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Thurston-Bennequin invariants and ar
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1 Introdu
tion

This is the se
ond part of a long a

ount on an investigation resulting from attempts to understand

braided surfa
es, in parti
ular Bennequin and strongly quasipositive surfa
es. As it turned out, even in

the simplest 
ase of Euler 
hara
teristi
 0, the answer is revealingly 
ompli
ated, in that these surfa
es

are essentially equivalent to grid diagrams D for knots. However, these grid diagrams D are also equipped

with a framing λ(D), and in the �rst part [JLS℄ many 
onsequen
es were dis
ussed of the identi�
ation

of this framing with the (negated) Thurston-Bennequin invariant (Theorem 3.6).

Building on that study, we treat here the HOMFLY-PT polynomial P . The ar
 index has the Morton-

Beltrami lower bound (5.11) [MB℄ whi
h, by the work of Dynnikov-Prasolov [DP℄ (Theorem 4.10), is re�ned

by the Kau�man polynomial bound for the Thurston-Bennequin invariant (3.15). Our main 
ontribution

here is that there is an alternative pair of inequalities (1.2,5.73) to (5.11,3.15) using the HOMFLY-PT

polynomial P . These new estimates are provably better in a variety of 
ases (see Corollariy 5.19 and
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2 2 De�nitions and Preliminaries

Proposition 5.43, and Computation 5.44). This in
ludes optimality for alternating knots (Proposition

5.17) and positive knots K (Corollary 5.45). These bounds have their own new geometri
 appli
ations.

An outline of the paper is as follows.

After 
ompiling preliminaries in �2, we re
all in �3 previous work in [JLS℄. We review that Euler


hara
teristi
 0 braided surfa
es are essentially grid diagrams D, with a framing atta
hed, whi
h we write

as λ(D). When the surfa
e is strongly quasipositive, then

λ(D) = −TB(D) (1.1)

was identi�ed, up to sign, with the Thurston-Bennequin invariant of D. As we explain, in 
onforman
e

with (1.1), we will usually write λ(K) = −TB(K).

In �4 we dis
uss the braid index b(K) and its variants for Bennequin and strongly quasipositive surfa
es,
and how the ar
 index a(K) is fundamentally 
onne
ted to a braid index b(A(K, t)) (see Corollary 4.1

and Conje
ture 6.1). We also introdu
e the framing diagram Φ(K) of a knot K (De�nition 3.9) and its


one stru
ture (De�nition 4.7).

After these preparations, we move to the main work of this paper in �5, whi
h is a detailed treatment of

the HOMFLY-PT polynomial. The possibility exists (Conje
ture 2.3) that the HOMFLY-PT polynomial

determines the braid index, thus this 
ould be true for the ar
 index as well. In the simplest form, we

extra
t (in a �
ulinary� way) an invariant, we 
all l(K), whi
h gives a lower bound for the ar
 index of K,

l(K) ≤ a(K) (1.2)

(see Theorem 5.7). It (apparently, see Question 5.14) already improves upon the Morton-Beltrami [MB℄

bound.

For (even) better estimates, one 
an use 
abling, and to limit 
omplexity problems, we introdu
e

partial 
abling (Lemma 5.25). This 
an be 
omplemented by some extra arguments, and shows that the

HOMFLY-PT polynomial is e�
ient to pra
ti
ally determine the ar
 index (see Lemma 5.13 and Remark

5.28) and maximal Thurston-Bennequin number (Proposition 5.33) in most examples. We further outline

(end of �5.3) how to apply the Kau�man polynomial beyond the Morton-Beltrami inequality, and also

prove the Finite-Cone-Theorem 5.3.

Se
tion �6 mostly deals with a summary of previous 
onsiderations, in
luding more expli
it forms of

the Finite-Cone-Theorem (Propositions 6.6 and 6.7). We also highlight potential pathologies about non-


oin
iden
e of various types of braid indi
es. This 
omprises Rudolph's problem (4.1). We show that the

l-invariant 
an be also used to ex
lude su
h odd behavior (Propositions 6.9 and 6.11). This leads to an

extension of the result of Diao and Morton [DM℄ (Proposition 6.14). Among further appli
ations is the

following.

Corollary 6.13

′
Assume K is alternating and L = W±(K, t) or L = A(K, t) for some t. Then L has

a minimal string Bennequin surfa
e. Also, if L is strongly quasipositive, then L has a minimal string

strongly quasipositive band presentation.

Throughout the treatise, we en
ounter many suggestive but di�
ult to resolve questions. We have

deliberately put emphasis on them, sin
e their examination would provide various dire
tions to deepen

the present 
onsideration.

The third (and �nal) part of this sequen
e of papers [St℄ is written by the se
ond author and dis-


usses what previous results on strong quasipositivity 
an be extended to quasipositivity. When strong

quasipositivity is repla
ed by quasipositivity, then many 
onsiderations revolve around sli
eness. This is


losely related to the problem of sli
ing Whitehead doubles, and we will extra need both Casson-Gordon

and Vassiliev invariants.

2 De�nitions and Preliminaries

Many of the de�nitions and notations needed 
oin
ide with those given in [JLS℄, but must inevitably be

in
luded again, in order to make this paper self-
ontained.
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2.1 Generalities

We say an inequality `a ≥ b' is sharp or exa
t if a = b and stri
t (or unsharp) if a > b. We use #E for

the 
ardinality of a �nite set E and ⌊x⌋ for `greatest integer' part of x ∈ Q.

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are


alled as follows.

