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1 Introduction

This is the second part of a long account on an investigation resulting from attempts to understand
braided surfaces, in particular Bennequin and strongly quasipositive surfaces. As it turned out, even in
the simplest case of Euler characteristic 0, the answer is revealingly complicated, in that these surfaces
are essentially equivalent to grid diagrams D for knots. However, these grid diagrams D are also equipped
with a framing A(D), and in the first part [JLS] many consequences were discussed of the identification
of this framing with the (negated) Thurston-Bennequin invariant (Theorem 3.6).

Building on that study, we treat here the HOMFLY-PT polynomial P. The arc index has the Morton-
Beltrami lower bound (5.11) [MB] which, by the work of Dynnikov-Prasolov [DP] (Theorem 4.10), is refined
by the Kauffman polynomial bound for the Thurston-Bennequin invariant (3.15). Our main contribution
here is that there is an alternative pair of inequalities (1.2,5.73) to (5.11,3.15) using the HOMFLY-PT
polynomial P. These new estimates are provably better in a variety of cases (see Corollariy 5.19 and
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Proposition 5.43, and Computation 5.44). This includes optimality for alternating knots (Proposition
5.17) and positive knots K (Corollary 5.45). These bounds have their own new geometric applications.

An outline of the paper is as follows.

After compiling preliminaries in §2, we recall in §3 previous work in [JLS]. We review that Euler
characteristic 0 braided surfaces are essentially grid diagrams D, with a framing attached, which we write
as A(D). When the surface is strongly quasipositive, then

A(D) = —~TB(D) (1.1)

was identified, up to sign, with the Thurston-Bennequin invariant of D. As we explain, in conformance
with (1.1), we will usually write A\(K) = —TB(K).

In §4 we discuss the braid index b(K') and its variants for Bennequin and strongly quasipositive surfaces,
and how the arc index a(K) is fundamentally connected to a braid index b(A(K,t)) (see Corollary 4.1
and Conjecture 6.1). We also introduce the framing diagram ®(K) of a knot K (Definition 3.9) and its
cone structure (Definition 4.7).

After these preparations, we move to the main work of this paper in §5, which is a detailed treatment of
the HOMFLY-PT polynomial. The possibility exists (Conjecture 2.3) that the HOMFLY-PT polynomial
determines the braid index, thus this could be true for the arc index as well. In the simplest form, we
extract (in a “culinary” way) an invariant, we call [(K'), which gives a lower bound for the arc index of K,

I(K) < a(K) (1.2)

(see Theorem 5.7). Tt (apparently, see Question 5.14) already improves upon the Morton-Beltrami [MB]
bound.

For (even) better estimates, one can use cabling, and to limit complexity problems, we introduce
partial cabling (Lemma 5.25). This can be complemented by some extra arguments, and shows that the
HOMFLY-PT polynomial is efficient to practically determine the arc index (see Lemma 5.13 and Remark
5.28) and maximal Thurston-Bennequin number (Proposition 5.33) in most examples. We further outline
(end of §5.3) how to apply the Kauffman polynomial beyond the Morton-Beltrami inequality, and also
prove the Finite-Cone-Theorem 5.3.

Section §6 mostly deals with a summary of previous considerations, including more explicit forms of
the Finite-Cone-Theorem (Propositions 6.6 and 6.7). We also highlight potential pathologies about non-
coincidence of various types of braid indices. This comprises Rudolph’s problem (4.1). We show that the
[-invariant can be also used to exclude such odd behavior (Propositions 6.9 and 6.11). This leads to an
extension of the result of Diao and Morton [DM] (Proposition 6.14). Among further applications is the
following.

Corollary 6.13" Assume K is alternating and L = Wi (K,t) or L = A(K,t) for some t. Then L has
a minimal string Bennequin surface. Also, if L is strongly quasipositive, then L has a minimal string
strongly quasipositive band presentation.

Throughout the treatise, we encounter many suggestive but difficult to resolve questions. We have
deliberately put emphasis on them, since their examination would provide various directions to deepen
the present consideration.

The third (and final) part of this sequence of papers [St] is written by the second author and dis-
cusses what previous results on strong quasipositivity can be extended to quasipositivity. When strong
quasipositivity is replaced by quasipositivity, then many considerations revolve around sliceness. This is
closely related to the problem of slicing Whitehead doubles, and we will extra need both Casson-Gordon
and Vassiliev invariants.

2 Definitions and Preliminaries

Many of the definitions and notations needed coincide with those given in [JLS], but must inevitably be
included again, in order to make this paper self-contained.
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2.1 Generalities

We say an inequality ‘a > b’ is sharp or exact if a = b and strict (or unsharp) if a > b. We use #FE for
the cardinality of a finite set F and |z] for ‘greatest integer’ part of z € Q.

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are

called as follows.
‘\/( X( smoothing > <
AN / =

positive negative smoothed out
(2.1)

The sign of a positive/negative crossing is assigned to be +£1 accordingly. Let ¢y (D) be the number
of positive, respectively negative crossings of a link diagram D, so that the crossing number of D is
¢(D) = c4(D)+c_(D) and its writhe is w(D) = c4 (D) — c_ (D). We write s(D) for the number of Seifert
circles of D, which are the circles obtained after smoothing all crossings of D. We write ¢(K) for the
crossing number of a knot K, the minimal crossing number of all diagrams of K. The mirror image of K
will be written ! K, and the mirror image of diagram D (in the form obtained by switching all crossings of
D) will be !D. If K =!K (up to orientation), we call K amphicheiral. We use ‘Q)’ to denote the unknot
(trivial knot) in formulas, and T, 4 is used for the (p, g)-torus knot.

The symbol ‘#’ is used for connected sum (as a binary operation on links, unlike its previous intro-
duction as ‘cardinality’). The number of components of a link L is denoted by «(L). The bridge number
br(L) of L is the minimal number of Morse maxima of L (or equivalently, of any diagram of L). The
(Seifert) genus g(L) resp. Euler characteristic x(L) of a knot or link L is said to be the minimal genus
resp. maximal FEuler characteristic of a Seifert surface of L. We have

29(L) =2 = K(L) = x(L) -
Similarly write x4(L) for the smooth 4-ball (maximal) Euler characteristic and
2g4(L) =2 — k(L) — xa(L).

(In the following 4-ball genera and sliceness will always be understood smoothly.) A knot K is slice
it g4(K) = 0, or equivalently, x4(K) = 1. We will refer to the following basic fact: if k(L) = 2 and
X4(L) = 2, then both components of L must be slice (knots), and have linking number 0.

2.3 Braids and braided surfaces

We write B,, for the braid group on n strands or strings. The relations between the Artin generators o,
i=1,...,n—1 are given by

® 0,0,410; = 0410041 for 1 <i <n —2 and
[ O'iO'j:UjO'ifOI‘].SZ‘<j71§n72.

In diagrams we will orient braids left to right and number strings from top to bottom, for example:

, L,
XL —
3 —— 3 ————*
4 4

B ——

g9 25}
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There is a permutation homomorphism © : B, — S,, sending each o; to the transposition of 7 and
i+ 1. By a subbraid of 5 € B,, we mean a braid obtained by taking only a subset C' C {1,...,n} of the
strands in 3, which is invariant under the associated permutation 7(3) of 5 (i.e., C'is a union of cycles of

m(B))-
We define band generators in B,, by

. . . -1 -1
04,5 = 0‘1...0']_20']_10‘]-72...0‘1- s (2.2)

Notice that o;;4+1 = 0. A representation of a braid 8 € B, in the form

!
B = H O—iik}jk (2:3)
k=1
is called a band presentation. (See e.g. [BKL].) Usually, it will be more legible to use the symbol

[tj] = 0ij
when writing band generators in formulas. Similarly we use —[ij] = o, jl. In certain cases, we even omit
the brackets (see Definition 3.4 and Example 5.27). Also, when j = i + 1, we often simply write ¢ for o;

and —i for o, !, when no ambiguity arises.

The image of 5 under the abelianization B,, — Z is the writhe (or exponent sum) of 3, and is written
w(B). This quantity can be calculated from the exponent sum on the right of (2.3).

In Definition 3.4 we will extend suitable words in [ij], without negative exponents, also to encode grid
diagrams.

A braid 8 € B,, whose closure B is the link L is a braid representative of L. Similarly a word for 3
gives a (braid closure) diagram D = 8 of L. When 5 is a word, then w(8) = w(8). A band presentation

8 naturally spans a Seifert surface of L = B Following Rudolph, we call this a braided surface of L. For
example, n = 6 and [ = 6,

=

£

for the 6-braid f = 01,403502403601,5026. The diagram shows the closure L = B It is easily seen
that the six ‘elliptic’ disks joined two by two with six twisted bands form a natural Seifert surface of L.
Rudolph [Ru] proves that every Seifert surface is a braided surface. If a braided surface is of minimal
genus for L, it is called a Bennequin surface of L [BM2].

A link is called quasipositive if it is the closure of a braid 3 of the form

N
B = [ wroi,wy* (2.4)
k=1

where wy, is any braid word and o;, is a (positive) standard Artin generator of the braid group. (In [Ru4]
there is some overview of this topic.) If the words wyo;, wy ' are of the form oy, j, in (2.2), so that

“w
5 = H Tit\dn s (25)
k=1
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then they can be regarded as embedded bands. Links which arise this way, i.e., such with positive band
presentations, are called strongly quasipositive links.

Bennequin’s inequality [Be, Theorem 3] states
—X(D) > w—n (2.6)

for an n-strand braid representative of L of writhe w. If there is a braid representative  of L making
(2.6) an equality, we call both L and 8 Bennequin-sharp. This inequality was later extended to

—x(L) > —x4(L) >w—n (2.7)
(see e.g. [IS, St2]). In an analogous way we defined that L and S are slice-Bennequin-sharp.

It implies that a strongly quasipositive surface, i.e., obtained from a positive band presentation, is
minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of
writhe w. Thus the surface S constructed from the band presentation yields, with (2.7),

—X(L) £ =x(5) =w —n < =xa(L) < —x(L).
This also shows that a strongly quasipositive link L is always Bennequin-sharp, and
xa(L) = x(L) . (2.8)
The Bennequin sharpness conjecture (see [FLL, St2]) asserts
L is Bennequin-sharp <= L is strongly quasipositive. (2.9)

For some related results, see [JLS, St].

Definition 2.1 e Let b(K) be the braid index of K, the minimal number of strings of a braid repre-
sentative of K.

e Let by(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin
surface of K.

e When K is strongly quasipositive, let bsq,(K) be the minimal number of strings to span a strongly
quasipositive surface of K (only positive bands).

e Further, for a Seifert surface S, let b(S) be the minimal string number on which S is spanned as a
braided surface.

e If S is a strongly quasipositive surface, let bgq,(S) be the minimal string number on which § is
spanned as such (i.e., arises from a positive band presentation).

We have then (with the right inequality only valid for strongly quasipositive K)
b(K) < by(K) < bugp (K. (2.10)
and by definition, with S being a Seifert surface of K,
bp(K) = min{ b(S) : x(5) = x(K) }, bsgp(K) = min{ bsgp(S) : S strongly quasipositive }. (2.11)

We will further discuss these relations in §4 and §6. We also feature the following result. It confirms an
expectation originally formulated for n = b(L) by Jones [J, end of §8] (later also referred to as the “weak”
form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro conjecture [DP, LaM]) For every link L, there is a number
wWmin (L), so that every braid representative 5 of L on n strands of writhe w satisfies
|w — Win (L) <n—b(L). (2.12)

Generally speaking, we will use this theorem to advance theoretical applications in our work, but for
practical ones, another tool will be crucial, which we introduce next.
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2.4 Link polynomials

We use the HOMFLY-PT polynomial P [LiM], in the Morton [Mo] convention
P(O)=1, v 'P, —wP_ =:P, (2.13)

where Py, P_ and Py refer to the polynomials of three links with diagrams equal except at one spot,
where they contain the fragments of (2.1) from left to right. The right part of (2.13) is also called P’s
skein relation. We will use the suggestive notation min deg, P for minimal v-degree of (any monomial
in) P, and similarly maxdeg, P, and set span,P = maxdeg, P — mindeg, P. We write [P].x for the
coefficient of ¥ in P, being a polynomial in v. Then, [P],. the coefficient of degree d in v (which is itself
treated as a polynomial in z). Also set

min cf 7j]D = [P]Umindegu P (214)

to be the trailing (lowest degree) coefficient of P. The notation P|,>x, P|,<», and P|, . will mean
(the polynomial consisting of) all terms in P of z-degree at least k, at most k, and different from k,
respectively. The z-variable is left inside. Thus [P],» is a polynomial in v, while P| > is a polynomial
in z,v. We occasionally refer to P|,<x as a (z-)truncated polynomial. We emphasize that much of the
useful information of P can be obtained from truncations thereof (like (2.20)), which are much faster
(subexponentially) to compute than the full polynomial. A program that calculates such truncations was
introduced in [St3], and we will extensively apply it below.

A CPU-parallelized upgrade of the truncated polynomial calculation was developed to settle the last
16 crossing prime knot standing to resolve for the below question (4.1); it has now its own description
page on [St4].

Two further standard properties of P are that for a link L of k(L) components, mindeg, P(L) =
1—k(L), and P(L) contains only monomials zPv? for p, q odd (resp. even) when k(L) is even (resp. odd).
The mirroring behavior of P is (signed) v-conjugation:

P(L)(v,2) = (=1)*"B=1P(L) (v, 2). (2.15)
We further use the identity (see [LiM, Proposition 21])
P(v,v ' —v) =1. (2.16)
By the MEW [Mo, FW] inequalities, the writhe w of an n-string band presentation of L satisfies
w+n —1>maxdeg, P(L) > mindeg, P(L) > w—n+1, (2.17)
thus )
MFW(L) := 5 span,P(L) +1 <b(L), (2.18)
where the left hand-side is the MFW bound for the braid index b(L). If MFW(L) = b(L), we call L
MFW-sharp.
When L is not MFW-sharp, there are ways to improve the braid index estimate using cables of L:
when L’ is a degree-c cable of L, then
MFW(L') < b(L') < eb(L),
thus )
b(L) > [— MFW(L’)W . (2.19)
c
The method is well explained in [MS] (certainly when ¢ = 2; some examples for ¢ = 3,4 can be found in
[St3]). We refer to such estimates as the cabled MFW .

