Ng, Ma, Ru3]:

TB(K) := max{TB(D) : D is a diagram of K }.

We also specify a region which will play an important role throughout the rest of the paper (and
beyond).

Definition 4.12 We define the framing diagram ®(K) of K as a subset of R? by

®(K) = {(u,t) : A(K,t) has a strongly quasipositive band representation on y strands } .

The following result of Rudolph [Ru3, Proposition 1] then follows directly from Theorem 4.9. (Note
our different sign convention for ¢.)

Corollary 4.13 When K is not the unknot, then
AMK) :=min{ t : A(K,t) is strongly quasipositive } = —TB(K), (4.16)

and more precisely,
A(K,t) is strongly quasipositive <= t > —TB(K). (4.17)

Proof. When A(K,t) has a positive band presentation, then every disk is connected by at least two
bands. Disks connected by one band can be removed, and such connected by no band do not exist unless
K = (and ¢t = 0), which was excluded. Since x(A(K,t)) = 0, it follows that every disk is connected by
exactly two bands, which means that the band presentation of A(K,t) gives rise to a grid diagram of K.
It is also well known that every integer ¢t > —TB(K) can be realized as Thurston-Bennequin invariant
of some grid diagram of K. (We mentioned this above; see (4.12).) Note in passing that undoing the
removal of disks connected by one band is, up to conjugacy, positive braid stabilization. This also shows
that

(u,t) € P(K) = (u+ 1,¢) € P(K), (4.18)

which equals the effect of the negative grid stabilization (4.13). |
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The following diagram illustrates the effect of the positive grid stabilization within ®(K):

twist ¢ o o .
[} [} [}
[ ) [} [ )
[ ] [ ) [ ]
[ ]
[ )

number of strands

For the unknot K, we have
—TB(Q)=1but A(Q)=0. (4.19)

The problem with (4.16) there is that A(K,0) has the empty positive band presentation (on two strands),
but we do not consider this band presentation corresponding to a grid diagram. For this reason, the
unknot will repeatedly require special attention below. Despite the identification (4.16), A(K) will occur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,
even when we exclude K = ().

Remark 4.14 Tt is possible to derive similar properties for links K. Then a framing ¢ is needed for each
component, and the relationship in Corollary 4.13 becomes slightly more involved, as become the framing
diagram of Definition 4.12 and its properties. We do not wish to deal extensively with (banded) links
here. In the case of torus links, the second author has begun a separate collaboration project [MS+].
However, in situations where the surface structure is forgotten, more self-contained extensions to links K
do emerge, as for Corollaries 5.4, 5.5, and 5.6.

In the following application we assume that K # (). For K = (), all the links in Definition 4.1 are
(alternating) 2-bridge links, and such can be handled ad hoc for strong quasipositivity (see e.g. [Ba]).

Corollary 4.15 Let K be a non-trivial knot. Then
(a) W (K, t) is strongly quasipositive if and only if ¢t > —TB(K), and
(b) W_(K,t) and B(K,t) are never strongly quasipositive.

Proof. The minimal genus surface of W4 (K, t) is unique. This is proved by Whitten [Wh], but follows also
from a result of Kobayashi [Ko]: the plumbing S; * S2 is a unique minimal genus surface if and only if one
of S 2 is a unique minimal genus surface and the other one is a fiber surface. The minimal genus surface
of Wi (K,t) is a Hopf band plumbed into the annulus A(K,t) (which is obviously the unique minimal
genus surface of A(K,t); compare below Definition 4.1). Kobayashi’s version also shows that plumbing
two Hopf bands into A(K,t) gives a unique minimal genus surface for B(K,t). It follows from Rudolph’s
results on Murasugi sum [Ru2] that W_ (K, t) and B(K,t) are never strongly quasipositive: their unique
minimal genus surface Murasugi desums into pieces, not all of which are strongly quasipositive. Also,
W4 (K, t) is strongly quasipositive if and only if A(K,t) is. (For W_ see also the proof of Corollary 6.4.)
Il
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Since we will need this repeatedly later, let us already here notice that the Hopf plumbing W, (K, t) =
A(K,t) x H can be realized by doubling a(ny) positive band in a band presentation of A(K,t).