�
�
�✒

❅❅

❅❅■

positive

��

��✒

❅
❅

❅■

negative

smoothing

=⇒ �

�✒

❅

❅■

smoothed out

(2.1)

The sign of a positive/negative 
rossing is assigned to be ±1 a

ordingly. Let c±(D) be the number

of positive, respe
tively negative 
rossings of a link diagram D, so that the 
rossing number of D is

c(D) = c+(D)+ c−(D) and its writhe is w(D) = c+(D)− c−(D). We write s(D) for the number of Seifert

ir
les of D, whi
h are the 
ir
les obtained after smoothing all 
rossings of D. We write c(K) for the

rossing number of a knot K, the minimal 
rossing number of all diagrams of K. The mirror image of K
will be written !K, and the mirror image of diagram D (in the form obtained by swit
hing all 
rossings of

D) will be !D. If K =!K (up to orientation), we 
all K amphi
heiral . We use `©' to denote the unknot

(trivial knot) in formulas, and Tp,q is used for the (p, q)-torus knot .

The symbol `#' is used for 
onne
ted sum (as a binary operation on links, unlike its previous intro-

du
tion as `
ardinality'). The number of 
omponents of a link L is denoted by κ(L). The bridge number

br(L) of L is the minimal number of Morse maxima of L (or equivalently, of any diagram of L). The

(Seifert) genus g(L) resp. Euler 
hara
teristi
 χ(L) of a knot or link L is said to be the minimal genus

resp. maximal Euler 
hara
teristi
 of a Seifert surfa
e of L. We have

2g(L) = 2− κ(L)− χ(L) .

Similarly write χ4(L) for the smooth 4-ball (maximal) Euler 
hara
teristi
 and

2g4(L) = 2− κ(L)− χ4(L) .

(In the following 4-ball genera and sli
eness will always be understood smoothly.) A knot K is sli
e

if g4(K) = 0, or equivalently, χ4(K) = 1. We will refer to the following basi
 fa
t: if κ(L) = 2 and

χ4(L) = 2, then both 
omponents of L must be sli
e (knots), and have linking number 0.

2.3 Braids and braided surfa
es

We write Bn for the braid group on n strands or strings . The relations between the Artin generators σi,

i = 1, . . . , n− 1 are given by

� σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and

� σiσj = σjσi for 1 ≤ i < j − 1 ≤ n− 2.

In diagrams we will orient braids left to right and number strings from top to bottom, for example:

✲

✲
✲

✲
.

.

. ✲

σ2

1

2

3

4

n

✲
✲
✲
✲

.

.

. ✲

σ−1
1

1

2

3

4

n
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There is a permutation homomorphism π : Bn → Sn, sending ea
h σi to the transposition of i and
i + 1. By a subbraid of β ∈ Bn we mean a braid obtained by taking only a subset C ⊂ {1, . . . , n} of the

strands in β, whi
h is invariant under the asso
iated permutation π(β) of β (i.e., C is a union of 
y
les of

π(β)).

We de�ne band generators in Bn by

σi,j = σi . . . σj−2σj−1σ
−1
j−2 . . . σ

−1
i , (2.2)

Noti
e that σi,i+1 = σi. A representation of a braid β ∈ Bn in the form

β =

l∏

k=1

σ±1
ik,jk

(2.3)

is 
alled a band presentation. (See e.g. [BKL℄.) Usually, it will be more legible to use the symbol

[ij] = σi,j

when writing band generators in formulas. Similarly we use −[ij] = σ−1
i,j . In 
ertain 
ases, we even omit

the bra
kets (see De�nition 3.4 and Example 5.27). Also, when j = i + 1, we often simply write i for σi

and −i for σ−1
i , when no ambiguity arises.

The image of β under the abelianization Bn → Z is the writhe (or exponent sum) of β, and is written

w(β). This quantity 
an be 
al
ulated from the exponent sum on the right of (2.3).

In De�nition 3.4 we will extend suitable words in [ij], without negative exponents, also to en
ode grid
diagrams.

A braid β ∈ Bn whose 
losure β̂ is the link L is a braid representative of L. Similarly a word for β
gives a (braid 
losure) diagram D = β̂ of L. When β is a word, then w(β̂) = w(β). A band presentation

β naturally spans a Seifert surfa
e of L = β̂. Following Rudolph, we 
all this a braided surfa
e of L. For
example, n = 6 and l = 6,

✲
✲
✲
✲
✲
✲

for the 6-braid β = σ1,4σ3,5σ2,4σ3,6σ1,5σ2,6. The diagram shows the 
losure L = β̂. It is easily seen

that the six `ellipti
' disks joined two by two with six twisted bands form a natural Seifert surfa
e of L.
Rudolph [Ru℄ proves that every Seifert surfa
e is a braided surfa
e. If a braided surfa
e is of minimal

genus for L, it is 
alled a Bennequin surfa
e of L [BM2℄.

A link is 
alled quasipositive if it is the 
losure of a braid β of the form

β =

µ∏

k=1

wkσikw
−1
k (2.4)

where wk is any braid word and σik is a (positive) standard Artin generator of the braid group. (In [Ru4℄

there is some overview of this topi
.) If the words wkσikw
−1
k are of the form σik,jk in (2.2), so that

β =

µ∏

k=1

σik,jk , (2.5)
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then they 
an be regarded as embedded bands. Links whi
h arise this way, i.e., su
h with positive band

presentations , are 
alled strongly quasipositive links .

Bennequin's inequality [Be, Theorem 3℄ states

−χ(L) ≥ w − n (2.6)

for an n-strand braid representative of L of writhe w. If there is a braid representative β of L making

(2.6) an equality, we 
all both L and β Bennequin-sharp. This inequality was later extended to

−χ(L) ≥ −χ4(L) ≥ w − n (2.7)

(see e.g. [IS, St2℄). In an analogous way we de�ned that L and β are sli
e-Bennequin-sharp.

It implies that a strongly quasipositive surfa
e, i.e., obtained from a positive band presentation, is

minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of

writhe w. Thus the surfa
e S 
onstru
ted from the band presentation yields, with (2.7),

−χ(L) ≤ −χ(S) = w − n ≤ −χ4(L) ≤ −χ(L) .