To relate this to the Jones-Kawamuro conjecture (Theorem 2.2), we point out that MFW plus cabled
versions thereof is efficient to determine the braid index of most links. In some cases alternative methods
apply, but for every link L whose braid index is decided so far, (2.19) is known give a sharp estimate at
least for sufficiently large c. It is thus conjecturable that this is always the case (see [St4]):
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Conjecture 2.3 For every link L there is a ¢ > 0 and a degree-c cable link L’ of L making (2.19) sharp.

Obviously, when we can prove that a braid representative 8 of a link L is minimal, then we immediately
also obtain wyn (L) = w(B) in Theorem 2.2. However, it was also noticed in [St5] that once (2.19) (for
some c¢) gives a sharp estimate of b(L), it proves along the way that wmn (L) = w(B) is unique. (And
it is not too hard to derive (2.12) either from that argument.) Thus Theorem 2.2 provides a theoretical
underpinning, but is neither very practically helpful nor essential to determine b(L) or wy;, (L) for a given
L.

One main drawback of (2.19) is that in general the polynomial of a cable link L’ is notoriously hard
to calculate. But instead of the whole polynomial, we can use a truncation:

1
MEFW,(L') = 3 span, P(L)|.<o + 1 < MEW(L') < b(L). (2.20)

We refer below to such type of estimate of the braid index as truncated (cabled) MFW .

When quoting specific computations of P polynomials (see e.g. Table 2 or Example 5.42), the no-
tation should be read thus. The first line contains the crossing number of the diagram the polynomial
was computed from, an identifier, and mindeg, P and maxdeg, P. Then in each line follow [P].a for
mindeg, P < d < maxdeg, P with d — mindeg, P even. The line starts with mindeg,[P],s, then
max deg,[P],«, and then follow the coefficients [P],a,. with mindeg,[P],« < e < maxdeg,[P],« and
e —mindeg,[P].« even. These entries are aligned so that coefficients in the same v-degree are on the same
left-right position.

Returning to surfaces, it follows from the right inequality in (2.17) that a Bennequin-sharp (in partic-
ular strongly quasipositive) link L satisfies

mindeg, P(L) >1—x(L). (2.21)

Morton also proves in [Mo] the canonical genus inequality, for any diagram D of L,

maxdeg, P(L) < c¢(D) —s(D)+1. (2.22)

The Conway polynomial V is given by
V(L)(z) = P(L)(1,%). (2.23)
The determinant of a knot K can be defined by
det(K) = |V(2v/-1)|. (2.24)
This is always an odd number (when K is a knot).

The Kauffman polynomial F = F(a,z)(K) will be needed at a few places for reference. We use the
following well-known properties: for every link L,

e F(L) contains only monomials a?z9 for p 4 ¢ even.

[ ]
F(v-1,2)(L)=1. (2.25)

e For a knot K,

[F(K)]z0 (V=1v) = [P(K)]:0(v), (2.26)

and

o the Kauffman-Jones substitution

F(—t34 ¢4 4 =14 (L) = V(L) (2.27)
We caution that our mirroring convention is so that the positive (right-hand) trefoil 3; has min deg, F'(31) =

1 and maxdeg, F(3;) = 4. (This convention is, e.g., opposite to [DM, Th], i.e., with @ and a~! inter-
changed.)
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2.5 Grid diagrams and arc index

An arc presentation of a knot or a link L is an ambient isotopic image of L contained in the union of
finitely many half planes, called pages, with a common boundary line in such a way that each half plane
contains a properly embedded single arc.

4

0=0 0= o=z 0 =3z 0=2x 0=12

=
ol

A grid diagram (or, for simplicity simply called grid often below) is a knot or link diagram which is
composed of finitely many horizontal edges and the same number of vertical edges such that vertical edges
always cross over horizontal edges. We assume that horizontal/vertical positions of vertical /horizontal
edges are pairwise distinct. In particular, away from crossings edges only meet at corners, and vertices
are pairwise distinct.

It is not hard to see that every knot admits a grid diagram (compare with (3.17)). The figure below
explains that every knot admits an arc presentation.

el

We set the size p(D) of a grid diagram to be the number of vertical or (equivalently) horizontal
segments (but not both together). A grid (diagram) of size u will also be shortly called a p-grid.

In general, we will afford the sloppiness of abolishing the distinction between an ordinary and a grid
diagram, whenever the grid structure is unnecessary. Thus, for instance, ¢(D) can mean the crossing
number of both an ordinary and grid diagram, whereas (D) would imperatively assume that D is given
a grid shape.

Let a(L) be the arc index of L, the minimal u(D) over all grid diagrams D of L. It is the minimal
number of pages among all arc presentations of a link L.

We note that the following was proved by Cromwell [Cr]. For two links Ly, Lo,
a(Ll#Lg) = a(Ll) + a(LQ) —2. (228)

For knots L;, it also follows from a relationship (5.68), derived by Dynnikov-Prasolov [DP], concerning
the Thurston-Bennequin invariant (see §3 for notation), and the additivity of the invariant [EH, To].

2.6 Knot tables

For notation from knot tables, we follow Rolfsen’s [Ro, Appendix] numbering up to 10 crossings, except
for the removal of the Perko duplication.

For 11 to 16 crossings we use the tables of [HT] (which for 11 to 13 crossing knots are now also
on KnotlInfo [LvM]), while appending non-alternating knots after alternating ones of the same crossing
number. Thus, for instance, 11a[k] = 11p, for 1 < [k] < 367, and 12n[k] = 12,85 for 1 < [k] < 888.



For non-alternating knots of 17 and 18 crossings (end of §5.2.2), we used Burton’s census, [Bu]. (It
includes, but again reorders, the pre-existing tables up to 16 crossings.)

If it is relevant, mirror images will be distinguished on a case-by-case basis. Specifically, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored. The convention for 10;32 is fixed
in Example 3.7. (The knot exhibits certain phenomena that have to be treated for higher crossing knots
as well, but being the only Rolfsen knot with such status, it will merit detailed attention.)

3 Thurston-Bennequin invariant

3.1 Weight model for the Thurston-Bennequin invariant

The main topic of the work in [JLS] started from the observation (probably first occurred to Nutt [Nu])
that a braided surface of Euler characteristic 0, which is a K-knotted annulus, is essentially a grid diagram
of the underlying companion knot K. In this section we review definitions and results (mostly without
repeating proofs) from [JLS].

Definition 3.1 Let for a knot K and integer ¢,

o A(K,t) be the (link of the) t-framed K-knotted annulus,
o W, (K,t)and W_(K,t) the t-framed Whitehead doubles of K with positive and negative clasp, and

e B(K,t) the t-framed Bing double of K.

We will usually abuse the distinction between the annulus and the link which is its boundary.

To disambiguate among different conventions for framing used elsewhere, we emphasize that ¢ is here
the linking number of the two components of A(K,t). Thus, for example, A((, 1) is the positive (right-
hand) Hopf link, and A(O), —1) the negative one. This definition of framing has the opposite sign to the
one used by other authors (e.g., [DM]), where they take the writhe w(D) = —t of a diagram D of K from
which A(K,t) is constructed as the blackboard-framed (reverse) 2-parallel.

Also, W4 ((,1) is the positive (right-hand) trefoil, and W, (O, —1) = W_((,1) the figure-8-knot.
We can understand W, (K, t) resp. W_(K,t) as the result of plumbing a positive resp. negative Hopf band
into A(K,t) and taking the knot which is the boundary of the resulting Seifert surface. In a similar way,
we can understand B(Kt) as the 2-component link which is obtained by plumbing both a positive and a
negative Hopf band into A(K,t) and taking the boundary. Thus for instance B((),0) is the 2-component
unlink, and B((, 1) is the Whitehead link.

Let D be a grid diagram of a knot K. Replacing each vertical segment with a half twisted band as
shown below, we get a braid in band presentation, denoted by Bp. (Compare with [Nu, Theorem 3.1].)

Then the closure BD bounds a twisted annulus. Therefore BD = A(K,t) for some t.

—~

Bp
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Consider the situation that the band presentation is positive. Then obviously A(K,¢) for the resulting
framing t is strongly quasipositive. A question is what is the framing ¢, which we will write as

t=\D), (3.2)

in dependence of the diagram D, and how to read A\(D) off D. To explain the formula for A(D), given
below as (3.5), we fix some notation.

Let the weight of a grid diagram D be
Z(D)== Y sen(e), (3.3)
e edge of D
where the signs of the edges are determined as follows:

() 1 e is vertical
sgn(e) =
& +1, 0 e is horizontal and one of the following forms

(3.4)

Remark 3.2 This weight formula (3.3) can be generalized to non-positive band presentations by letting
each vertical edge have the sign of the corresponding band. But we will treat this more general case only
occasionally here.

Lemma 3.3 With w(D) being the writhe, we have
AD)=Z(D)—-w(D). (3.5)
Definition 3.4 Also, we can use the band presentation of Sp to specify the grid diagram D itself (see

Example 5.27). The mirroring of D is fixed by default by saying that Sp should be obtained when reading
D from the left. This means that we can write the grid diagram D in (3.1), even omitting brackets, as

14 35 24 36 15 26.

Since we deal with grids of size 10 or more, let us also already fix here that we use initial capital Latin
letters A,B,C, ... to denote two-digit integers 10,11,12,..., so that for example, 4C = [4,12] = 04,12.

Let br(D) be the vertical bridge number of D, which is the number of sign-0 horizontal edges of D of
one of either types in (3.4)

br(D) := ,—‘ =# 0 (3.6)

Definition 3.5 We set Apin (K) = A(D) whenever p(D) = a(K).

We will use Apin (K) often in the following. Two caveats are in order regarding this notation. First,
the ‘min’ refers to the minimum with respect to number of strings of the surface A(K,t) (or horizontal
segments in the grid diagram of K), not the framing ¢ itself. And second, it is not assumed that A, is
unique. At least for the unknot K,

both b(A(O,0)) = b(A(O, 1)) = 2, thus Apin(O) =0, 1. (3.7)
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This special behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness
and minimality of A, (K) was settled, as will be discussed below; see Theorem 4.10. But we do not wish
to exclude K = (O consistently. We prefer to maintain the symbol A, (K), stipulating that formulas
involving Amin (K) are meant to hold whatever of either values (3.7) is chosen for K = (). For K # O,
the reader may assume that

Amin (K) = MK), (3.8)

though we will not use this before stating Theorem 4.10.

We also observed that when pu is augmented by 1, we can always augment by 1,

| 1
1
1 =
1
resp. preserve
1
—1
1 =
1

(3.10)

any given framing A(D) by the above two moves. We call these moves in the following positive and negative
stabilization, resp. Thus, \(D) augments by 1 under positive stabilization, and negative stabilization does
not change A(D).

The Thurston-Bennequin invariant T B(D) of a grid diagram D can be defined as is being identified
in the following theorem.

Theorem 3.6 For any grid diagram D, the quantity Z(D) counts the NW- or SE-corners of D.

Z(D)=+# ‘ NW-corners | = # SE-corners (3.11)

Thus, by Lemma 3.3, (1.1) holds.

Example 3.7 The [J+] diagram D of 10;32,

i

read from the left, gives the 9-strand band presentation
Bp = [14][27][13][26][59][48][37][69][58] - (3.12)

We have pu(D) =9, Z(D) = 3, w(D) = 2, br(D) = 3 and A(D) = 1. Thus (3.12) gives a (positive) band
presentation of A(10132,1). The mirroring of 10132, determined by D, is so that it has the P polynomial
of the positively mirrored 5;. We fix this mirroring in the sequel, since we will illustratively feature the
knot quite a few more times. Note that it is thus opposite to Rolfsen’s [Ro, Appendix]| mirroring.

10132
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We also remark the following straightforward consequence of Theorem 3.6.

Corollary 3.8 When the grid diagram !D is obtained from D by switching all crossings, and a —m/2
rotation, then A\(D) + A(!D) = u(D).

3.2 Application to strong quasipositivity

Let TB(K) be the mazimal Thurston-Bennequin invariant of K, an invariant often considered in contact
geometry [Fe, FT, LvN, Ng, Ma, Ru3, Ta]:

TB(K) := max{TB(D) : D is a diagram of K }.
We also specify a region which will play an important role throughout the rest of the paper.

Definition 3.9 We define the framing diagram ®(K) of K as a subset of R? by

O(K) := {(u,t) : A(K,t) has a strongly quasipositive band representation on y strands }.

The following result of Rudolph [Ru3, Proposition 1] then follows directly from Theorem 3.6. (Note
our different sign convention for ¢.)

Corollary 3.10 When K is not the unknot, then
AMK) :=min{ t: A(K,t) is strongly quasipositive } = —TB(K), (3.13)

and more precisely,
A(K,t) is strongly quasipositive <= t > —TB(K). (3.14)

With the identification (1.1), we note already here the known bound (see [FT, Fe, Ta]) from the
Kauffman polynomial, which will play a major role below:

AMK) > —mindeg, F(K)+1. (3.15)

For the unknot K, we have
—TB(O)=1but A(O) =0. (3.16)

The problem with (3.13) there is that A(K,0) has the empty positive band presentation (on two strands),
but we do not consider this band presentation corresponding to a grid diagram. For this reason, the
unknot will repeatedly require special attention below. Despite the identification (3.13), A(K) will occur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,
even when we exclude K = (O.

Remark 3.11 It is possible to derive similar properties for links K. Then a framing ¢ is needed for each
component, and the relationship in Corollary 3.10 becomes slightly more involved, as become the framing
diagram of Definition 3.9 and its properties. We do not wish to deal extensively with links here. However,
in situation where the surface structure is forgotten, the more self-contained extensions to links do emerge,
as for Corollaries 4.4 and 4.5.