Example 4.16

7\
4 A41,3) W (41,3)

A similar remark applies to W_ (K, t) whenever a band presentation of A(K,t) has a negative band.
However, it is important to note that this is not the only way to generate positive band presentations
of Whitehead doubles. (A different example for a trefoil Whitehead double is given in [Be, fig p. 121
bottom].) We will discuss Whitehead doubles further in §6.

Here, we give a simple application of the weight model, in estimating the Thurston-Bennequin invariant.

Definition 4.17 Define pbr(D), the plane-bridge number of D as the minimal number of Morse maxima
(or minima, i.e., half of the minimal number of Morse extrema) over all smooth diffeomorphic images of
D in S?. Obviously br(K) < pbr(D).

Lemma 4.18 For any diagram D of K, we have A\(K) < 2¢_(D) + pbr(D).

Proof. First, we can make D into a grid diagram by straightening out edges, and replacing wrong
crossings, i.e., those with the horizontal strand on top, as follows.

‘ (4.20)

(Again, as for the stabilization moves that occurred in the proof of Theorem 4.8, some small PL adjustment
is needed.) This does not change the number of bridges.

Next, the horizontal adjustment technique (4.21) can be used to delete a horizontal edge e of label +1
without crossing on it, again by applying a suitable PL-map on the half-planes above and below e. This
is the reverse of the stabilization moves, but we may need in advance to displace possible vertical edges
above or below e. (If necessary, extend the box A resp. B drawn in the following figures until above resp.
below the entire grid diagram, to ensure that all edges enter the box horizontally.)
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(4.21)

The inequality we wish to prove about the diagram resulting after a move (4.21) is equivalent to the
one about the original diagram. We may therefore assume henceforth that all £1 signed horizontal edges
are intersected by a crossing. Thus

(D) > u(D) —2br(D). (4.22)

Also, we can see
Z(D) < u(D) —br(D),

by using that in (4.3) there are 2br(D) edges of label 0.

Then
MK) < Z(D)—w(D)
< u(D) - br(D) —w(D)
< ¢(D)+br(D)—w(D)
= 2c_(D)+br(D).
The rest follows by minimization. O

A counterpart to Lemma 4.18 will emerge later from the HOMFLY-PT polynomial, and is only an-
nounced here.

Lemma 4.19 ([JLS]) For any diagram D of K, we have A\(K) > —2c4(D) — pbr(D).

5 Braid indices

We discuss some relation regarding the braid indices in Definition 2.1. (Remember the comparison with
[Ru3, Fig. 1] and [Nu, Section 3.3].) As noticed, Bennequin’s inequality (2.6) implies that a strongly
quasipositive surface is a Bennequin surface, thus for K strongly quasipositive, we have (2.11). We know
that by(K) > b(K) is possible [HS], but the examples K known are not strongly quasipositive. Rudolph
conjectures that

bsqp(K) = b(K) (5.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16
crossings (see [St2]). By the proof of the Jones-Kawamuro conjecture (Theorem 2.2), a Bennequin surface
of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

by(E) = b(K) (5.2)

implies (5.1) for strongly quasipositive knots K. The problem (5.2) is extensively studied in [St2].

Since a band presentation of A(K,t) always comes from a grid diagram of K, and with a confirmative
notice about the unknot, we have:

Corollary 5.1
min{by,(A(K,t)) : t€Z} = a(K). (5.3)

Moreover, there are at least a(K) + 1 consecutive integers ¢ which realize the minimum.
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Proof. The case that K is the unknot can be handled directly: the minimizing t are t = —1,0, 1.

When K is not the unknot, every maximal Euler characteristic (equal to 0) band presentation of
A(K,t) comes from a grid diagram of K. This shows

min{by(A(K, 1)) : t €Z} > a(K).