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

χ4(L) = χ(L) . (2.8)

The Bennequin sharpness 
onje
ture (see [FLL, St2℄) asserts

L is Bennequin-sharp ⇐⇒ L is strongly quasipositive . (2.9)

For some related results, see [JLS, St℄.

De�nition 2.1 � Let b(K) be the braid index of K, the minimal number of strings of a braid repre-

sentative of K.

� Let bb(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin

surfa
e of K.

� When K is strongly quasipositive, let bsqp(K) be the minimal number of strings to span a strongly

quasipositive surfa
e of K (only positive bands).

� Further, for a Seifert surfa
e S, let b(S) be the minimal string number on whi
h S is spanned as a

braided surfa
e.

� If S is a strongly quasipositive surfa
e, let bsqp(S) be the minimal string number on whi
h S is

spanned as su
h (i.e., arises from a positive band presentation).

We have then (with the right inequality only valid for strongly quasipositive K)

b(K) ≤ bb(K) ≤ bsqp(K) , (2.10)

and by de�nition, with S being a Seifert surfa
e of K,

bb(K) = min{ b(S) : χ(S) = χ(K) } , bsqp(K) = min{ bsqp(S) : S strongly quasipositive } . (2.11)

We will further dis
uss these relations in �4 and �6. We also feature the following result. It 
on�rms an

expe
tation originally formulated for n = b(L) by Jones [J, end of �8℄ (later also referred to as the �weak�

form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro 
onje
ture [DP, LaM℄) For every link L, there is a number

wmin(L), so that every braid representative β of L on n strands of writhe w satis�es

|w − wmin(L)| ≤ n− b(L) . (2.12)

Generally speaking, we will use this theorem to advan
e theoreti
al appli
ations in our work, but for

pra
ti
al ones, another tool will be 
ru
ial, whi
h we introdu
e next.
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2.4 Link polynomials

We use the HOMFLY-PT polynomial P [LiM℄, in the Morton [Mo℄ 
onvention

P (©) = 1 , v−1P+ − vP− = zP0 , (2.13)

where P+, P− and P0 refer to the polynomials of three links with diagrams equal ex
ept at one spot,

where they 
ontain the fragments of (2.1) from left to right. The right part of (2.13) is also 
alled P 's
skein relation. We will use the suggestive notation min degv P for minimal v-degree of (any monomial

in) P , and similarly maxdegv P , and set span vP = maxdegv P − min degv P . We write [P ]zk for the


oe�
ient of zk in P , being a polynomial in v. Then, [P ]vd the 
oe�
ient of degree d in v (whi
h is itself

treated as a polynomial in z). Also set

min cf vP = [P ]vmin degv P (2.14)

to be the trailing (lowest degree) 
oe�
ient of P . The notation P |z≥k , P |z≤k , and P |z 6=k will mean

(the polynomial 
onsisting of) all terms in P of z-degree at least k, at most k, and di�erent from k,
respe
tively. The z-variable is left inside. Thus [P ]zk is a polynomial in v, while P |z≥k is a polynomial

in z, v. We o

asionally refer to P |z≤k as a (z-)trun
ated polynomial . We emphasize that mu
h of the

useful information of P 
an be obtained from trun
ations thereof (like (2.20)), whi
h are mu
h faster

(subexponentially) to 
ompute than the full polynomial. A program that 
al
ulates su
h trun
ations was

introdu
ed in [St3℄, and we will extensively apply it below.

A CPU-parallelized upgrade of the trun
ated polynomial 
al
ulation was developed to settle the last

16 
rossing prime knot standing to resolve for the below question (4.1); it has now its own des
ription

page on [St4℄.

Two further standard properties of P are that for a link L of κ(L) 
omponents, min degz P (L) =
1− κ(L), and P (L) 
ontains only monomials zpvq for p, q odd (resp. even) when κ(L) is even (resp. odd).

The mirroring behavior of P is (signed) v-
onjugation:

P (!L)(v, z) = (−1)κ(L)−1P (L)(v−1, z) . (2.15)

We further use the identity (see [LiM, Proposition 21℄)

P (v, v−1 − v) = 1 . (2.16)

By the MFW [Mo, FW℄ inequalities, the writhe w of an n-string band presentation of L satis�es

w + n− 1 ≥ maxdegv P (L) ≥ min degv P (L) ≥ w − n+ 1 , (2.17)

thus

MFW(L) :=
1

2
span vP (L) + 1 ≤ b(L) , (2.18)

where the left hand-side is the MFW bound for the braid index b(L). If MFW(L) = b(L), we 
all L
MFW-sharp.

When L is not MFW-sharp, there are ways to improve the braid index estimate using 
ables of L:
when L′

is a degree-c 
able of L, then

MFW(L′) ≤ b(L′) ≤ cb(L) ,

thus

b(L) ≥
⌈
1

c
MFW(L′)

⌉
. (2.19)

The method is well explained in [MS℄ (
ertainly when c = 2; some examples for c = 3, 4 
an be found in

[St3℄). We refer to su
h estimates as the 
abled MFW .

To relate this to the Jones-Kawamuro 
onje
ture (Theorem 2.2), we point out that MFW plus 
abled

versions thereof is e�
ient to determine the braid index of most links. In some 
ases alternative methods

apply, but for every link L whose braid index is de
ided so far, (2.19) is known give a sharp estimate at

least for su�
iently large c. It is thus 
onje
turable that this is always the 
ase (see [St4℄):
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Conje
ture 2.3 For every link L there is a c > 0 and a degree-c 
able link L′
of L making (2.19) sharp.