This is then a simple application of [Ru2]. We assume that K # (). For K = (), all the links in
Definition 3.1 are (alternating) 2-bridge links, and such can be handled ad hoc for strong quasipositivity
(see e.g. [Bal]).
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Corollary 3.12 Let K be a non-trivial knot. Then
(a) W, (K, t) is strongly quasipositive if and only if ¢t > —TB(K), and
(b) W_(K,t) and B(K,t) are never strongly quasipositive.

Since we will need this repeatedly later, let us already here notice that the Hopf plumbing W, (K, t) =
A(K,t) x H can be realized by doubling a(ny) positive band in a band presentation of A(K,t).

Example 3.13

GICTR A
4 A(41,3) Wi (41,3)

A similar remark applies to W_(K,t) whenever a band presentation of A(K,t) has a negative band.
However, it is important to note that this is not the only way to generate positive band presentations
of Whitehead doubles. (A different example for a trefoil Whitehead double is given in [Be, fig p. 121
bottom].)

Then, we gave a simple application of the weight model, in estimating the Thurston-Bennequin invari-
ant. A counterpart will emerge with Lemma 5.4 from the HOMFLY-PT polynomial.

Definition 3.14 Define pbr(D), the plane-bridge number of D as the minimal number of Morse maxima
(or minima, i.e., half of the minimal number of Morse extrema) over all smooth diffeomorphic images of
D in S2.

Obviously br(K) < pbr(D) for the bridge number br(K) of K (see e.g. [Mu]), and br(D) > pbr(D) for
every grid diagram D, where br(D) was as defined in (3.6).

Lemma 3.15 For any diagram D of K, we have A\(K) < 2¢_(D) + pbr(D).

We do not repeat the proof here, but we recall that it involved the crossing conversion

| o
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and horizontal adjustment technique.

(3.18)

4 Braid indices

We discuss here some remarks in [JLS] on the relation regarding the braid indices in Definition 2.1.
(Compare with [Nu, Section 3.3].) As noticed, Bennequin’s inequality (2.6) implies that a strongly quasi-
positive surface is a Bennequin surface, thus for K strongly quasipositive, we have (2.10). We know
that by(K) > b(K) is possible [HS], but the examples K known are not strongly quasipositive. Rudolph
conjectures that

begp(K) = b(K) (4.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16
crossings (see [St2]). By the proof of the Jones-Kawamuro conjecture (Theorem 2.2), a Bennequin surface
of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

by(K) = b(K) (4.2)

implies (4.1) for strongly quasipositive knots K. The problem (4.2) is extensively studied in [St2].

Since a band presentation of A(K,t) always comes from a grid diagram of K, and with a confirmative
notice about the unknot, we have:

Corollary 4.1
min{by,(A(K,t)) : t€Z} = a(K). (4.3)

Moreover, there are at least a(K) + 1 consecutive integers ¢ which realize the minimum.

Also, because choosing positive bands will give a band presentation of a strongly quasipositive annulus,
we have with Corollary 3.10:

Corollary 4.2 min{b,q,(A(K,t)) : t > AN(K) } = a(K).
Forgetting the surface structure then yields an inequality of (ordinary) braid indices:

Corollary 4.3
min{b(A(K,t)) : t € Z} <min{b(A(K,t)) : t > AM(K) } < a(K) (4.4)

Moreover, there are at least a(K)+1 consecutive integers ¢ which realize the inequality b(A(K,t)) < a(K).

The braid index of a link A(K,t) is obviously not less than the sum of the braid indices of constituent
components. Thus from Corollary 4.3, we also immediately have an inequality, which was noticed by
Cromwell [Cr].

Corollary 4.4 (Cromwell) For every knot K, we have 2b(K) < a(K).
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We observed then the (slight) refinement of Ohyama’s inequality [Oh].

Corollary 4.5 For every knot K, we have b(K) < ¢(K)/2+ 1, and if K is non-alternating, then b(K) <
c(K)/2.

These useful implications are worth noting, but we will see below that it is much more important to
work with (4.4) rather than its simplified variant of Corollary 4.4. However, these simplifications have the
advantage of extending with far less caveats to links K (see Remark 3.11).

We are next going discuss what (say, strongly quasipositive) framings A are possible for given grid
size p, and in particular whether A, the framing for a minimal (size a(K)) diagram (see Theorem 3.5)
is unique. Since p bounds the braid index of A(K,t), and all have the same y, Birman-Menasco [BM]
imply that for given A, only finitely many p are possible. We will later prove a more precise statement
(Finite-Cone-Theorem 5.3).

Question 4.6 (a) Is b(A(K,t)) > a(K) for any ¢?
(b) At least, is b(A(K,t)) > a(K) for any strongly quasipositive A(K,t)?

If (b) fails, then it would give an example A(K,t) answering negatively Rudolph’s question (4.1). This
question will be further treated in Remark 5.24 and Conjecture 6.1.

To formalize this topic better, we introduced notation relating to the two grid stabilizations (3.9) and
(3.10).

Definition 4.7 We define the cone C(u,t) C Z4 x Z by
Clt) ={(s;A): s>p, t<A<t+s—p}t.

We say (i, 1) is the tip of the cone.

A
twisting

[ ]

[ ] [ ]
4
c o e Clp;t)

[ ] [ [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

t — [ ] [ ] [ ] [ ] [ ] [ ]
| >

1 number of strands

As argued, the framing diagram ®(K) of K (see Definition 3.9) is a union of cones. We announced
that we will prove later (Finite-Cone-Theorem 5.3) that cones in ®(K) are finitely many. The following
Jones-Kawamuro type of conjecture (compare with Theorem 2.2) is then suggestive.

Question 4.8 If K is non-trivial, is ®(K) a single cone? (This cone would have to be then C(a(K), Anin (K))
with Apin (K) = AM(K).)
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Example 4.9 According to (3.7), we have
$(0) = C(2,0)UC(2,1)
being the union of two cones.
The special case for = a(K) in Question 4.8 (an analogue of the “weak” form of the Jones-Kawamuro

conjecture) was already raised in [Ng] in the language of grid diagrams D and Thurston-Bennequin
invariants T B(D). It was answered in [DP, Corollary 3].

Theorem 4.10 (Dynnikov-Prasolov [DP]) The Thurston-Bennequin invariant of minimal grid diagrams
of a given knot K is always equal to TB(K).

We will return to this statement in §5.4 and §6.1. Note that the unknot creates no exception here,
when using T'B instead of A and avoiding the discrepancy (3.16). Despite its importance, we do not use
Theorem 4.10 substantially; it brings only minor simplifications, which can be mostly worked around.
However, see (5.68), and its application in Example 5.42.

5 HOMFLY-PT polynomial

5.1 Some degree inequalities

We now turn our attention to the HOMFLY-PT polynomial P in (2.13). Our goal is to use the polynomial
to prove that when ¢ is sufficiently small, then A(K,t) is not strongly quasipositive with a good lower
bound on ¢. The w(D) term in (3.5), as we have seen, makes bounds somewhat inelegant and inefficient.
We use some notation from §2.4.

Lemma 5.1 For every knot K, there exists a strongly quasipositive framing ¢t = A, (K) > A(K) of
A(K,t), so that
mindeg, P(A(K,t)) > 1, maxdeg, P(A(K,t)) <2a(K)-1. (5.1)

Proof. When K = (), then ¢ = 1 suffices. Thus assume again below that K is non-trivial. When L is
strongly quasipositive, then (2.8) and L being Bennequin-sharp mean that the right inequality in (2.7)
becomes an equality. By using the right inequality in (2.17), we have

mindeg, P(L) >1—x(L) =1— xa(L). (5.2)
In particular for L = A(K,t), we have x(L) <0, so

min deg, P(A(K,t)) > 0. (5.3)

We have from the skein relation (2.13)
P(A(K,t)) = v*P(A(K,t — 1)) +vz. (5.4)

Notice, by further remarks from §2.4, that for the 2-component link A(K,t)) the only monomials in
P(A(K,t)) that occur are zPv" with odd p,r. Also mindeg, P(A(K,t)) = —1, and by [LiM] it is known
that
[PACK, )] = v* (0™ = v)([P(K)]0)* # 0. (5.5)
We now know that there is a (at least one) framing (we denoted) ¢t = A\pin, so that b(A(K,t)) < a(K).
Also by MFW inequality (2.18) we have

span , P(A(K,t)) < 2(a(K) — 1)
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for t = Amin. Now, the diagram D; of A(K, Amin) obtained from a minimal grid diagram D of K by
replacing vertical segments by positive bands has w(D;) = u(D) = a(K) and s(D1) = u(D) = a(K).

Thus by MFW inequalities (2.17), we have

mindeg, P(D1) > 1, maxdeg, P(Dy)<2a(K)—-1. (5.6)
]

Lemma 5.2 If K # (),
MK) > max{\(D) — u(D) : D is a grid diagram of K}, (5.7)

with non-strict inequality if K = O.

Proof. By using the right inequality (5.1) and the recursion (5.4) reversely a(K) times, we see
min deg, P(A(K, Anin — a(K))) < maxdeg, P(A(K, Apin —a(K))) < —1,
so from (5.3), we have that
A(K, Apin — a(K)) is not strongly quasipositive,
if K # (). For K = (), we can conclude that

A(K, Amin — a(K) — 1) is not strongly quasipositive .

In a similar way, for every grid diagram D of size p(D), the annulus A(K, (D)) will appear in a
diagram D; with w(D;) = s(D1) = u(D), so

A(K,A(D) — u(D)) is not strongly quasipositive (5.8)

when K # (), and same for A(K, A\(D) — u(D) — 1) when K = . O

Since this maximum is finite, we have:
Theorem 5.3 (Finite-Cone-Theorem) The framing diagram ®(K) is a union of finitely many cones.

Proof. Note that a cone C’ = C(u/,t') contains a cone C = C(u,t) if and only if (u,t) € C’'. Thus if
C Cc UG, then C C C;, for some Cj,.

Call a cone C' C ®(K) essential if there is no cone C’ C ®(K) with C C C’. Now consider the essential
cones C; = C(ui,t;) in ®(K) one by one. Order them as a (first potentially infinite) sequence Ci,Cs, . ..
by increasing t;, i.e., so that ¢; > t;_;. Note that there cannot be two essential cones C;, C; with t; = ¢,
since otherwise u; < p; would lead to C; D Cj. Also there is a smallest ¢; because ¢; > A(K) for all i.
Define then

v =max{t —p : (1) € O}

And now argue that v; > ;1. Because of (5.7), there can be only finitely many increases of v;. (See
Proposition 6.6 for a more precise statement and argument.) O

Another application of (5.7) gives an inequality we promised in stark symmetry to Lemma 3.15. (Unlike
its counterpart, it thus does rely on the HOMFLY-PT polynomial in an essential way, though.)

Lemma 5.4 For any diagram D of K, we have \(K) > —2c4 (D) — pbr(D).
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Proof. If K = (O, then A(K) =0, pbr(D) > 0 and ¢4 (D) > 0, so the inequality is trivial. Thus assume
K # (). We use the conversion (3.17) and the horizontal adjustment (3.18) of the proof of Lemma 3.15.
We may then assume without loss of generality that D is a grid diagram and all +1 signed horizontal
edges are intersected by a crossing. Then using (5.7), we have

AEK) > (D) - u(D)
— Z(D) - w(D) - u(D)

> 2 (2(D)  26(D) ~ 26r(D)) — (D) ~ w(D)
= —¢(D)—br(D) —w(D)

= —2¢4(D)—-br(D).

In the third line we used that each —1 edge has a crossing, and there are 2br(D) sign 0 edges. |

Remark 5.5 The number [(K), introduced later, allows for improvements of (5.8), (5.7) and Lemma
5.4. However, the present versions maintain the advantage of involving only simple geometric data of the
diagram itself, without protruding algebraic constructions derived from it. Since we will find a number of
(other) applications of I[(K), we do not like to return here to resume this specific line of argument. The
quantity [(K) will serve as a lower estimate for the arc index, of which we put ahead a simplified variant.

Let P = P(A(K,t)) for some t. Keep in mind by §2.4 that P|,+ is the polynomial P with all terms
of z-degree 1 removed. Because of (5.5), talking about its degrees makes sense.

Lemma 5.6 The integer

I'(K):= %spanyP(A(K, )4 +1 (5.9)

does not depend on t and satisfies
a(K) > U'(K). (5.10)

Proof. By construction, b(A(K, Amin)) < a(K), so by MFW inequality (2.18), we see that (5.10) is true
for t = M\nin. And for other ¢, note that the relation (5.4) does not add any terms of z-degree different
from 1. That I’(K) does not depend on ¢ follows for this same reason. O

But in fact, the z'-term of P is also interesting — and significant — and its study relates to the “cooking”
alluded to in the abstract of the paper.

5.2 Estimating a(K): the pan
5.2.1 Definition and basic properties of the [-invariant

Like for the crossing number, there are only finitely many knots of given arc index.

The “classical” lower Morton-Beltrami bound for a(K) comes from Kauffman’s polynomial F [MB]:
a(K) > MB(K) := span,F(K) + 2. (5.11)

This can also be obtained from the bound (3.15) and Matsuda’s inequality (5.67).