To see the reverse inequality, take a minimal grid diagram D of K. This gives a positive band presentation
Bp of A(K,t) for t = Apin(K). Now consecutively turn the a(K) bands negative, which gives band
presentations of Bennequin surfaces for A(K,t) where t = A\pin(K), ..., Amin(K) — a(K). O

Also, because choosing positive bands will give a band presentation of a strongly quasipositive annulus,
we have with Corollary 4.13:

Corollary 5.2 min{bsq,(A(K,t)) : t > AN(K) } = a(K). O
Forgetting the surface structure then yields an inequality of (ordinary) braid indices:

Corollary 5.3
min{b(A(K,t)) : t € Z} <min{b(A(K,t)) : t > AM(K) } < a(K) (5.4)

Moreover, there are at least a(K)+ 1 consecutive integers ¢ which realize the inequality b(A(K,t)) < a(K).
O

The braid index of a link A(K,¢) is obviously not less than the sum of the braid indices of constituent
components. Thus from Corollary 5.3, we also immediately have an inequality, which was noticed by
Cromwell [Cr] (with the extension to links K as explained in Remark 4.14):

Corollary 5.4 (Cromwell) For every knot K, we have 2b(K) < a(K). O

We obtain then the (slight) refinement of Ohyama’s inequality [Oh], as also explained in the introduc-
tion.

Corollary 5.5 For every knot K, we have b(K) < ¢(K)/2+ 1, and if K is non-alternating, then b(K) <
c(K)/2.

Proof. It is known that a(K) < ¢(K) + 2, as proved in [BP], and a(K) < ¢(K) for K non-alternating
[JP]. O
Since b(K) > br(K), it further follows:

Corollary 5.6 For any knot K, we have 2(br(K) — 1) < ¢(K). If K is non-alternating, then 2br(K) <
c(K). O

In the obvious extension to links, connected sums of Hopf links show that the (first) inequality is
sharp. But there is a more precise conjecture, apparently due to Fox [Fo|, and later studied and extended
by Murasugi [Mu]. For knots K, it states

3(br(K) — 1) < c(K).

These useful implications are worth noting, but we will see below that it is much more important to
work with (5.4) rather than its simplified variant of Corollary 5.4.

We are next going discuss what (say, strongly quasipositive) framings \ are possible for given grid size
i, and in particular whether A,,;,, the framing for a minimal (size a(K)) diagram (see Theorem 4.8) is
unique. Since p bounds the braid index of A(K,t), and all have the same y, Birman-Menasco [BM] imply
that for given A, only finitely many p are possible. We will later prove in [JLS] a more precise statement
(Finite-Cone-Theorem 5.11).
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Question 5.7 (a) Is b(A(K,t)) > a(K) for any ¢?
(b) At least, is b(A(K,t)) > a(K) for any strongly quasipositive A(K,t)?

We reformulate part (a) here as a conjecture, with the insight gained from Corollary 5.3.

Conjecture 5.8
a(K) = rtniél b(A(K,t)) (5.5)
€

If part (b) fails, then it would give an example A(K,t) answering negatively Rudolph’s question (5.1).

To formalize this topic better, we introduce notation relating to the two grid stabilizations (4.12) and
(4.13).

Definition 5.9 We define the cone C(u,t) C Z4 x Z by
Clp,t) ={ (s,A): s>p, t<A<t+s—p}.
We say (i1, 1) is the tip of the cone.

A
twisting

[ ]

[ ] [ ]
e o e Clp,t)

[ ] [ ] [ ] [ ]

[ ] [ ] [ [ ] [ ]

t — [ ) [ ] [ ] [ ] [ ] [ ]
| >

I number of strands

We can summarize some properties we have derived regarding the region ®(K) of Definition 4.12.

Theorem 5.10 (a) The framing diagram ®(K) of K (see Definition 4.12) is a union of cones.
(b) It contains at least one cone of the form C(a(K), Apin(K)) and one of the form C(u, A\(K)).
(c) Tt contains no points with ¢t < A(K) and p < a(K).