Obviously, when we 
an prove that a braid representative β of a link L is minimal, then we immediately

also obtain wmin(L) = w(β) in Theorem 2.2. However, it was also noti
ed in [St5℄ that on
e (2.19) (for

some c) gives a sharp estimate of b(L), it proves along the way that wmin(L) = w(β) is unique. (And

it is not too hard to derive (2.12) either from that argument.) Thus Theorem 2.2 provides a theoreti
al

underpinning, but is neither very pra
ti
ally helpful nor essential to determine b(L) or wmin(L) for a given
L.

One main drawba
k of (2.19) is that in general the polynomial of a 
able link L′
is notoriously hard

to 
al
ulate. But instead of the whole polynomial, we 
an use a trun
ation:

MFWd(L
′) =

1

2
span vP (L′)|z≤d + 1 ≤ MFW(L′) ≤ b(L′) . (2.20)

We refer below to su
h type of estimate of the braid index as trun
ated (
abled) MFW .

When quoting spe
i�
 
omputations of P polynomials (see e.g. Table 2 or Example 5.42), the no-

tation should be read thus. The �rst line 
ontains the 
rossing number of the diagram the polynomial

was 
omputed from, an identi�er, and min degz P and maxdegz P . Then in ea
h line follow [P ]zd for

min degz P ≤ d ≤ maxdegz P with d − min degz P even. The line starts with min degv[P ]zd , then

maxdegv[P ]zd , and then follow the 
oe�
ients [P ]zdve with min degv[P ]zd ≤ e ≤ maxdegv[P ]zd and

e−mindegv[P ]zd even. These entries are aligned so that 
oe�
ients in the same v-degree are on the same

left-right position.

Returning to surfa
es, it follows from the right inequality in (2.17) that a Bennequin-sharp (in parti
-

ular strongly quasipositive) link L satis�es

min degv P (L) ≥ 1− χ(L) . (2.21)

Morton also proves in [Mo℄ the 
anoni
al genus inequality , for any diagram D of L,

maxdegz P (L) ≤ c(D)− s(D) + 1 . (2.22)

The Conway polynomial ∇ is given by

∇(L)(z) = P (L)(1, z) . (2.23)

The determinant of a knot K 
an be de�ned by

det(K) = |∇(2
√
−1)| . (2.24)

This is always an odd number (when K is a knot).

The Kau�man polynomial F = F (a, z)(K) will be needed at a few pla
es for referen
e. We use the

following well-known properties: for every link L,

� F (L) 
ontains only monomials apzq for p+ q even.

�

F (
√
−1, z)(L) = 1 . (2.25)

� For a knot K,

[F (K)]z0(
√
−1v) = [P (K)]z0(v) , (2.26)

and

� the Kau�man-Jones substitution

F (−t3/4, t1/4 + t−1/4)(L) = V (L) (2.27)

We 
aution that our mirroring 
onvention is so that the positive (right-hand) trefoil 31 hasmin dega F (31) =
1 and maxdega F (31) = 4. (This 
onvention is, e.g., opposite to [DM, Th℄, i.e., with a and a−1

inter-


hanged.)
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2.5 Grid diagrams and ar
 index

An ar
 presentation of a knot or a link L is an ambient isotopi
 image of L 
ontained in the union of

�nitely many half planes, 
alled pages, with a 
ommon boundary line in su
h a way that ea
h half plane


ontains a properly embedded single ar
.

✻

θ = 0

✻

θ = π
10

✻

θ = π
5

✻

θ = 3π
10

✻

θ = 2π
5

✻

θ = π
2

✻

A grid diagram (or, for simpli
ity simply 
alled grid often below) is a knot or link diagram whi
h is


omposed of �nitely many horizontal edges and the same number of verti
al edges su
h that verti
al edges

always 
ross over horizontal edges. We assume that horizontal/verti
al positions of verti
al/horizontal

edges are pairwise distin
t. In parti
ular, away from 
rossings edges only meet at 
orners, and verti
es

are pairwise distin
t.

It is not hard to see that every knot admits a grid diagram (
ompare with (3.17)). The �gure below

explains that every knot admits an ar
 presentation.

✻

We set the size µ(D) of a grid diagram to be the number of verti
al or (equivalently) horizontal

segments (but not both together). A grid (diagram) of size µ will also be shortly 
alled a µ-grid .

In general, we will a�ord the sloppiness of abolishing the distin
tion between an ordinary and a grid

diagram, whenever the grid stru
ture is unne
essary. Thus, for instan
e, c(D) 
an mean the 
rossing

number of both an ordinary and grid diagram, whereas µ(D) would imperatively assume that D is given

a grid shape.

Let a(L) be the ar
 index of L, the minimal µ(D) over all grid diagrams D of L. It is the minimal

number of pages among all ar
 presentations of a link L.

We note that the following was proved by Cromwell [Cr℄. For two links L1, L2,

a(L1#L2) = a(L1) + a(L2)− 2 . (2.28)

For knots Li, it also follows from a relationship (5.68), derived by Dynnikov-Prasolov [DP℄, 
on
erning

the Thurston�Bennequin invariant (see �3 for notation), and the additivity of the invariant [EH, To℄.

2.6 Knot tables

For notation from knot tables, we follow Rolfsen's [Ro, Appendix℄ numbering up to 10 
rossings, ex
ept

for the removal of the Perko dupli
ation.

For 11 to 16 
rossings we use the tables of [HT℄ (whi
h for 11 to 13 
rossing knots are now also

on KnotInfo [LvM℄), while appending non-alternating knots after alternating ones of the same 
rossing

number. Thus, for instan
e, 11a[k] = 11[k] for 1 ≤ [k] ≤ 367, and 12n[k] = 121288+[k] for 1 ≤ [k] ≤ 888.