However, once such classical tool fails to give a sharp lower estimate, the method used so far, like in
[J+], is to exhaustively enumerate all grids of smaller size, a feat which quickly becomes laborious and
unreliable when the size increases. To change this situation here, we explain next how not to discard the
z!-term in (5.10), and use it to determine a(K ), and later A\(K), from the P polynomial with considerable
precision.
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Write in the rest of this section for simplicity
K, = A(K, 1)
for (the boundary of) the ¢-framed annulus around K. We have then from (5.4),
P(K;) = zv +v*P(K;_1). (5.12)

To visualize the polynomial P(K}), it will be helpful to plot its coefficients in the plane, with (odd) v

degrees going from left to right and z degrees going top-down. Thus negative v-degree terms, left on the
y-axis, occur, and will be considered. But negative z-degree terms, above the x-axis, occur only for 27!,

and we stipulate to hide them. We emphasize again that the z~!-term in P(K;) is known (see (5.5))
[P(K)]—1 = (071 =) - v* ([P(K)].0)?. (5.13)

By iterating (5.12), we can see that for sufficiently high ¢, the polynomial P(K}), displayed as we just
explained, starts exhibiting the pan-like shape

v 1}3 e vdmin vd71Lax
1 I I 1 ! » U powers
T T T T T >
z + 1 1 1 1 1
ZS -
w
Z powers
Y

(5.14)

Now remove all 1’s in the panhandle of (5.14). To formalize this, we consider the leftmost and rightmost
column [P],q in (5.14), for the smallest d = dyn, > 0 which is not of the shape

[Plya = 2, (5.15)

and
dmay = maxdeg, P. (5.16)

We can easily treat arbitrary ¢, and will do below. In that case, we can modify the condition (5.15)
for dynar < 0 (keep in mind that for a 2-component link, d is always odd) to

[Plys = —2 (5.17)

and dpi, < 0 is set as mindeg, P. But, keeping the pan shape (5.14) in mind, assume here for simplicity
t> 0.
Write then
dmaz - dmzn

I(K) = — 1 (5.18)
for the (pan) width of W in (5.14). (For the formalization of this procedure, see the expressions given at
the end of §5.4. Compare also with [Nu, Theorem 3.3].) In result, we have a way to “normalize out” the
t-dependence of the degrees of P(K;) in the z!-term, giving an improved version of the lower bound I’(K)
in (5.10) for a(K). Due to the attention incited by the unknot, let us remark here that

a(O) =1(0) =1"(O) =2. (5.19)
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Theorem 5.7 With (5.9) and (5.18), for every knot K, we have

U'(K) <U(K) < a(K).

Proof. Obviously I'(K) < I(K), so we prove the right inequality. Because of (5.19), we also assume
K #0O.
When we set (5.16), it is possible that some P(K;) for small ¢ has MFW bound < I(K). This can

happen if
[P]ya = z for d = dpqs and possibly d = dpar — 2, dpaz — 4, etc. (5.20)

In particular, we would need
dpmaz > maxdeg, P, (5.21)

for such terms to occur. These terms (5.20) can be cancelled by the inverse process of (5.12) when their
v degree shifts down to 1 and then goes from 1 to —1.

We pause here for some cautionary illustrations. We do not know whether (5.20) can occur. But
examples warn that it “almost” does. It can be seen from Table 1 that when K =!10435, such a cancellation
(when ¢t = 1) occurs in degree dyqa — 2. But it does not in degree d,,q4., which prevents a collapse in
degree.

The polynomials from Table 2 are probably even more noteworthy (recall §2.4). By smoothing out
a crossing in the Whitehead double clasp and taking the mirror image, one can see that when K are
positive (2, n)-torus knots T ,,, then terms [P],« = —z do occur in large amounts. The coefficients differ
from (5.20) only by one wrong sign. (In this sense the “panhandle” they create is named “false”; it is an
intrinsic feature of K = Ts ,, and does not come from large or small framing ¢ in K;.) These polynomials
are peculiar enough to merit their own treatment later in Proposition 5.9.

In particular these “false” panhandles for K = Ty ,,, also make a significant difference to I'(K) = 4 in
(5.10), evidencing the price tag of ignoring the z'-term all out. This is cemented by further knots like
K = 899,943, with ll(K) < Z(K)

Since we cannot exclude the situation (5.20), using

a(K) > Itnelél MFW (K}) (5.22)

(for (2.18)) will not be enough, at least in theory (see, though, Remark 5.8). However, notice that the arc
index, as bound for b(K3}), has a certain stability: there is a number ¢ = A4, with

b(Ey) < alE) + |t' — Amin (5.23)

for every t'. (We know by Theorem 4.10 that A, is unique for K # ().) Using (5.23), we can replace
(5.22) by

> mi A=t —tl. .
a(K) > Iglel%rg}g%MFW(Kt ) — |t =t (5.24)

This will prevent the sporadic collapsing of the MFW bound from deteriorating the arc index bound. It
can be seen, with a bit of technical argument based on (5.12), that the right of (5.24) is precisely what
was defined as [(K). This in particular shows

U(K) 2 min MEW (K) (5.25)

For instance, there can be at most two hypothetical values of ¢ for which MFW (K;) < [(K), and for
them choosing |t — t| = 1 should suffice to see

MFW(Ky) — |t —t] > I(K).

An instructive example of the argument, allowing for two such ¢ to occur, is the following sequence.
We show a transformation of the [P(K})],: terms with increasing ¢, where only the coefficients are written,
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[251[141[37][26]1[15][48][79] [38]-[691]

55

56

132 -1 17
7 13 9 -21 16 -4
5 15 -15 109 -186 86 31 -25
1 15 -2 0 -80 452 -724 285 169 -100
5 15 -148 870  -1493 659 272 -160
5 15 -128 895  -1771 932 202 -130
5 15 -56 520  -1256 772 76 -56
5 15 -12 170 -536 376 14 -12
5 15 -1 29 -134 106 1 -1
7 11 2 -18 16
9 11 -1 1
[25] [14] [37] [26]-[15]-[48]-[79]1-[38]-[69]"2
1 0 18
-2 4 -8 21 -16 4
-8 6 1 1 16 -108 186 -86 -31 25
-8 6 0 80 -452 724 -285 -169 100
-4 6 148 -870 1493 -659 -272 160
-4 6 128 -895 1771 -932 -202 130
-4 6 56 -520 1256 =772 -76 56
-4 6 12 -170 536 -376 -14 12
-4 6 1 -29 134 -106 -1 1
-2 2 -2 18 -16
0 2 1 -1

Table 1: Polynomial of the annulus link A(10132,0) and the Whitehead double W_ (10132, —4) of 10132
and negative clasp, framing ¢ = —4, together with the band presentation used, as obtained from (3.12)
(where £[1j] stands for afjl in (2.2), and the notation for polynomials follows §2.4).

The mirroring of 10132 can be easily confirmed from the z~*-term of P(A(10132,0)) and (5.5) to be
the one specified in Example 3.7.

For A(10132,0) we see the disappearance of the (short) “false” panhandle. It comprises two monomials
in z-degree 1. We call the panhandle “false” because in the same v-degree 1, a term —2z%v with 23
occurs, so that this “panhandle” is not removed when reducing the framing ¢. Note that A(10132,0) is
not strongly quasipositive despite min deg, P > 0.
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and vertical bar stands for the separation between v-degrees —1 and 1 (making clear the degrees of all
other coefficients; even degrees are obviously omitted). The pan edge coefficients (see (5.64)) are boxed
at some places (similarly to (5.57); see also (5.66)).

1 -1200 —1} = [-1 1200 } ool —120‘1 oo (5.26)
- 4‘0311 - ‘ 00311] — ‘100311

In that case [(K) = 5, while for two ¢, MFW(K};) = 3 is possible. But for either ¢ and one of the two ¢’
with |t/ —t| = 1, we have MFW (K ) =6 = [(K) + 1.

This argument based on (5.24) justifies that using (5.16) is appropriate to achieve {(K) in (5.18) to
estimate a(K) as claimed. O

The equation (5.71) gives the formalization of the definition of I, which is postponed mainly due to its
(here unnecessary) technicality. However, notice the following very self-contained special case (with the
notation of (2.18)):

when ¢ is chosen so that mindeg, P(K:) < 0 < maxdeg, P(K}), then I(K) = MFW(K}). (5.27)

Remark 5.8 There is a way to modify the calculation of [(K) to determine the right hand-side of (5.22)
in practice. Remove all highest v-degree terms (5.15) for d > 0 and [P],« = 0 for d < 0, until you reach a

degree d., .. (with coefficient [P],s) not of that form. Similarly, remove all lowest v-degree terms (5.17)

for d < 0 and [P],s =0 for d > 0, finding d.,,;,,. Then (5.25) can be extended to
dhoe — A
U(K) > min MEW(K,) > =mes_Zmin 41, (5.28)
€

Note that on the right there is still no equality, because when ¢ is fixed, the just described cancellation
of terms in P(K}) can only occur on one side (either for low, or for high powers of v, but not for both).
That is, we may in theory have a situation like

4 U
dmin dmaz U pOWerTs

>
o

-1 -1 -1

P(K,) = , (5.29)
z powers
Y
which is also the type that occurs in (5.26).
Still, in the present form the estimate (5.28) is good enough to allow us to confirm that in fact
[(K) = min MFW (K}) (5.30)

teZ

(i.e., (5.29) does not arise, and (5.25) is exact) for all prime knots K up to 10 crossings. We do not know
whether this equality holds in general.
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Before moving over to some general properties of the [-invariant, it is worth paying the due tribute to
the particular polynomials in Table 2, which are striking enough to merit an explicit statement.

Proposition 5.9 For the (2,n)-torus knot 7% ,, the polynomial P((7%,,)—») is of the shape

_ 5,U2n—4 1
P((Ton)-n) = Pu = 207 —— (5.31)
where
—3 = mindeg, P, < maxdeg, P, = 3. (5.32)

In particular, I(T%,,) = n + 2, while I'(T3,,) =4 (when n > 1).

Proof. The skein algebra of rooms with 4 inputs and 4 outputs has 4! = 24 linear generators. Thus the
polynomials P((T3,,)—n) satisfy some linear recursion of length 24. What we claim is (mostly) that

n—2 _ 1
Po = 02 P((Ton)-n) (017, 2) + 20*
v —
satisfies
84

for all n. These polynomials P} have a recursion of length 24 -5 = 120 (where ‘5’ is one plus the degree of
derivative). Thus it is enough to prove that P} = 0 for 120 consecutive odd n. By using mirror images, we
can reduce this number to the 60 values of n = 1,3,...,119. (We observed from the below computation
that the situation for even n, where T ,, is a link, is slightly more complicated.)

Thus if we prove (5.31) for 1 < n < 119 odd, we would be done. For this, we can resort to an explicit
computation using the skein algebra. (A naive skein relation (2.13) calculation from the resulting diagrams
would take too long.)

It is a module of rank 24 over Z[v*!, 2*1], but is generated as an algebra by the 4 elements in [DM,
p. 2964, 1.12]. (Thus only multiplication with these 4 elements needs to be explained.)

This implementation (in C++) completed the test in 5 minutes. (The complexity is about quadratic
in n, taking into account the growing skein module coefficients. Within 1 day, we were able to calculate
and test the polynomial until n a~ 530.)

Pay attention that (5.33) will show only
—3 < mindeg, ]5” < maxdeg, ]5” <3

in (5.32), but equalities easily follow from looking at [P((T%,,)—r)].-: and using (5.5). O

Notice that [DM, Theorem 2.7] exhibits (by a hand argument) only the term in maximal v-degree
2n — 1 in (5.31). (The sign convention for the framing there is different, see below Definition 3.1, and
either is the normalization of P.) It is hard to identify the (even “false”) panhandle from its “tip” only.
But in turn, there seem deeper reasons (see below) that a computer obscures. We will return to discussing
Diao-Morton’s theorem in the proof of Proposition 5.17.

Example 5.10 One should be cautioned that such extended panhandles do not only arise for 75 ,. In
forthcoming work of the second author with Mironov-Sati-Singh, we understood this panhandle property
for a general torus knot T, ,. In particular, we know that T}, is [-sharp (see below), which gives a
quantum-algebra proof of Etnyre-Honda’s result a(Tp,) = p + n. We also know that MB(T} ) = 2p
(independently of n), when p is odd. However, the case of torus links remains to be studied.
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14
4 9 -33 41 -16
4 1 1 1 1 1 25 -164 221 -80
4 22 -342 468  -148
4 8 -376 496  -128
4 1 -231 286 -56
4 -79 91 -12
4 -14 15 -1
2 -1 1

18
4 16 -56 66 -25
4 1 1 1 1 1 1 1 81 -420 541 -200
4 148 -1316 1778 -610
4 128 -2248 3040 -920
4 56 -2298 3013 =771
4 12 -1457 1821 -376
4 1 -575 680 -106
4 -137 1563 -16
4 -18 19 -1
2 -1 1

Table 2: Polynomials of the Whitehead doubles W, (71,7) and W(91,9) of the negatively mirrored 7;
and 91. The framing ¢ can be read off, because of (5.55), from the sum of the coefficients in the second
row.

It should be emphasized that what appears as a panhandle is not what is illustrated in (5.14). It is at
the “wrong” end and will remain part of the pan when ¢ is large.

Had the coefficients in these “false” panhandles been signed in the opposite way, i.e., to be —1, the
polynomials of A(!171,t) and A(!91,¢) would have instantiated the possibility (5.20). (Being signed +1,
these coefficients will become 2 for large t.)
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5.2.2 Estimates and [-sharpness

Since P(A(K,t)) are interconvertible for all ¢, one can determine I(K) from P(A(K,t)) for any ¢, and
then hope to determine a(K) if a(K) = I(K).

Definition 5.11 We say that K is [-sharp if o(K) = [(K), and l-unsharp otherwise.

Example 5.12 Among the Rolfsen [Ro, Appendix| knots, K = 10132 is the only one which is not {-sharp.
Then [(K) = 8 (as shown in Table 1) but [J+] (see Example 3.7) and KnotInfo [LvM] report a(K) = 9.

There are four l-unsharp 11 crossing knots K (up to mirror images), i.e., such with
a(K) > I(K), (5.34)

namely 11379, 11424, 11455, 11459 (fOI“ which l(K) =9 and a(K) = 10), and 21 further examples of 12 cross-
ings.

In case of 10132 (and a series of other examples), there is a linking number argument that can help out
determining the arc index. We formulate it as a lemma. (It can also be easily modified to other knots,
but for simplicity we just present the prototype and leave it to the reader to adapt it.)