(d) Every point (u,t) € ®(K) satisfies

br(K) — (u—1)2/4<t<(u+1)*/4—br(K). (5.6)
O

This estimate (5.6), that comes from (4.7), is rather crude, due to our insufficient control over the
writhe. One problem with (4.8) is that, while it can be (at least asymptotically) sharp on either side,
this unlikely happens (simultaneously) for diagrams D of the same link. Methods to address the writhe
variation exist, based on Thistlethwaite’s work on the Kauffman polynomial, but they will lead to no
pleasant results here. A far more efficient technique will be introduced later in [JLS], which ultimately
leads to much sharper bounds than (5.6), especially when K is fixed and p is large. However, we emphasize
that neither (5.6), nor the inequalities in Lemmas 4.18 and 4.19, follow from alternative estimates we obtain
(or, to the best of our knowledge, other known results).

We announced that we will prove later in [JLS] the Finite-Cone-Theorem.
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Theorem 5.11 (Finite-Cone-Theorem [JLS]) The framing diagram ®(K) is a union of finitely many
cones.

The following Jones-Kawamuro type of conjecture (compare with Theorem 2.2) is then suggestive.

Question 5.12 If K is non-trivial, is ®(K) a single cone? (This cone would have to be then C(a(K), Amin (K))
with Apin (K) = AM(K).)

Example 5.13 According to (4.10), we have

being the union of two cones.

The special case for p = a(K) in Question 5.12 (an analogue of the “weak” form of the Jones-Kawamuro
conjecture) was already raised in [Ng] in the language of grid diagrams D and Thurston-Bennequin
invariants TB(D). It was answered in [DP, Corollary 3].

Theorem 5.14 (Dynnikov-Prasolov [DP]) The Thurston-Bennequin invariant of minimal grid diagrams
of a given knot K is always equal to TB(K).

We will return to this statement in [JLS]. Note that the unknot creates no exception here, when using
T B instead of A and avoiding the discrepancy (4.19).

6 Jump invariant

Turning to Whitehead doubles, Ozsvath-Szabé defined a number j,(K), the jump invariant of 7, with

(W (K1) :{ : ii;gg . (6.1)

The existence of such a number can be seen easily from Livingston’s properties of slice-torus invariants
(§2.4). We have g(W,(K,t)) = 1, so for strongly quasipositive T' = W, (K,t) we have 7(T) = 1 (see
(2.16)). Also W4 (K,t) - Wi (K,t—1) and W, (K,t) - O by a positive-to-negative crossing change,
thus 7(T") € {0,1}. It is not immediately clear that 7 # 1, i.e., j-(K) > —oo, but this is known, and we
will also be able to derive it in Proposition 6.3.

It is important, for reasons (6.14) that will transpire below, that 7 can be replaced by (half of)
Rasmussen’s invariant s, or any other (possible) slice-torus invariant v. In particular, for any such v we
have the behavior of (6.1), leading to defining the jump number j,(K), as studied in [LvN]. In fact, note
that one can define j, for the signature o as well (after some modification (o +1)/2 to fit values 0, 1), but
for obvious reasons j,(K) = 1 regardless of K. Corollary 4.15 shows then that there are many Whitehead
doubles T which are not strongly quasipositive despite o(T') = 2¢g(T) = 2. We obtain then the following.

Corollary 6.1 For any slice-torus invariant v, we have
Ju(K) < MK). (6.2)

Proof. By Corollary 4.15, W, (K, t) is strongly quasipositive for ¢ > A(K), thus from (2.16), we have
v(Wi(K,t)) =1 for t > \(K). O

Example 6.2 Equality does not always hold. An example for v = 7 is T = W, (31, 3) = 1445575, which is
a Whitehead double of the negative (left-hand) trefoil 3;. There 7(T') = 1, but T' = 1445575 is not strongly
quasipositive. We have A(31) = 6 (see [LvM]).
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Now we can also easily recover the Livingston-Naik result [LvN].