9

For non-alternating knots of 17 and 18 
rossings (end of �5.2.2), we used Burton's 
ensus, [Bu℄. (It

in
ludes, but again reorders, the pre-existing tables up to 16 
rossings.)

If it is relevant, mirror images will be distinguished on a 
ase-by-
ase basis. Spe
i�
ally, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored . The 
onvention for 10132 is �xed

in Example 3.7. (The knot exhibits 
ertain phenomena that have to be treated for higher 
rossing knots

as well, but being the only Rolfsen knot with su
h status, it will merit detailed attention.)

3 Thurston-Bennequin invariant

3.1 Weight model for the Thurston-Bennequin invariant

The main topi
 of the work in [JLS℄ started from the observation (probably �rst o

urred to Nutt [Nu℄)

that a braided surfa
e of Euler 
hara
teristi
 0, whi
h is a K-knotted annulus, is essentially a grid diagram

of the underlying 
ompanion knot K. In this se
tion we review de�nitions and results (mostly without

repeating proofs) from [JLS℄.

De�nition 3.1 Let for a knot K and integer t,

� A(K, t) be the (link of the) t-framed K-knotted annulus,

� W+(K, t) and W−(K, t) the t-framed Whitehead doubles of K with positive and negative 
lasp, and

� B(K, t) the t-framed Bing double of K.

We will usually abuse the distin
tion between the annulus and the link whi
h is its boundary.

To disambiguate among di�erent 
onventions for framing used elsewhere, we emphasize that t is here
the linking number of the two 
omponents of A(K, t). Thus, for example, A(©, 1) is the positive (right-
hand) Hopf link, and A(©,−1) the negative one. This de�nition of framing has the opposite sign to the

one used by other authors (e.g., [DM℄), where they take the writhe w(D) = −t of a diagram D of K from

whi
h A(K, t) is 
onstru
ted as the bla
kboard-framed (reverse) 2-parallel.

Also, W+(©, 1) is the positive (right-hand) trefoil, and W+(©,−1) = W−(©, 1) the �gure-8-knot.

We 
an understand W+(K, t) resp. W−(K, t) as the result of plumbing a positive resp. negative Hopf band
into A(K, t) and taking the knot whi
h is the boundary of the resulting Seifert surfa
e. In a similar way,

we 
an understand B(K, t) as the 2-
omponent link whi
h is obtained by plumbing both a positive and a

negative Hopf band into A(K, t) and taking the boundary. Thus for instan
e B(©, 0) is the 2-
omponent

unlink, and B(©, 1) is the Whitehead link.

Let D be a grid diagram of a knot K. Repla
ing ea
h verti
al segment with a half twisted band as

shown below, we get a braid in band presentation, denoted by βD. (Compare with [Nu, Theorem 3.1℄.)

Then the 
losure β̂D bounds a twisted annulus. Therefore β̂D = A(K, t) for some t.

⇒

✲
✲
✲
✲
✲
✲

D βD

β̂D

⇒ ✲
✲
✲
✲
✲
✲

(3.1)
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Consider the situation that the band presentation is positive. Then obviously A(K, t) for the resulting
framing t is strongly quasipositive. A question is what is the framing t, whi
h we will write as

t = λ(D) , (3.2)

in dependen
e of the diagram D, and how to read λ(D) o� D. To explain the formula for λ(D), given
below as (3.5), we �x some notation.

Let the weight of a grid diagram D be

Z(D) =
1

2

∑

e edge of D

sgn(e) , (3.3)

where the signs of the edges are determined as follows:

sgn(e) =

{
1 e is verti
al

±1, 0 e is horizontal and one of the following forms

0 +1 −1 0
(3.4)

Remark 3.2 This weight formula (3.3) 
an be generalized to non-positive band presentations by letting

ea
h verti
al edge have the sign of the 
orresponding band. But we will treat this more general 
ase only

o

asionally here.

Lemma 3.3 With w(D) being the writhe, we have

λ(D) = Z(D)− w(D) . (3.5)

De�nition 3.4 Also, we 
an use the band presentation of βD to spe
ify the grid diagram D itself (see

Example 5.27). The mirroring of D is �xed by default by saying that βD should be obtained when reading

D from the left. This means that we 
an write the grid diagram D in (3.1), even omitting bra
kets, as

14 35 24 36 15 26 .

Sin
e we deal with grids of size 10 or more, let us also already �x here that we use initial 
apital Latin

letters A,B,C, . . . to denote two-digit integers 10, 11, 12, . . . , so that for example, 4C = [4, 12] = σ4,12.

Let br(D) be the verti
al bridge number of D, whi
h is the number of sign-0 horizontal edges of D of

one of either types in (3.4)

br(D) := #




0

 = #




0




(3.6)

De�nition 3.5 We set λmin(K) = λ(D) whenever µ(D) = a(K).

We will use λmin(K) often in the following. Two 
aveats are in order regarding this notation. First,

the `min' refers to the minimum with respe
t to number of strings of the surfa
e A(K, t) (or horizontal
segments in the grid diagram of K), not the framing t itself. And se
ond, it is not assumed that λmin is

unique. At least for the unknot K,

both b(A(©, 0)) = b(A(©, 1)) = 2, thus λmin(©) = 0, 1. (3.7)
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This spe
ial behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness

and minimality of λmin(K) was settled, as will be dis
ussed below; see Theorem 4.10. But we do not wish

to ex
lude K = © 
onsistently. We prefer to maintain the symbol λmin(K), stipulating that formulas

involving λmin(K) are meant to hold whatever of either values (3.7) is 
hosen for K = ©. For K 6= ©,

the reader may assume that

λmin(K) = λ(K) , (3.8)

though we will not use this before stating Theorem 4.10.