Lemma 5.13 We have a(10132) = 9.

Proof. Assume a(10132) < 8. From the polynomial of the annulus link A(10;32,0) in Table 1, and (5.4),
we can see that MEW (A(10132,¢)) < 8 occurs for t = —8,...,0, and then MFW(A(10132,t)) = 8. Because
of the bottom statement of Corollary 4.3, it is enough to prove that b(A(10152,0)) # 8. We claim that
the polynomial of A(10132,0) in Table 1 is sufficient to see that b(A(10132,0)) > 8, as follows.

Assume b(A(10132,0)) = 8, and S is an 8-braid whose closure is A(10132,0). Now, the exponent sum
w(B) is made up of the exponent sums w(f;) of the two subbraids §; of 3, which give the individual
components 3; = Cy and [y = Cy of A(10132,0), and the linking number 1k(Cy,Cy) = t = 0 of these
components. Since both C; and Cy have the knot type of 10132, and b(10132) = 4, both components C;
and C3 of A(10;32,0) must be closures of 4-string subbraids j3; of 5. Then their individual exponent sums
must be w(f;) = Wmin(10132), which is determined to be 3 (see the tables [St4] and the remarks below
(2.19)). Thus

w(B) = w(Br) +w(Bz) + 1k(C1,C2) =3+3+0=6.
But the polynomial P = P(A(10132,0)) in Table 1 exhibits
mindeg, P =1 < 15 = maxdeg, P,
and looking at the refined inequality (2.17), we see that a braid 8 with n = 8 strands must have writhe

w = w(P) = 8. This is a contradiction. O

For all of the 26 I-unsharp knots of Example 5.12 we have MB(K') = [(K) in (5.11). But MB(K) < I(K)
obviously occurs for some “F-sparse” knots like K = 945. (However, compare also with Example 5.32.)
Likewise, I'(K) < MB(K) occurs in Table 2 (due to (5.37)), thus the z-term retains its credentials. See
further Example 5.10.

Question 5.14 Is
MB(K) < I(K) (5.35)

for all non-trivial knots K7
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Example 5.15 In general the approximation
I(K) < a(K) (5.36)

is rather good. There are 2049 arc index 11 prime knots up to 16 crossings. The inequality (5.11) is sharp
for 1666 of them, while 1977 (including all those 1666) are I-sharp.

Remark 5.16 Usually, F(K) is easier to obtain than P(A(K,t)). However, for small values of k, the
truncation P|,<x(A(K,t)) may come out faster than F(K). When F(K) is too slow, this raises the issue
of computing z-truncations thereof (since there are truncated versions of (5.11) as well). While the tech-
nology is implemented [St3] and ready to use, we choose not to delve into this here at all. As long as K is
not excessively complicated, F'(K) is comparatively efficient to obtain, and thus, in practical terms, there
seems little wrong to always try (5.11) first as a lower bound for a(K). For suggestive reasons, (5.11) will
accompany us constantly (see e.g. end of §5.3), but we like to focus on the HOMFLY-PT polynomial, and
thus will not make the comparison to (5.11) everywhere.

For an alternating knot K, Yokota [Yo2] proved that
span F(K) = ¢(K), (5.37)
and we know by [BP] (as can be seen from the proof of Corollary 4.5 in §4) that (5.11) is an equality, i.e.,
a(K) =c(K)+2 (5.38)

for each such knot K. Thus in particular a positive answer to Question 5.14 must imply that K is [-sharp.
After some preliminary supportive computations, we found that this is indeed true, and it provides a
considerable motivation for studying the phenomenon outside of its intrinsic definition.

Proposition 5.17 Every alternating knot K is [-sharp.

Proof. This is essentially proved by Diao and Morton [DM], so the present proof is an explanation how
to extract, adapt and simplify what of their work is needed here. We stipulate within this proof that
numeration of theorems refers to [DM], while propositions, tables and equations to the present paper. In
the case of notation, the default will be ours here, unless we specify otherwise.

Two main ingredients are needed. The first is Rudolph’s congruence [Ru5| (Theorem 2.2), which
relates P(K;) modulo 2 to F(K). For the purpose of applying (2.18), write MEW o4 2(L) for the bound
obtained from MFW (L) when the polynomial P(L) has its coefficients reduced modulo 2, so that

MFWmod Q(L) < MFW(L) < b(L) :

(This notation is not to be confused with (2.20).)

Thistlethwaite has extended his proof of (5.37) in [Th], and the second ingredient is a refinement of
Thistlethwaite’s work, in the case of alternating links, due to Cromwell [Cr3] (Theorem 2.3). It exhibits
(5.37) through explicit odd coefficients

[F(K)]zklall = [F(K)]ZkQazQ =1 with l2 — l1 = C(K) (539)

(Alternatively, see [Th, Corollary 1.1(iv)].)

When D is a reduced alternating diagram of K, and D is not a (2,n)-torus link diagram (we may
assume n odd), then ki, ks > 1. Via Theorem 2.2, this immediately implies that MEW (K;) > ¢(K) + 2
for all ¢, and because of (5.25) and (5.38), this shows our claim.

However, if D is a (2,n)-torus link diagram, then one of ki, ks in (5.39) is 1, and there is exactly one
framing t for which MFWy,04 2(K+) < ¢(K)+2. Note that we have encountered this case in fact: these are
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the “false” panhandles of Table 2 and Proposition 5.9. Diao and Morton then engage in a tricky calculation
(Theorem 2.7) to show that the “tip” of these panhandles is a ‘1’ signed the wrong (i.e., uncancellable)
way, so that still MEW (K}) = ¢(K) + 2.

But one of the nice features of our approach is that this complexity (or its computerized alternative
from Proposition 5.9) is not needed here, when instead of (5.25) we use (5.27). With (5.39), one can
obviously choose a framing (with the notation of [DM]) f so that the right hand-side of the congruence
in Theorem 2.2, call it
vl 4w

z

Ry(v,2) = v* (1 + > F(K)(v?, 2?)

(keep in mind our opposite convention of both framing f and a-powers in F'), has
mindeg, (Rf) mod 2(v, 2) < 0 < maxdeg, (Rf) mod 2(v, 2) . (5.40)
The congruence then implies (with our notation, but f retaining its role) that
mindeg, P(Ky) < 0 < maxdeg, P(Ky), (5.41)

which with (5.37), (5.39) and (5.27) shows I(K) > ¢(K) + 2, as needed. O

Remark 5.18 To establish the minimality of the band presentations where (2.18) fails modulo 2, Theorem
2.7 of [DM] can be replaced not only by a computer calculation (Proposition 5.9), but also by a simpler
(manual) argument using Bennequin’s inequality (see the proof of Proposition 6.9). Thus, if one is still
allowed to invoke [Cr3, Rub], this gives a second alternative path towards the main result in [DM], this
time without proving that (2.18) is exact on all K;. The work in [DM, §3] is of course understood here as
well, e.g., Corollary 4.1. We formulate in Proposition 6.14 the extended version of Diao-Morton’s result
we obtain.

The argument based on Rudolph’s congruence implies that the answer to Question 5.14 is affirmative
if in the definition MB(K) in (5.11), coeflicients of F' are reduced modulo 2. Notice that, historically, this
weaker form of the inequality (5.11) had been previously discovered by Nutt.

The proof of Proposition 5.17 also yields a more generalized version, which is a very practical way to
test Question 5.14.

Corollary 5.19 Assume F(K) has odd coefficients [F(K)] i ,m:, ¢ = 1,2, so that [y = mindeg, F' and
lo = maxdeg, F. Then (5.35) holds for K.
Proof. The assumption means that
span o F mod 2(K) = span . F(K) . (5.42)
If span ,F(K) > 1, then
span ,(Rf) mod 2(v,2) =2+ 2spanF > 4, (5.43)

and so we can find an f with (5.40), and the rest of the argument is the same as for Proposition 5.17,
with ‘c(K) + 2’ replaced by ‘MB(K)’.

Now assume

span . F(K) =0. (5.44)
We only use that MB(K) = 2, and remark that since [P(K)],0 # 0, from (5.5) we have span , P(A(K,t)) >
2, as needed. O

Remark 5.20 When (5.44), it can be argued that F(K) = 1. The first two properties enumerated at the
end of §2.4 imply that F(K) = 2* for some (integer) k. The third one (2.27), together with the known
property V/(—1) = 0 for any knot K, shows that £ = 0. But this is not needed for the proof.
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Computation 5.21 The inequality (5.35) holds for all prime knots K up to 16 crossings. Among knots
up to 10 crossings, only 946, 10142, and 1016 fail the premise of Corollary 5.19. This suggests that it filters
potential counterexamples rather well. Testing (only) non-alternating knots up to 15 crossings, we find
that the assumption fails on 7,328 out of 201,702. They can then be dealt with through approximating
[(K) by successive truncations of P(K};). (The work took 2h on an old 2013 laptop.) For 16 crossings, see
Computation 5.44.

Another application of Corollary 5.19 is when K is a torus knot: the inequality (5.35) holds for all
such knots (not always as an equality). But torus knots require a longer separate treatment. Example
5.10 is a very partial indication.

We further know that for prime knots K up to 18 crossings, I(K) > 4. This uses Rudolph’s congruence
and was a benchmark test for the (z-)truncated F method of [St3]. (It required 4h. To save space, we
do not delve into this verification further. We also ascertained that MB(K') > 5 in that range, but with
Example 5.10, less improvement can be expected there.)

In general, [(K) is not easy to calculate on infinite families of knots. Notice that, unlike (2.28) and
a corresponding property of the right hand-side of (5.11), it is not even evidently (2 sub-)additive under
connected sum.

Question 5.22 Is (K1 #K3) = [(K;) + [(K3) — 27

This turns out to be the case in a few examples, like 10132#(!)31 and 10132#(!)10132, but as long as it
is not confirmed, the possibility exists to extract further information from [ as a lower arc index bound,
using the relationship (2.28). Still, the answer is affirmative if polynomial coefficients are taken modulo
2.

In view of this presumable behavior of I(K), perhaps a reasonable expectation regarding (5.36) as an
arc index bound is like this: is there a positive constant C with C'-I(K) > a(K) for all K7 Such constant
does not exist for MB(K'). Example 5.10 shows, in a way, that the worst-case performance of (5.11) is as
bad as possible.

5.3 Applications of Cabling
Conjecture 2.3 underscores the importance of cabling in settling braid, and thus also arc index issues.

This is a perhaps less pleasant, but still more universal means than Lemma 5.13, to treat some /-unsharp
knots K.

Computation 5.23 For K = 10135 the links L we consider with MEFW (L) = 8 < a(10132) = 9 are

o L=A(K,t)=K, fort=0,...,—8,
o L=W,(K,t)fort=0,...,—7, and
o L=W_(K,t)fort=-1,...,-8.

(Of course, for the rest values of ¢t we can conclude MEW(L) > 9 using the relation (5.12), or a similar
relation for Whitehead double polynomials.)

All the links listed above have b(L) = 9. We easily observe b(L) < 9. One can obtain a 9-string band
presentation from that for A(10132, 1) with positive bands, given in (3.12), by making some bands negative
and doubling a positive band for W, and a negative one for W_. (Table 1 gives some examples.) At
the opposite end, we tested b(L) > 9 with parallelized truncated 2-cable (MFW) P, as discussed in §2.4.
The procedure took on a 4-CPU 10-year-old 2013 laptop between 2 and 15 h depending on individual
examples: an agreeable performance, when taking into account that the diagrams resulting from 2-cabling
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the modifications of (3.12) have more than 200 crossings. (They depict 11| oriented degree-4 satellites
of 10132.)

This comparative efficiency offers the opportunity for more extensive checks (for other K). However,
this option was waived on, since it still is not readily amenable to larger quantities, and it leaves unclear
what insight to expect. (We will use the above compiled examples for later reference, though.)

Remark 5.24 Using Computation 5.23 for K = 10132, and the verification of (5.30) and I(K) = a(K)
(see Example 5.12) for all other prime knots K up to 10 crossings, we can conclude that the answer to
(both parts of) Question 4.6 is affirmative for all these 249 knots.

When (5.34) occurs, i.e., K is not l-sharp, the following simplification of cabling may potentially be
useful. Since k(A(K,t)) = 2, one can cable an individual component of A(K,t), obtaining a 11 oriented
parallel A*(K,t,t') of K, where ¢’ is the framing of the doubled component. (Here thus t' can be a
half-integer when the two copies of the doubled component get connected, i.e., K(A*(K,t,t')) = 2 when
2t € Z but t' ¢ Z.) Cabling an individual component only roughly doubles (and does not quadruple) the

crossings in the braid word gp for A(K,t) = Sp.
Lemma 5.25 For every t with b(A(K,t)) = a(K) and every 2t € Z, we have
3
b(A*(K,t,t')) < 5a(K). (5.45)

Proof. When b(A(K,t)) = a(K), then one of the components of A(K,t) in an a(K)-braid representative
B is a subbraid on at most a(K)/2 strands. Thus doubling this component C, regardless of what framing
t' is used, can be done by adding at most a(K)/2 braid strands. (The framing can be corrected by adding
half-twists which do not add more strands.) This gives a braid representative of A*(K,¢,t') of at most
3a(K)/2 strands, resulting in (5.45).

Note that A(K,t) is exchangeable up to simultaneous reversal of orientation of both components, which
does not affect braid index arguments. Thus whether C' is the component we 2-cable to obtain A*(K,t,t’)
from A(K,t), or we cable the other component, is not relevant. (Note, though, that the framing ¢’ of the
cabled component may be different with respect to the blackboard framing of the diagram B) O

Algorithm 5.26 The following explains how one can try to use this lemma. Since the contrapositive of
its statement is really used, some care is needed how to proceed, and we formulate it in several steps as
an algorithm.

1. Use a band presentation 8p (as in (3.1)) for a grid diagram D of K of size u. This gives a band
presentation of A(K,t) for some t.