Proposition 6.3 For any slice-torus invariant v, we have
“MIK) < ju(K) < A(K). (6.3)

Proof. The right inequality in (6.3) was given in Corollary 6.1. To obtain the left inequality, we prove
that

U(WJr (Kv t)#W+('K, 7t)) <1I. (64)
We remind that both connected sum factors have v-invariant 0 or 1.

Assume (6.4) is proved. Then since v(Wy (1K, —t)) = 1 for —t < —A(!K) for the same reasons as
Corollary 6.1, we need from (6.4) that v(W,(K,t)) = 0 for t < —A(!K), so we have the left inequality in
(6.3).

To prove (6.4), assume by contradiction that Lh.s. is 2. Thus x4 (W (K, t)#W, (1K, —t)) < —3.

By connecting with a band as indicated in Figure 1, we obtain a 2-component link in Figure 2, with
presumably
xa[(6.7)] < 2. (6.5)

framing —t framing ¢
AN
K /oL J

Figure 1: Splice at the place indicated by the arrow, by adding a band

Y

But the disk region of (6.7) represents an annulus of the slice knot K#!K with framing t —t = 0.
However, pay attention that there is an orientation issue here. When K is non-invertible, then K#!K is
slice only if ! K is oriented in a proper way. To resolve this issue, notice that the construction of W, (K, t)
does not depend on the orientation of K, and moreover, W, (K, t) is easily seen to be invertible regardless
of whether K is or not. This means one can suitably choose orientations of W, (K, t), W4 (1K, —t) when
their connected sum in (6.4) is built. The v invariant obviously is not affected by this choice. Then by
smoothing out any one of the four displayed crossings in (6.7), we obtain the unframed Whitehead double
(6.8) = W (K#!K,0) of a slice knot, in Figure 3, which must be slice itself and thus have y, = 1. But
from (6.5), we would need x4[(6.8)] < —1, a contradiction. O

We have then the following contribution to the Bennequin sharpness conjecture (2.9).
Corollary 6.4 Assume there is a slice-torus invariant v so that (6.2) is sharp for K:
A(K) = jul(K). (6.9)
Then for every t,
W, (K,t) is Bennequin-sharp <= Wy (K,t) is strongly quasipositive. (6.10)
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Slice, framing 0, and x4 > 0
——/
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Figure 2: One of the four crossings should be smoothed out, and then one nugatory crossing removed

R

(6.8)
Figure 3: Slice knot, x4 =1

Proof. If K is the unknot, then W, (K, t) are twist knots, so alternating, and for them (2.9) is resolved,
see [FLL, St2]. (Or one can make an explicit check.) Thus we assume below that K # Q.

We first deal with W... If (6.9) holds, then because of Corollary 4.15,
W, (K,t) is not strongly quasipositive <= v(Wy(K,t)) =0. (6.11)
Furthermore, (W, (K, t)) = 1, thus by (2.16),
v(W4i(K,t)) = 0= W, (K,t) is not Bennequin-sharp. (6.12)
Combining (6.11) and (6.12) gives the ‘=" direction in (6.10). The reverse direction,
not Bennequin-sharp = not strongly quasipositive, (6.13)

is among the standard causalities following from Bennequin’s inequality (2.6) (see the remark above (2.8)).

For W_ notice that it unknots by a negative-to-positive crossing change, so that v(W_) < 0, while
g(W_) =1 (unless K is the unknot, and ¢t = 0, a case that can be handled extra). Thus W_ (K, t) cannot
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be Bennequin-sharp by (2.14). Then neither can it be strongly quasipositive by (6.13). Compare with
Corollary 4.15(b), for which this reasoning thus gives an alternative proof.