We also observed that when µ is augmented by 1, we 
an always augment by 1,

1 =⇒
1

1
1

(3.9)

resp. preserve

1 =⇒
1

−1
1

(3.10)

any given framing λ(D) by the above two moves. We 
all these moves in the following positive and negative

stabilization, resp. Thus, λ(D) augments by 1 under positive stabilization, and negative stabilization does

not 
hange λ(D).

The Thurston-Bennequin invariant TB(D) of a grid diagram D 
an be de�ned as is being identi�ed

in the following theorem.

Theorem 3.6 For any grid diagram D, the quantity Z(D) 
ounts the NW- or SE-
orners of D.

Z(D) = #




NW-
orners


 = #




SE-
orners




(3.11)

Thus, by Lemma 3.3, (1.1) holds.

Example 3.7 The [J+℄ diagram D of 10132,

10132

read from the left, gives the 9-strand band presentation

βD = [14][27][13][26][59][48][37][69][58] . (3.12)

We have µ(D) = 9, Z(D) = 3, w(D) = 2, br(D) = 3 and λ(D) = 1. Thus (3.12) gives a (positive) band

presentation of A(10132, 1). The mirroring of 10132, determined by D, is so that it has the P polynomial

of the positively mirrored 51. We �x this mirroring in the sequel, sin
e we will illustratively feature the

knot quite a few more times. Note that it is thus opposite to Rolfsen's [Ro, Appendix℄ mirroring.
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We also remark the following straightforward 
onsequen
e of Theorem 3.6.

Corollary 3.8 When the grid diagram !D is obtained from D by swit
hing all 
rossings, and a −π/2
rotation, then λ(D) + λ(!D) = µ(D).

3.2 Appli
ation to strong quasipositivity

Let TB(K) be the maximal Thurston-Bennequin invariant of K, an invariant often 
onsidered in 
onta
t

geometry [Fe, FT, LvN, Ng, Ma, Ru3, Ta℄:

TB(K) := max {TB(D) : D is a diagram of K } .

We also spe
ify a region whi
h will play an important role throughout the rest of the paper.

De�nition 3.9 We de�ne the framing diagram Φ(K) of K as a subset of R2
by

Φ(K) := { (µ, t) : A(K, t) has a strongly quasipositive band representation on µ strands } .

The following result of Rudolph [Ru3, Proposition 1℄ then follows dire
tly from Theorem 3.6. (Note

our di�erent sign 
onvention for t.)

Corollary 3.10 When K is not the unknot, then

λ(K) := min{ t : A(K, t) is strongly quasipositive } = −TB(K) , (3.13)

and more pre
isely,

A(K, t) is strongly quasipositive ⇐⇒ t ≥ −TB(K) . (3.14)

With the identi�
ation (1.1), we note already here the known bound (see [FT, Fe, Ta℄) from the

Kau�man polynomial, whi
h will play a major role below:

λ(K) ≥ −min dega F (K) + 1 . (3.15)

For the unknot K, we have

−TB(©) = 1 but λ(©) = 0 . (3.16)

The problem with (3.13) there is that A(K, 0) has the empty positive band presentation (on two strands),

but we do not 
onsider this band presentation 
orresponding to a grid diagram. For this reason, the

unknot will repeatedly require spe
ial attention below. Despite the identi�
ation (3.13), λ(K) will o

ur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,

even when we ex
lude K = ©.

Remark 3.11 It is possible to derive similar properties for links K. Then a framing t is needed for ea
h


omponent, and the relationship in Corollary 3.10 be
omes slightly more involved, as be
ome the framing

diagram of De�nition 3.9 and its properties. We do not wish to deal extensively with links here. However,

in situation where the surfa
e stru
ture is forgotten, the more self-
ontained extensions to links do emerge,

as for Corollaries 4.4 and 4.5.

This is then a simple appli
ation of [Ru2℄. We assume that K 6= ©. For K = ©, all the links in

De�nition 3.1 are (alternating) 2-bridge links, and su
h 
an be handled ad ho
 for strong quasipositivity

(see e.g. [Ba℄).
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Corollary 3.12 Let K be a non-trivial knot. Then

(a) W+(K, t) is strongly quasipositive if and only if t ≥ −TB(K), and
(b) W−(K, t) and B(K, t) are never strongly quasipositive.

Sin
e we will need this repeatedly later, let us already here noti
e that the Hopf plumbing W+(K, t) =
A(K, t) ∗H 
an be realized by doubling a(ny) positive band in a band presentation of A(K, t).

Example 3.13

✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲

41 A(41, 3) W+(41, 3)

A similar remark applies to W−(K, t) whenever a band presentation of A(K, t) has a negative band.

However, it is important to note that this is not the only way to generate positive band presentations

of Whitehead doubles. (A di�erent example for a trefoil Whitehead double is given in [Be, �g p. 121

bottom℄.)

Then, we gave a simple appli
ation of the weight model, in estimating the Thurston-Bennequin invari-

ant. A 
ounterpart will emerge with Lemma 5.4 from the HOMFLY-PT polynomial.

De�nition 3.14 De�ne pbr(D), the plane-bridge number of D as the minimal number of Morse maxima

(or minima, i.e., half of the minimal number of Morse extrema) over all smooth di�eomorphi
 images of

D in S2
.

Obviously br(K) ≤ pbr(D) for the bridge number br(K) of K (see e.g. [Mu℄), and br(D) ≥ pbr(D) for
every grid diagram D, where br(D) was as de�ned in (3.6).

Lemma 3.15 For any diagram D of K, we have λ(K) ≤ 2c−(D) + pbr(D).

We do not repeat the proof here, but we re
all that it involved the 
rossing 
onversion

=⇒

(3.17)
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es

and horizontal adjustment te
hnique.

A

B

=⇒

A

B B

A

=⇒

B

A

(3.18)

4 Braid indi
es

We dis
uss here some remarks in [JLS℄ on the relation regarding the braid indi
es in De�nition 2.1.