2. Make some bands negative to ascertain that P(A(K,t)) has no panhandle. For example, when
K = 10132 and p =9, then we know that there are nine values of ¢ € Z for which MFW(A(K,t)) =
I(K) = 8, namely t = —8,...,0. The statement below (4.4) says that it is enough to treat one of
these t. Thus we can consider ¢ = 0 (which requires one negative band), and use the polynomial in
Table 1. In general, one can remove the panhandle (i.e., adjust ¢ by making bands negative) only
by looking at P(A(K,t))|,<1.

3. Then double, with blackboard framing with respect to the diagram ﬁ/g, one of the components of
the link 8p = A(K,t). One obtains a link A*(K,t,¢"). There are in general two possibly (but
not always) distinct integers ¢, depending on which component of 8p one chooses to double. (It

can be argued that these two ¢’ will add up modulo 2 to the same parity as the “band width” sum
1%

> (jr —ir—1) in (2.5); which in turn has the same parity as p; thus two distinct ¢’ will in particular

k=1

always occur when p is odd.)
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4. Try to prove that such a link A*(K,t,t) has braid index strictly greater than |3(u —1)/2]. This
will prove a(K) = p.

Example 5.27 For instance, when we do this construction for K = 10732 with (3.12) (one band needs
to be made negative here), this gives A*(10132,0,t¢") for ¢’ = 3,4. We found (see (2.20)), though, that

MFW (A" (10132,0,¢")) = 12

for both ¢'. Thus unfortunately, for K = 1032, the observation (5.45) does not seem useful to show
a(10132) =9, at least as far as (2.20) is applied (within reasonable computability).

However, there is a number of successful cases. For example, when we carry out this process for
K= 1427072, with the size-12 grid

13 24 58 7C 3B 1A 6C 59 8B T7A 49 26

(where A,B,C stand for 10,11,12; see Definition 3.4), we find I(1427972) = 11, but making 3 bands negative,
we obtain
MFWs(A*(1497072,2,1)) = 17

(here ¢’ = 1 is the same for both choices of doubled component), which rules out a(1427072) = 11.

Other examples, again with u = 12 (and a single t'), are

16 466746: 13 46 25 T7A 8B 9C 3A 4B 16 7C 28 59
15 123702: 13 24 57 9C 6A 38 17 5B 49 8C 2A 6B

and

14 19935: 13 25 48 7B 3A 16 59 8B TA 49 26
16 459158: 14 25 38 6A 7B 49 18 bA 29 6B 37

for ;1 = 11 (using 5 negative bands, with two different ¢/, both having MFWy(A*(K,t,t')) = 16).

These examples do require some search, but keep in mind that even for truncated polynomials, the
increase in crossing number has severe (complexity) consequences. (Here we tried only truncation degree
d = 2, which does not cost much time and allows for testing a larger number of examples.) Thus Lemma
5.25 provides a viable option to try out.

Remark 5.28 We add the following practical hints about the determination of the arc index.

1) For more complicated knots K, it is better to approximate {(K) from below by using z-truncations
of the HOMFLY-PT polynomial, as explained in §2.4. This was used to assist the first and third
authors’ ongoing effort to tabulate the arc indices of the (non-alternating prime) 14 crossing knots.
But it also emphasizes that it is useful to have a good upper estimate of a(K) in advance. Once
coincidence with the lower bound is reached, one can then save calculation of further truncations
(and the full polynomial).

We clarify that how an upper estimate of a(K) was obtained relates to the (knot-spoke) method of
[JP], finding certain proper non-alternating arcs in diagrams of K. It is not necessary (and takes
extra effort) to obtain a minimal grid diagram explicitly.

2) As noticed while proving Lemma 5.13, the statement below (4.4) provides another significant short-
cut to help determining a(K) when [(K) fails. For instance, to see (in an alternative way to Lemma
5.13) that a(10132) # 8, it suffices to calculate a (truncated) 2-cable polynomial of A(10132,t) for
only (any) one of the nine values of ¢ that occur in the enumeration of Computation 5.23.
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3) Observe that the linking number argument of Lemma 5.13 can be adapted to A*(K,¢,t') as well. One
has to consider instead of [k(C1, C2) =t the total linking number of the components of A*(K,t,t'),
which is 2¢ + ¢/ for t/ € Z (and k(A* (K, t,t')) = 3) and 2t otherwise (when k(A*(K,t,t")) = 2). We
will give relevant examples at a separate place, where we discuss the arc indices of the 14 crossing
knots.

4) Notice also Question 5.22 and the remarks below it.

To give a lookout at where we stand thus far, regarding the said at the beginning of §5.2, we have now
gained a toolkit to rule out certain values of the arc index. We related it to a braid index (see Conjecture
6.1 below, although Part 2 of Remark 5.28 explains that we need a weaker statement), and then in turn
to the HOMFLY-PT polynomial (compare Conjecture 2.3). These connections work out at least in a
practical sense, which gives an approach to determine a(K) for most K.

We finish the subsection on cabling with some remarks on the relation to arc indices of cables of K,
and a prospective (new) use of the Kauffman polynomial.

Proposition 5.29

a(Ky,) = 2a(K) when w(D) = —t is a writhe of a minimal grid diagram D of K. (5.46)
Moreover, each such w(D) satisfies

maxdeg, F(K)+1+br(K) — a(K) < w(D) < mindeg, F(K) —1—br(K) + a(K). (5.47)

Also
min { a(K}) : w(D) = —t satisfies (5.47) } = min{a(K;) : t€Z} = 2a(K). (5.48)

Proof. For ‘>’ in the first statement, notice that the arc index of a link is not less than the sum of arc
indices of its components. To see equality, take a minimal size a(K) grid diagram D of K and build the
(disconnected) blackboard-framed 2-parallel of D with reverse orientation of both components. This gives
a grid diagram of size 2a(K) of Ky, for tg = —w(D). With the same reasoning, we have (5.48).

An issue with using (5.46) as an arc index obstruction is that one does not really know a priori well
what to would have to be. One way to restrict ¢y is from [JLS, §3]. A generally better alternative arises
using a known value or estimates of A(K'). The form (5.47) we offer uses Corollary 3.8 with (D) = a(K).
Note further that Z(D) > br(K), since rotating D by —m/4 would turn NW-corners into local maxima
(and SE into local minima) of a Morse presentation of K. This obviously holds for NE (or SW) corners
as well (when rotating by 7/4), and shows

br(K) < Z(D) <a(K)—br(K). (5.49)
Then we have from (3.5), and (3.15), when K # (O, that
w(D) — Z(D) = =-\(D) < =A\(K) < mindeg, F(K) -1,

which yields
w(D) <mindeg, F(K) -1+ Z(D). (5.50)
Applying the argument on the mirror image !D gives

w(D) > maxdeg, F(K)+1— Z(1D) = maxdeg, F(K)+1—a(K)+ Z(D). (5.51)

Use now (5.49) in (5.50) and (5.51), which shows (5.47). (When K = (), the claim is trivially checked.)
(I

Further notice that altering individual component orientation of a link does not change the arc index,
and thus, for an unrestricted ¢ € Z, we may regard here K; as a disconnected 2-cable of K. This would also
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lend a meaning to K for a half-integer ¢ € %Z \ Z, as a connected 2-cable. This situation was considered
by the first author and Takioka [LT], where they write ¢ = 2¢. Still, one must be careful with the sign
switch of ¢ that occurs. To avoid confusion, let us write K; for the 2-cable of K with framing ¢ € %Z, SO

that when ¢ € Z, then K, arises by reversing one component in K_;.

From here we see that we can also “2-cable” (5.11).

Corollary 5.30
2 + min{span, F(K;) : t€Z} < 2a(K). (5.52)

Proof. For span, F' as well, it is immaterial how individual link components are oriented, and thus
span q F(K;) = span, F(K_;). This is the reason why when minimizing over ¢ € Z, one can replace K;
by Kj;. a

It is not necessary to explicitly calculate F(Kt) for more than two values ¢t € %Z, since there are

recurrence relations (analogous to (5.12)), which determine all other F(K;) therefrom. Thus in practice,
a constraint like (5.47) is not very helpful, and it seems a bit easier to use ¢t € Z in (5.48).

Example 5.31 The first author and Takioka have employed this idea to determine span , F (Kt) for prime
knots K of up to 8 crossings (and any t € $7Z), and show that (5.11) can be used to find (inter alia) a(Ky)
(and thus also a(K;) when ¢ € Z) in all these cases. They did not consider a(K), but their calculations
[LT, Appendix A] establish that the practical variant of (5.52),

a(K)>1+ [% min {span, F(K;) : t € Z}—‘ ) (5.53)

is sharp in their range. This was of course of little interest there, since a(K) had long been determined
previously. But it does motivate now a closer look at (5.53).

Example 5.32 Since (5.11) is not sharp for K = 8,9, there is some improvement from (5.53) over (5.11).
In comparison to Theorem 5.7, the obvious instance to try out is again K = 10133. It can be checked
with some technicalities (of the same style as those handled by Lee and Takioka) that (5.53) is sharp for
K =10y35. (Still (5.52) is off by 1. Thus (5.11) does not yield enough information to determine a(K;) for
K = 10132, at least when ¢ € %Z\Z and the sublink argument at the beginning of the proof of Proposition
5.29 fails.)

This suggests the possibility that (5.53) is in fact quite powerful as an arc index bound. In how far
(5'5?’) is useful in general remains to be seen. Certainly, when K has more crossings, the calculation of
F(K) is very strenuous. But the truncation technique (Remark 5.16) could again come into effect.

Truncations could also become even more useful for higher cables. For instance, we can modify (5.53)
to

a(K) > E(umm{spanaF(A*(K, —w(D),w(D))) : w(D) satisfies (5.47) }ﬂ , (5.54)

and here (5.47) becomes rather relevant again, since the recursions between F'(A*(K,t,—t)) (exist but)
are much more cumbersome. Pay attention that (5.47) also involves a(K), but this poses no problem in
using (5.54) as an obstruction, in trying to falsify it when a particular value of a(K) is fixed.

This approach does merit further study, but it definitely has to find its place in a separate paper,
where we try it out on some 14 crossing knots.

5.4 Estimating A\(K): a cooking recipe

Note the special form of the Conway polynomial (2.23) in our examples,

V(K;) = P(K)(1,2) = tz, (5.55)
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Returning to (5.14), we use the substitution (5.55) to extract further information from the pan.
Let aq,...,a;, for I = [(K), be the z-degree 1 coefficients in W in (5.14):

l
W =3 agumint2i=2 (5.56)
=1

Obviously a; form the edge of the pan (drawn below without its handle) — whose general use is to break
your eggs when frying them.

(5.57)

Note, though, that the possibility a1 = 0 (or a; = 0) does exist (although we did not investigate whether
or how often it materializes). Furthermore, ag = 1 can occur also for d,in, > 0 if [P],d,.;, has terms in
z-degree # 1. Here is the way we put the pan edge to our own use.

Proposition 5.33

l
S as S AK) <Y as+ (k) — 1K) (5.58)

=1 i=1

Proof. Now remember that mindeg, P(K;) > 0 (property (5.3)) for K; strongly quasipositive (i.e.,
t > AK)), as well as that there is a ¢ > A(K), namely ¢t = Ay, so that maxdeg, P(K;) < 2a(K) — 1
(property (5.1)). Thus, for the polynomial P(Kk)) we have a(K) —I(K) + 1 possibilities

1 2a(K) — 1 3 2a(K) — 1 2a(K) — 1
1 11..-1
—_——
a(K)—1

1 !
Zai+1 Zai—i-a(K)—l
V=1

Y i=1 Y

(5.59)
distinguished by the panhandle length 0, ..., a(K) — I(K).

The pan edge coefficients a; are not changed for different panhandle length, and by looking at (5.55),
we see (5.58). O

Thus, rather precise, information about the Thurston-Bennequin invariant manifests itself in the co-
efficients of the polynomial, not in its degrees!. It provides an additional bonus of computing P(K;) (for
some t), beyond determining [(K). Namely, if [(K) = a(K), then one obtains A(K) practically for free.
This “frying eggs in the pan” procedure can be useful, for instance, in comparison to Theorem 4.10, when
a(K) is found without constructing a minimal grid diagram explicitly (see Part 1 of Remark 5.28), or as
additional information in obstructing to the existence of certain grid diagrams of a given knot. Remark
5.41 gives a hint how to proceed when [(K) < a(K).

To illustrate the use of (5.58), consider the following examples.

LOf course, if one is allowed to use [P(K)],o0, then ¢ can be retrieved from [P(K;)],—1 using (5.13) as well.
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Example 5.34 The polynomial?

Y

T
—_

[ |
RIS

has panhandle length 4 and pan-width [(K) = 3. If a(K) = 5, then (5.58) has on the right (5—3) + (1 +
2+ 3) =8, 50 (5.58) reads 6 < A(K) < 8.

Example 5.35

Y

===

—_
[ ——
e

has panhandle length 2 and pan-width [(K) = 5. If a(K) = 6, then (5.58) has on the right (6 — 5) + (2 +
1+1+2+3)=10,s0 (5.58) reads 9 < \(K) < 10.

We have then the following “Matsuda-Dynnikov-Prasolov” (see Remark 5.38) type of relationship.

Proposition 5.36 With the notation of §2.2 for mirror image,

I(K) < ME) + MIK) < 2a(K) — 1(K) . (5.60)

Proof. We prove the right inequality. The argument can easily be modified to show the left one. We also
assume, after inspection, that K is non-trivial. We have (IK)_; =!(K}). Note that (2.15) (with k = 2 as
for K; = A(K,t)) gives
P(IK)(v,2) = —P(K)(v1, 2). (5.61)
Now by mirroring property (5.1) using (5.61), we see that there is a t = Ay (K) > M(K) with
maxdeg, P((!K)—¢) < —1, mindeg, P((!K)_;) >1—2a(K).
By how {(K') was defined, and again using the mirroring (5.61), there is an odd

0>d>—1-2a(K)+2l(K) (5.62)

2We emphasize that the polynomials in this and the next example are not HOMFLY-PT polynomials of real knotted
annuli, i.e., the reader should not try to guess what K they were obtained from; we just hand-invented the polynomials for
illustrative purposes.
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so that
[P(("K)—¢)]pa # —2 (5.63)

holds. (The condition (5.15) mirrors through (5.61) to (5.17).)