This means that (6.10) holds for W_ as an equivalence of false assertions for whatever K (and t),
regardless of the condition (6.9). O

Of course, when v is effectively computable, so is j,(K). But at least for v = 7, there is a more closed
expression. Hedden [He] has found that

Jr(K) = 1 - 27(K), (6.14)

which further elucidates Example 6.2. But the picture for Rasmussen’s invariant remains less clear.

We can fit (6.14) into the general relationship
MK)=-TB(K)>1-27(K) =j.(K) > x4(K). (6.15)

For the leftmost inequality, which is due to Plamenevskaya, see the proof of Theorem 1.5 in [He2]. One
can use (6.15) to easily obtain the property (6.3) for v = 7, which motivated treating there a general v
rather than only focussing on this special instance. The relationship (6.14) also identifies when (6.9) holds
for v = 7, namely which occurs when

MK)=1-27(K). (6.16)

This raises the question what knots satisfy (6.16). There is one noteworthy class.
Lemma 6.5 Every positive knot K satisfies (6.16).

Proof. A positive diagram D of K can be Morsified as done by Tanaka [Ta2]. One can view a positive
diagram D, with w(D) = ¢(D), as a front diagram; we put each positive crossing so that it is in the

form /\‘ , and put each Seifert circle to form a front diagram, so that it contributes exactly one left

and exactly one right cusp. Thus w(D) = ¢(D) and in (4.5) (after a —n/4 rotation) Z(D) = s(D). By
Theorem 4.9,
SA(K) > —A(D) = (D) — s(D) = 29(K) ~ 1,

where the last equality comes from Seifert’s algorithm.
Next, it is known by Yokota [Yo] that for K positive, an with F' being the Kauffman polynomial,
mindeg, F(K) =2¢g(K). (6.17)
Then, with the known bound? (see [FT, Fe, Ta, JLS])
AMK) > —mindeg, F(K) + 1, (6.18)

we have
—MK) > 2¢g(K)—1=mindeg, F(K)—1> -\K).

This gives that A\(K) = 1—2¢(K), and finally 7(K) = g(K) when K is positive (or more generally strongly
quasipositive). a

Using joint work of the second author with T. Ito, one can extend this corollary to certain (type II)
almost positive knots. (This can be proved by formulas of Rutherford [Rt].) But we also know that strong
quasipositivity is not sufficient for (6.16).

Example 6.6 Consider K = 161379216, the closure of the 3-braid

11 [13] 2 1 [13] 2 1 [13] 2,

2We normalize F' here so that for the right-hand trefoil, min deg, F' = 2.
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It has mindeg, F'(K) = 7 (and g4(K) = 4), thus by (6.18) we can conclude that (6.16) fails even for
strongly quasipositive K. (This is the only strongly quasipositive example K up to 16 crossings with
mindeg, F'(K) < 294(K), so it underscores the value of the tabulation reported in [St2, Appendix].)

A further series of instances satisfying (6.16), which will play a special role in [St3], and were considered
also in [Tr], are slice knots K with
ANEK)=1. (6.19)
They can be suspected to be quasipositive. But for (6.16) quasipositivity not necessary, as shows the
below example.

Example 6.7 The knot K = 121425 has A = 1 and 7 = 0 (see [LvM]), thus were it to be quasipositive, it
would have 7 = g4 = 0, so it would be slice. But this is easily ruled out from the Milnor-Fox condition;
the determinant det(121625) = 17 is not a square.

7 Conclusion

The work described here started with the simple question: how does a braided surface of Euler charac-
teristic 0 look like? While there seems little hope to give a classification result, the attempt unfolded a
connection into a variety of issues. We encountered many suggestive but difficult to resolve questions,
whose examination would require deepening this consideration.

For smaller Euler characteristic, one obtains instead of a grid diagram a “grid-embedded (trivalent)
graph”. It can be described as a PL spatial embedding of a trivalent graph whose diagram can be built
up with the tiles in (2.17), and the two extra tiles

1

—

F A

Developing a similar theory of grid-embedded graphs will thus also be a long — but nevertheless perhaps
very interesting — undertaking.

but not
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