(Compare with [Nu, Se
tion 3.3℄.) As noti
ed, Bennequin's inequality (2.6) implies that a strongly quasi-

positive surfa
e is a Bennequin surfa
e, thus for K strongly quasipositive, we have (2.10). We know

that bb(K) > b(K) is possible [HS℄, but the examples K known are not strongly quasipositive. Rudolph


onje
tures that

bsqp(K) = b(K) (4.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16


rossings (see [St2℄). By the proof of the Jones-Kawamuro 
onje
ture (Theorem 2.2), a Bennequin surfa
e

of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

bb(K) = b(K) (4.2)

implies (4.1) for strongly quasipositive knots K. The problem (4.2) is extensively studied in [St2℄.

Sin
e a band presentation of A(K, t) always 
omes from a grid diagram of K, and with a 
on�rmative

noti
e about the unknot, we have:

Corollary 4.1

min{bb(A(K, t)) : t ∈ Z } = a(K) . (4.3)

Moreover, there are at least a(K) + 1 
onse
utive integers t whi
h realize the minimum.

Also, be
ause 
hoosing positive bands will give a band presentation of a strongly quasipositive annulus,

we have with Corollary 3.10:

Corollary 4.2 min{bsqp(A(K, t)) : t ≥ λ(K) } = a(K) .

Forgetting the surfa
e stru
ture then yields an inequality of (ordinary) braid indi
es:

Corollary 4.3

min{b(A(K, t)) : t ∈ Z } ≤ min{b(A(K, t)) : t ≥ λ(K) } ≤ a(K) (4.4)

Moreover, there are at least a(K)+1 
onse
utive integers t whi
h realize the inequality b(A(K, t)) ≤ a(K).

The braid index of a link A(K, t) is obviously not less than the sum of the braid indi
es of 
onstituent


omponents. Thus from Corollary 4.3, we also immediately have an inequality, whi
h was noti
ed by

Cromwell [Cr℄.

Corollary 4.4 (Cromwell) For every knot K, we have 2b(K) ≤ a(K).
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We observed then the (slight) re�nement of Ohyama's inequality [Oh℄.

Corollary 4.5 For every knot K, we have b(K) ≤ c(K)/2 + 1, and if K is non-alternating, then b(K) ≤
c(K)/2.

These useful impli
ations are worth noting, but we will see below that it is mu
h more important to

work with (4.4) rather than its simpli�ed variant of Corollary 4.4. However, these simpli�
ations have the

advantage of extending with far less 
aveats to links K (see Remark 3.11).

We are next going dis
uss what (say, strongly quasipositive) framings λ are possible for given grid

size µ, and in parti
ular whether λmin, the framing for a minimal (size a(K)) diagram (see Theorem 3.5)

is unique. Sin
e µ bounds the braid index of A(K, t), and all have the same χ, Birman-Menas
o [BM℄

imply that for given λ, only �nitely many µ are possible. We will later prove a more pre
ise statement

(Finite-Cone-Theorem 5.3).

Question 4.6 (a) Is b(A(K, t)) ≥ a(K) for any t?
(b) At least, is b(A(K, t)) ≥ a(K) for any strongly quasipositive A(K, t)?

If (b) fails, then it would give an example A(K, t) answering negatively Rudolph's question (4.1). This

question will be further treated in Remark 5.24 and Conje
ture 6.1.

To formalize this topi
 better, we introdu
ed notation relating to the two grid stabilizations (3.9) and

(3.10).

De�nition 4.7 We de�ne the 
one C(µ, t) ⊂ Z+ × Z by

C(µ, t) = { (s, λ) : s ≥ µ, t ≤ λ ≤ t+ s− µ } .

We say (µ, t) is the tip of the 
one.

✲

µ number of strands

✻

t

twisting

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

· ·
·




· · ·
C(µ, t)

As argued, the framing diagram Φ(K) of K (see De�nition 3.9) is a union of 
ones. We announ
ed

that we will prove later (Finite-Cone-Theorem 5.3) that 
ones in Φ(K) are �nitely many. The following

Jones-Kawamuro type of 
onje
ture (
ompare with Theorem 2.2) is then suggestive.

Question 4.8 IfK is non-trivial, is Φ(K) a single 
one? (This 
one would have to be then C(a(K), λmin(K))
with λmin(K) = λ(K).)
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Example 4.9 A

ording to (3.7), we have

Φ(©) = C(2, 0) ∪ C(2, 1)

being the union of two 
ones.

The spe
ial 
ase for µ = a(K) in Question 4.8 (an analogue of the �weak� form of the Jones-Kawamuro


onje
ture) was already raised in [Ng℄ in the language of grid diagrams D and Thurston-Bennequin

invariants TB(D). It was answered in [DP, Corollary 3℄.

Theorem 4.10 (Dynnikov-Prasolov [DP℄) The Thurston-Bennequin invariant of minimal grid diagrams

of a given knot K is always equal to TB(K).

We will return to this statement in �5.4 and �6.1. Note that the unknot 
reates no ex
eption here,

when using TB instead of λ and avoiding the dis
repan
y (3.16). Despite its importan
e, we do not use

Theorem 4.10 substantially; it brings only minor simpli�
ations, whi
h 
an be mostly worked around.

However, see (5.68), and its appli
ation in Example 5.42.

5 HOMFLY-PT polynomial

5.1 Some degree inequalities

We now turn our attention to the HOMFLY-PT polynomial P in (2.13). Our goal is to use the polynomial

to prove that when t is su�
iently small, then A(K, t) is not strongly quasipositive with a good lower

bound on t. The w(D) term in (3.5), as we have seen, makes bounds somewhat inelegant and ine�
ient.

We use some notation from �2.4.