P(('K)_
1 —2a(K) d ((K)—t) powers of v
r==—1A
a; a bal =1 —1---—1
I I
------ a0 - um)
...... Lo F==n
I I I— 1
..... b L (5.64)
b 0 pan - T
! £ 10| edge 1 1 Tl
' P
I 1
I 1
I 1
Lo
: 0 ! powers of z
| | Y
The repeated application of (5.12) then shows
min deg, P((!K)a(x)-¢) > 1
and by (5.62)
max deg, P((\K)q(xy—¢) > 20(K) — 1. (5.65)
2l -1 P(('K)G(K)ft)
— powers of v
a dy - fap 2001
g
1 1 I 1 pan ©T7TTTTTT ;0
1 1 1 1 1 q a 1
~~~~~~ i i i 0 i edge vL1_____lLa
..... : : 77é : O : a,{L_ = a; + 1
a b
1 I 1
1 I 1
I 1
I 1
I 1
I 1
| S |
powers of z
Y

To see this last inequality (5.65), note that the terms annihilated by (5.12) when ¢ increases are exactly
those for d < 0 where (5.63) does not hold. Since a(K) = a(!K), the inequality (5.65) means that the
largest ¢’ with maxdeg, P((!K)y) < 2a(!K) — 1 satisfies

t' <2a(K)—I(K)—t.
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P(("K)2a(k)—1(K)—t)

2a(K) -1
—=—5] powers of v
1 1 1 ay  ah : a;:
1 1 r==A
...... : : : 0 :
1 1 1 I
...... : : ?é : 0 :
1 1 1 I
..... : : : O :
1 I I
pan T TTTTTC ;0 " ' |
a a | 1 I I
edge 1_____~ Lo : | |
I I
a;=a; +1 L0
| S— |
powers of z
Y

Now we can apply Lemma 5.1 on !K. We have
MIK) <t/ <2a(K)—I(K)—t=2a(K) = l(K) — Amin(K) <2a(K) - (K) — \(K),

as we claimed. 0

Example 5.37 We show a (fictitious) exemplary transformation of the [P(K})],1 terms with increasing
t, with the symbolics used in (5.26).

Gat] -1 -1] - 541 -1] - 541 | = (5.66)
— 54]2 = 5[52 = [[652] - [1652 — [11652

It consists of 7 steps: a(K) =5, [(K) = 3, thus 2a(K) — I(K) =T.

Remark 5.38 Matsuda [Ma] (see also [Ng]|) proved
a(K) > MK) + AK), (5.67)

which improves the right inequality in (5.60). But in fact, Theorem 4.10 with Corollary 3.8 shows that
equality holds, answering [Ng, Question 1]:

a(K) = MK) + A(K) . (5.68)

Then Proposition 5.36 can be interpreted by saying how much the HOMFLY-PT polynomial “sees” from
that geometric reasoning. But we approach (5.60) from the viewpoint of strong quasipositivity, which
can later be adapted to quasipositivity. To make clear that even with Theorem 4.10, our argument is not
redundant, we quote the statement here, albeit its treatise has to be moved out to [St].

Proposition 5.39 ([St]) With

Ag(K) :==min{ ¢t : A(K,t) is quasipositive }, (5.69)
we have
I(K) < XA(K)+ MN(IK) < 2a(K) — I(K) if K is not slice (5.70)
IK) =1 < M\(K) 4+ M\(IK) <2a(K) = I(K)+1  if K is slice '

Remark 5.40 When K is an amphicheiral knot, K =!K, then A(K,0) is an (orientedly) amphicheiral
link. One can use this and (2.15) to conclude that in that case both I’(K) (see Lemma 5.6) and [(K) are
even (see also (5.75)). This is compatible with the fact that a(K) is even through (5.68). Furthermore, the
a; in (5.56) exhibit a shifted antisymmetry: in the normalization d,,:, > 0, they satisfy a; +a;x)41—; = 1.
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For computational purposes, we repeat here the formal self-contained (but not very pleasant) expression
for I(K) and the estimate (5.58) that is valid for arbitrary ¢t. Take P = P(K;) for some ¢ € Z. The
quantities dinin and dy,.. can be determined as follows. Set

_— . min degv P min deg'u P <0
min deg, P = { min{d >0 : [P],a # z} mindeg, P > 0
and
B max deg, P maxdeg, P >0
max deg, P = { max{d <0 : [Plye # —2} maxdeg, P <0
Then 1
1K) = 5 (maxdegvP — min degUP) ¥, (5.71)

and setting
[—1/pmindeg, P] mindeg, P <0

O(K) = [Pla(v=1) + { — P/Qm/i;l\(%g@PJ mindeg, P >0 } ’ (5.72)

(5.58) can be stated as
O(K) < MK) < 0(K)+a(K)—I(K). (5.73)

Remark 5.41 Again, if (5.34) occurs, then one can adapt the arguments in Remark 5.28 to disambiguate
the value for \(K). This gives a practical way to calculate this number for any given K.

The formula (5.72) can be also applied to
P = Py(K}) = P(Ky)|,<q

for any d > 1 (odd). This will give lower bounds for §(K') that can in certain cases, in combination with
(3.15) and (5.68), be used to determine a(K) and A(K) when (5.11) is strict without calculating the entire
P(Ky).

Example 5.42 The knot K = 11404 has arc index 10. But MB(K) = 9. However, we know from (3.15)
additionally that A(K) > 7, A('K) > 2. But when we use the left inequality in (5.73) for P = P;(K4),
we get A(K) > 6, and by taking the mirror image via (5.61), we obtain from (5.73) also A(!K) > 3. For
reference, the truncation P; ((IK)_1) is given below (with the way of reading it as explained in §2.4).

44 404 -1 1
-3 7 9 -33 52 -44 20 -4
-7 9 4 -4 22 -133 278 -282 124 6 -16

In this example [P;],:(v = 1) = —1, and the braced term in (5.72) evaluates to 4, thus giving (!K) > 3.
Then we have
AK) =7, MIK) >3, (5.74)

and with a size-10 grid of K, we have from (5.68) that a(K) = 10, and that (5.74) are also equalities.

Of course these conclusions would follow from computing {(K) = 10 as well, but the point is that
P;(K;) was about 17 times faster to obtain than the entire P(K;). (The difference is here between 0.03
and 0.5 CPU time, but more crossings will stretch the delays far less pleasantly.) A similar example is
11453.

It may be very hard, though, to find [-unsharp examples where this method is effective. IL.e., it should
decide a(K) when both MB(K) and [(K) fail separately. This is related to the difficulty of Question 5.14,
since one can see that

O(K)+0(K)=1lK). (5.75)
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This is our own “estimate” version of (5.68), given that the right hand-side of (3.15) satisfies a similar
property for MB(K) instead of I(K). Thus Question 5.14 can be extended here: is

O(K)>1—mindeg, F(K)? (5.76)
The following is the refinement of Corollary 5.19.
Proposition 5.43 Assume the premise of Corollary 5.19 is satisfied for ¢ = 1. Then (5.76) holds for K.

Proof. Assume first (5.42) holds. If span ,F(K) > 1, then find an f with (5.40).

Write 6 moq 2(K) for (5.72) when for P = P(Ky), the degrees min deg, P and max deg, P are replaced
by min deg,, Pmod 2 and max deg,, P mod 2 for Pmed 2(Kr), provided the analogue of (5.41) holds,

min deg, Pmod 2(Kf) < 0 < maxdeg, Pmod2(K7). (5.77)

(Since we need [P(K)],1(v = 1) = f, we cannot entirely replace P(Kf) by Pmod 2(Kf) when we define
0 mod 2 (K) )
Then clearly

0 mod 2(K) < 0(K). (5.78)
Notice that by (5.40), the condition (5.77) is true. It is thus enough to show 6 1,04 2(K) = 1—mindeg, F(K).
Furthermore,
mindeg, Pmod 2(Ky) = mindeg,(Rf) mod 2(K) = 2mindeg,(F) —1+2f <0. (5.79)

The first equality is Rudolph’s congruence, provided the value is negative, which it is by (5.77), and the
second follows similarly to the equality in (5.43).

Thus (with [P],1(v =1) = f; keep in mind (5.55))
0 moa 2(K) = f + [—1pmindeg, Pmoa2] = [—1L (2mindeg,(F) —1)] =1 —mindeg, F(K). (5.80)
With (5.78) we are done.

When (5.42) holds and span,F(K) = 0 (i.e., F(K) = 1 by Remark 5.20), then notice that in the
preceding argument, we only needed the left inequality in (5.40) (in conjunction with (5.79)) to evaluate
0 mod 2(K) as in (5.80).

But for the left inequality in (5.40) alone, we do not need span,F(K) > 1 to find such an f. Then
the rest of the argument repeats.

This same observation allows us to relax (5.42) to the stated assumption. The fact that we do not
need the right inequality in (5.77) applies for the case that span,F(K) > 1 as well. O

Computation 5.44 The inequality (5.76), and hence also (5.35), is true for prime knots K up to 16
crossings, as was verified by refining and extending Computation 5.21. Here we need to treat mirror
images separately. The premise of Corollary 5.19 for i = 2 will yield (5.76) for !K. (The verification for
16 crossings took about 33h with about the same computing capacity.)

Because of (5.75), Proposition 5.17 implies that (5.76) must hold as an equality when K is alternating.
There is, though, one further noteworthy special case to add besides alternating knots.

Corollary 5.45 For every positive knot K, the inequality (5.76) holds as an equality.

Proof. By Yokota’s result [Yo|, mindeg, F'(K) = mindeg, P(K) = 2g(K), and up to variable change,
the minimal terms coincide. And by (2.16), the term [P(K)],20(x),20¢x) = %1 is odd. This shows (5.76).

We recall that by the argument of Tanaka [Ta2], for a positive knot K, we have
AMK) =1—mindeg, F(K), (5.81)
and thus (5.76) is an equality. O
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6 Braid indices revisited (and problematized)

6.1 Framing cones and the arc index

Here we summarize some remarks provided on various braid indices, and add discussion of related natural
questions. They are meant to point out a series of subtleties, which may be significant or not, but which
are easy to overlook while less straightforward to resolve. One having some particular importance in
this context is Question 4.6. We reformulate part (a) here as a conjecture, with the insight gained from
Corollary 4.3 and Remark 5.24.

Conjecture 6.1

a(K) = min b(A(K. 1)) 6.1)

The following reasoning will appear in several modified versions below, thus we record it as a lemma.
Compare with Theorem 4.10.

Lemma 6.2 Assume (6.1) is true. Then (3.8) holds, in particular A, is unique.

Proof. Take an a(K)-band positive band presentation of A(K,t) for ¢t = Apnin > A(K), and make one
band negative. By Remark 3.2, one has then an a(K)-band presentation of A(K,t—1). Now since A(K,t)
is strongly quasipositive, it is Bennequin-sharp. But

X(A(K, 1)) = x(A(K,t - 1)), (6.2)

and thus the a(K)-band presentation of A(K,t — 1) is not Bennequin-sharp, i.e., it does not make (2.6)
an equality. But still b(A(K,t — 1)) = a(K) by (6.1). Now, if A(K,¢— 1) is strongly quasipositive,
then because of Theorem 2.2, every minimal braid representative of b(A(K,t — 1)) would make (2.6) an
equality. Thus we have that A(K,t— 1) is not strongly quasipositive. This means that t — 1 < A(K), and
so t < A(K), with the reverse inequality already observed. a

Remark 6.3 Note that Conjecture 6.1, when K is alternating, is related to Proposition 5.17. But it is
not entirely implied by it, because of the sporadic collapsing scenario elucidated in the proof of Theorem
5.7. The way I(K) was defined, MFW (K};) < I(K) for some ¢ can occur. Of course, replacing {(K) with
the bound !/(K) in (5.10) avoids the collapsing problem. But we remind from the proof of Theorem 5.7
that we verified (5.10) to be (even very) unsharp in same cases.

More generally than (3.8), we have:

Lemma 6.4 Conjecture 6.1 implies a positive answer to Question 4.8, that ®(K) is a single cone

Proof. Conjecture 6.1 implies that in any band presentation on s = a(K) + k strings with > k negative
bands will give an non-strongly quasipositive A(K,t). The framing ¢ changes with the sign of bands in an
obvious way (compare with Remark 3.2). Thus if (s,t) € ®(K), then ¢t — (s —a(K)) < A(K), in particular
(s,t — (s —a(K))) € ®(K). Therefore,

(s,t) e D(K) =t < ANK)+s—a(K).



40 6 Braid indices revisited (and problematized)

That is, there are no points in ®(K) like the encircled:

T
o
o o
o o o
o o o o
AK) + e o o o o
"
) ]
This shows the cone shape of ®(K). O

Lemma 6.4 pertains to the situation one may expect. But one can also use Theorem 2.2 for a version
when Conjecture 6.1 is unresolved (or false).

Definition 6.5 Define the defect of K by

6(K) = a(K) — minb(A(K. 1))

Then the argument for Lemma 6.4 modifies to show that an a(K)-band positive band presentation of
A(K,t) gives
A(K) <t < A(K) +6(K). (6.3)

and any positive band presentation of A(K,t) on s = a(K) + k strings will have
ME)<t<MNE)+0(K)+k=XNK)+06(K)+s—a(K). (6.4)

From this, we can conclude the following.
Proposition 6.6 For a non-trivial knot K, we have that ®(K) is the union of at most 1+ §(K) cones.

Note that for K = O, we have §(K) = 0, so that the claim is false due to the circumstance (3.7).
(But, again, this case can be worked out separately: see Example 4.9.) In Remark 5.24 we have verified
that §(K) = 0 for all prime knots K up to 10 crossings.

Proof. The condition (6.4) places (s,t) into a trapezoid which is the union of the cones (a(K),t) for ¢ in
(6.3). Now, ®(K) in obviously only contained in this union. Call a cone C(u,t) in ®(K) essential, if it is
not properly contained in any other cone in ®(K). Among cones C(u,t) of fixed t — p in ®(K), there is
always a maximal one, namely the one of the smallest . The same is true among cones C(u, t) of fixed ¢
in ®(K). Note also that there are no values t with A(K) <t < Amin, since for K # O, we have

Amin = AMK)

by Theorem 4.10.

Also, for each value x = A(K) + 1 — a(K),...,\(K) + 6(K) — a(K) there is at most one essential
cone C(u,t) in ®(K) with t — u = x. We call this essential cone type X. Obviously C(a(K), A(K)) is also
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essential, and every other essential cone is of type X, by the above maximality remark. Now we have at
most §(K) type X essential cones. With C'(a(K), A\(K)), this completes a set of 6(K) + 1 essential cones,
as claimed. g

Obviously, from the definition,
0(K) <a(K)—2b(K).

Thus in particular from (6.4), we have
MEK) <t < AK)+s—2b(K)

for any positive band presentation of A(K,t) on s > a(K) strings. Note also that, for computational
purposes, one may replace ‘1 + 6(K)’ in Proposition 6.6 by ‘1 + a(K) — {(K)’, with an analogous proof
argument. (An analogous caveat regarding K = () is needed, where a(K) = [(K) = 2; see (5.19).) We
thus obtain the following proposition.

Proposition 6.7 When K is a non-trivial knot, then ®(K) is the union of at most 1+a(K)—1(K) cones.
O

6.2 Indices from braided surfaces

We return to Definition 2.1, and the inequality
bsgp(S) = b(S)

for a strongly quasipositive surface S.

Question 6.8 While it is more than suggestive, we do not know if always equality holds. I.e., is ev-
ery strongly quasipositive surface always realizable on its minimal number of strings in a positive band
presentation?

Because of Theorem 2.2, this is true if b(.S) = b(K) (where of course K = 05). This is also related to
the Baker-Motegi question if all minimal genus surfaces of a strongly quasipositive knot K are strongly
quasipositive (see [St2]). From [HS], we know that b(S) > b(K) for some minimal genus surface S of K.
But S (and K) is not strongly quasipositive in these examples. Rudolph’s question (4.1) is then equivalent
to asking whether

bsqp(S5) = b(K) (6.5)

is satisfied for some strongly quasipositive surface S of K. It is tempting to ask if (6.5) holds in fact for
every strongly quasipositive surface S of K.

In case of the links L = A(K,t) and Wy (K,t), the minimal genus surfaces Sy, of L are unique (and
plumbing equivalent), so there is no need to distinguish between b;,(Sz) and by(L), and between by, (S1)
and bsgp(L).

Proposition 6.9 We obviously have

in by (A(K1) = a(K). (6.6)

and for t > A(K), we can incorporate Whitehead doubles into the diagram as
(*) v (6.7)
bsgp(W (K1) = b(W4 (K 1))

Also, if K is I-sharp, then all inequalities are equalities.
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Proof. The vertical inequality (*) holds because one can double any (positive) band in a strongly quasi-
positive band presentation of a t-twisted annulus for K (Example 3.13).

Now, consider the case that I(K) = a(K). Since for K = () the equality questions in (6.7) can be
settled by direct inspection, assume that K # (), to avoid complications.

Consider L = A(K, A\(K)). We have
maxdeg, P(L) =2a(K) -1, (6.8)

and this means by (2.17) that an a(K)-braid (band) presentation of L cannot be of writhe less than a(K).
Since we did not assume I'(K) = a(K), there may be a cancellation of terms in z-degree 1 (similarly to
the first polynomial in Table 1). Thus mindeg, P(L) > 1 is, in principle, possible. But the writhe of an
a(K)-braid (band) presentation of L cannot be more than a(K) due to Bennequin’s inequality (2.6). This
means that the writhe of an a(K)-braid (band) presentation of L is unique, and hence b(L) = a(K).

Then one can start with ¢ = A(K) and propagate the bound in (2.17) through the recursion (5.4),
while applying positive stabilizations (see (3.9)). O

Remark 6.10 By noting that we needed in the above proof only (6.8), for which I(K) = a(K) is sufficient
but not necessary, one also obtains equalities in (6.7) for K = 10132. Pictorially speaking, this extra
argument succeeds because the “missing terms” in P(A(K,t)), accounting for the difference (5.34), are
missing “at the bottom”, i.e., in low v-degrees. (See the first polynomial in Table 1.) The mirroring
of 10132 of course continues to be relevant; keep in mind Example 3.7. And the situation immediately
changes when v-conjugating the polynomial (by (2.15)), which explains why the trick definitely fails for
the mirror image !10132.

It follows from Computation 5.23 that all inequalities in (6.7) are equalities at least when minimum
over t > A(K) is taken. This then holds for all Rolfsen knots, with mirror images (see also Example 6.12).

We can expect in (6.7) the horizontal ‘>’ to be ‘=" in general, in accordance with Rudolph’s Question
(4.1). However, we do not know about (*). Obviously Sy, (k¢ = Sa(k,) * H is a plumbing with a
positive Hopf band H. But we know that

bsgp(S * H) < bsgp(S)

is possible, even for a strongly quasipositive fiber (in particular unique minimal genus) surface S; examples
were given in [St2]. These examples, unsurprisingly, have higher genus, but they should still caution about
seeing (*) as suggestive in some way.

Also, regarding (6.6), we can add

tzn/l\l(rll() bsqp(A(K’ t)) = a(K) = rt%lzr:l bb(A(K7 t), (6.9)

because every band presentation of Bennequin surface of A(K,t) gives a grid diagram of K, and gives a
strongly quasipositive surface of A(K,t’) for some ¢’ > A(K) by making all bands positive.

Proposition 6.11 Then for instance for t < A\(K), we have a similar diagram of inequalities to (6.7)

bb(A(Kvt)) Z b(A(Kat))
(**) Vv (6.10)
b (W_ (K1) > bW_(K,t)

And if K is alternating, then all inequalities are equalities.
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Proof. The inequality (**) results from doubling a negative band in a minimal band presentation (a
negative band always exists when ¢ < A(K); see the remarks following Example 3.13.

For the rest of the proof, we assume [(K) = a(K), and argue that all inequalities are in fact qualities.
We can infer this with a similar thought to Proposition 6.9. (Again, exclude K = () after a direct check.)

First, when ¢t > A\(K) (and K is [-sharp), then A(K,t) has a minimal string band presentation that is
positive. The argument with Bennequin’s inequality is still needed to ascertain b(A(K, A\(K))) = a(K) if

MFW (A(K, \(K))) < a(K) . (6.11)

By Theorem 2.2, then any other minimal string minimal genus (i.e., Bennequin) band presentation of
A(K,t) must be positive either. The same holds for W, (K,t). Thus we can fall back onto Proposition
6.9. Simiarly, when ¢t < A(K) — a(K), then any minimal string mand presentation of A(K,¢) must be
negative, and we can use Proposition 6.9 for the mirrored links. Thus we assume now thourhout the rest
of the proof that

MK) —a(K) <t < AK), (6.12)

and argue that all quantities in (6.10) are equal to a(K). We know
by (W (K, 1)), by(A(K. 1)) < a(K). (6.13)

by construction of the band presentation (use Nutt’s construction on a minimal grid diagram of K and
make some bands negative).

The only framing ¢ for which cancellation (6.11) may collapse the bound MFW(A(K,t)) < a(K) is
when all bands in an a(K)-strand band presentation of A(K,t) are positive or negative, that is, t = A(K)
or t = M(K) — a(K). This case was excluded with (6.12). Thus by(A(K,t)) = b(A(K,1)).

However, the situation for by(W_(K,t)) > b(W_(K,t)) is slightly trickier, since a cancellation may
occur for t = A(K) — 1. (Indeed, as we will see from long computations in [St], there are very difficult
I-sharp examples K, among others, (p, 3, —3)-pretzel knots.)

However, under the stronger (keep in mind Proposition 5.17) restriction that K is alternating, it can
be seen, essentially because k1,ke > 1 in (5.39), that this cancellation never occurs. So, in that case as
well

MFW(W_(K,t)) = MFW(A(K,t)) = a(K). (6.14)

Finally, to see (**) is an equality, it is enough to see that b(A(K,t)) = b(W_(K,t)). We can restrict
to the values (6.12). Then we know (6.14) and (6.13). This is sufficient. O

Again (while it is tempting to suspect) we do not know if equalities hold in general.

Example 6.12 From Computation 5.23, we know that for all ¢t € Z,
b(A(10132, t)), b(W:t(].Ong, t)) Z 9= a(10132) . (615)

Obviously, as in Table 1, is it possible to write down explicit band presentations of A(10132,t) and
W_(10132,t) for some t < A(10132) on 9 strings, so that we have

by(A(10132, 1)), b (W_ (10132,2)) < 9.

With Computation 5.23 we again know that thus for K = 10132, the inequalities (6.10) are equalities at
least when their hand sides are minimized over t < A\(K). Under mirroring (using the computations and
band presentations for W, (10132,t)), we can conclude the same for K =!10;32, and thus for all Rolfsen
knots.

When (5.34) occurs, though, this reasoning always relies on an explicit check for specific ¢ using a
2-cable polynomial. And while we expect [-unsharp knots to be relatively rare, such instances K clearly
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increase with crossing number (see Example 5.12). The method in Computation 5.23 soon becomes
problematic complexity-wise, despite algorithmic optimizations. This puts a limit to the capacity of our
algebraic approach to tackle a geometric issue like the sharpness of the inequalities (6.10). (But of course
it is the only information we have available so far.)

As an application of Propositions 6.9 and 6.11, we have one of our statements of the introduction,
formulated there for more self-containedness (only) for alternating knots via Proposition 5.17.

Corollary 6.13 Assume K is [-sharp.

1. Assume L = A(K,t) for some t. Then L has a minimal string Bennequin surface. Also, if L is
strongly quasipositive, then L has a minimal string strongly quasipositive band presentation.

2. Let ¢’ be so that
max deg, P(A(K,t")) >0
and assume
maxcf ,P(A(K, 1)) # £z~ 1. (6.16)
Assume L = W, (K,t) for some ¢. Then L has a minimal string Bennequin surface. Also, if L

is strongly quasipositive, then, without (6.16), L has a minimal string strongly quasipositive band
presentation.

3. Let t’ be so that
mindeg, P(A(K,t)) <0
and assume
mincf ,P(A(K,t")) #4271, (6.17)

Assume L = W_(K,t) for some ¢. Then L has a minimal string Bennequin surface.

Proof. If K = (), then again the claims are easy to test explicitly, so let us exclude this case henceforth.

If L = A(K,t) then Propositions 6.9 and 6.11 show the claim directly. (Note that in the case L =
A(K,t) and K is alternating, one can obtain this result from [DM] as well; see Remark 5.18.) They also
do except for the Bennequin surface case when L = W, (K,t) and ¢t < A(K) and L = W_(K,t) and
t > A\K).

When L = W, (K,t) and A(K) — a(K) < t < A(K), then a band presentation of A(K,t) on a(K)
strands has a positive band, and one can double it to obtain L. It can be checked with a skein calculation
that b(A(K,t)) = MFW(A(K,t)) = MFW (W, (K,t)). Condition (6.16) is needed for t = 1 —\(K)—a(K),
but this case is not relevant for strong quasipositivity.

When L = W, (K, t) and A(K)—a(K) > t, then grid-stabilize positively a band presentation on A(K)—t¢
strands and double a positive band to obtain L. By a skein calculation MEW (W (K t)) = A\(K) —t + 1.

Finally, when L = W_(K,t), the claim follows from the argument for W, (K,t) under mirroring.
(However, L is never strongly quasipositive, so this part trivializes.) We need (6.17) to handle the case
t=\K)-1.

When L = W_(K,t) and t > A(K), then grid-stabilize a t — A(K) + a(K)-string band representation
of A(K,t) negatively and double a negative band. By a skein calculation MEW(W_(K,t)) =t — AM(K) +
a(K)+1. O

We finish by stating the generalization of [DM], which follows along the same lines as Corollary 6.13.

Proposition 6.14 Assume K is a non-trivial [-sharp knot. Then
AMK)—t if t <AK)-—a(K)
b(A(K,t)) = a(K) if A(K)—a(K)<t

t—AMK)+a(K) if t > AK)

< MK) (6.18)
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Note that for K being the unknot this expression still holds when A\(K) = 0 is replaced by 1 (see
(3.16)). There is, of course, also a formula for b(W4 (K, t)) for I-sharp K (excluding the exceptional ¢,
for W_, unless K is assumed alternating), but we leave this to the reader. Furthermore, comparison with
Diao-Morton’s statement implies, besides (5.38), an expression of A(K) for K alternating in terms of a
checkerboard coloring of a reduced alternating diagram of K. (But one must reverse signs, as explained
below Definition 3.1.) When one uses the degrees of F' instead of the geometric quantities (as can be done
for alternating knots), then this identification was given by Yokota [Yo2].

Example 6.15 The case of [-unsharp K is far more complicated. For instance, when K = 1032 (and as a
refinement of Remark 6.10), then in (6.18) we still know the last two alternatives. For A(10132)—a(10132) <
t < A(10132), we have (6.15), and for ¢ > A(10132), the trick with Bennequin’s inequality can still be used.
But this trick does not work for ¢ < A(10132) —a(10132), because the missing terms in P(A(K,t)) occur at
the “wrong” end of the v-degree. Potentially one may adapt some consideration like for Proposition 5.9,
but this only promises a tenuous and very involved argument.

For further applications to the Bennequin sharpness problem (2.9) of Whitehead doubles, see [St].
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