Lemma 5.1 For every knot K, there exists a strongly quasipositive framing t = λmin(K) ≥ λ(K) of

A(K, t), so that

min degv P (A(K, t)) ≥ 1 , maxdegv P (A(K, t)) ≤ 2a(K)− 1 . (5.1)

Proof. When K = ©, then t = 1 su�
es. Thus assume again below that K is non-trivial. When L is

strongly quasipositive, then (2.8) and L being Bennequin-sharp mean that the right inequality in (2.7)

be
omes an equality. By using the right inequality in (2.17), we have

min degv P (L) ≥ 1− χ(L) = 1− χ4(L) . (5.2)

In parti
ular for L = A(K, t), we have χ(L) ≤ 0, so

min degv P (A(K, t)) > 0 . (5.3)

We have from the skein relation (2.13)

P (A(K, t)) = v2P (A(K, t− 1)) + vz . (5.4)

Noti
e, by further remarks from �2.4, that for the 2-
omponent link A(K, t)) the only monomials in

P (A(K, t)) that o

ur are zpvr with odd p, r. Also min degz P (A(K, t)) = −1, and by [LiM℄ it is known

that

[P (A(K, t))]z−1 = v2t(v−1 − v)([P (K)]z0 )2 6= 0 . (5.5)

We now know that there is a (at least one) framing (we denoted) t = λmin, so that b(A(K, t)) ≤ a(K).

Also by MFW inequality (2.18) we have

span vP (A(K, t)) ≤ 2(a(K)− 1)
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for t = λmin. Now, the diagram D1 of A(K,λmin) obtained from a minimal grid diagram D of K by

repla
ing verti
al segments by positive bands has w(D1) = µ(D) = a(K) and s(D1) = µ(D) = a(K).

Thus by MFW inequalities (2.17), we have

min degv P (D1) ≥ 1 , maxdegv P (D1) ≤ 2a(K)− 1 . (5.6)

�

Lemma 5.2 If K 6= ©,

λ(K) > max{λ(D)− µ(D) : D is a grid diagram of K} , (5.7)

with non-stri
t inequality if K = ©.

Proof. By using the right inequality (5.1) and the re
ursion (5.4) reversely a(K) times, we see

min degv P (A(K,λmin − a(K))) ≤ maxdegv P (A(K,λmin − a(K))) ≤ −1 ,

so from (5.3), we have that

A(K,λmin − a(K)) is not strongly quasipositive,

if K 6= ©. For K = ©, we 
an 
on
lude that

A(K,λmin − a(K)− 1) is not strongly quasipositive .

In a similar way, for every grid diagram D of size µ(D), the annulus A(K,λ(D)) will appear in a

diagram D1 with w(D1) = s(D1) = µ(D), so

A(K,λ(D) − µ(D)) is not strongly quasipositive (5.8)

when K 6= ©, and same for A(K,λ(D) − µ(D)− 1) when K = ©. �

Sin
e this maximum is �nite, we have:

Theorem 5.3 (Finite-Cone-Theorem) The framing diagram Φ(K) is a union of �nitely many 
ones.

Proof. Note that a 
one C′ = C(µ′, t′) 
ontains a 
one C = C(µ, t) if and only if (µ, t) ∈ C′
. Thus if

C ⊂ ⋃
i

Ci, then C ⊂ Ci0 for some Ci0 .

Call a 
one C ⊂ Φ(K) essential if there is no 
one C′ ⊂ Φ(K) with C ( C′
. Now 
onsider the essential


ones Ci = C(µi, ti) in Φ(K) one by one. Order them as a (�rst potentially in�nite) sequen
e C1, C2, . . .
by in
reasing ti, i.e., so that ti > ti−1. Note that there 
annot be two essential 
ones Ci, Cj with ti = tj ,
sin
e otherwise µi < µj would lead to Ci ⊃ Cj . Also there is a smallest t1 be
ause ti ≥ λ(K) for all i.
De�ne then

νi = max{t− µ : (µ, t) ∈ Ci} .

And now argue that νi > νi−1. Be
ause of (5.7), there 
an be only �nitely many in
reases of νi. (See

Proposition 6.6 for a more pre
ise statement and argument.) �

Another appli
ation of (5.7) gives an inequality we promised in stark symmetry to Lemma 3.15. (Unlike

its 
ounterpart, it thus does rely on the HOMFLY-PT polynomial in an essential way, though.)

Lemma 5.4 For any diagram D of K, we have λ(K) > −2c+(D)− pbr(D).
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Proof. If K = ©, then λ(K) = 0, pbr(D) > 0 and c+(D) ≥ 0, so the inequality is trivial. Thus assume

K 6= ©. We use the 
onversion (3.17) and the horizontal adjustment (3.18) of the proof of Lemma 3.15.

We may then assume without loss of generality that D is a grid diagram and all ±1 signed horizontal

edges are interse
ted by a 
rossing. Then using (5.7), we have

λ(K) > λ(D) − µ(D)

= Z(D)− w(D) − µ(D)

≥ 1

2

(
2µ(D)− 2c(D)− 2br(D)

)
− µ(D)− w(D)

= −c(D)− br(D) − w(D)

= −2c+(D)− br(D) .

In the third line we used that ea
h −1 edge has a 
rossing, and there are 2br(D) sign 0 edges. �

Remark 5.5 The number l(K), introdu
ed later, allows for improvements of (5.8), (5.7) and Lemma

5.4. However, the present versions maintain the advantage of involving only simple geometri
 data of the

diagram itself, without protruding algebrai
 
onstru
tions derived from it. Sin
e we will �nd a number of

(other) appli
ations of l(K), we do not like to return here to resume this spe
i�
 line of argument. The

quantity l(K) will serve as a lower estimate for the ar
 index, of whi
h we put ahead a simpli�ed variant.

Let P = P (A(K, t)) for some t. Keep in mind by �2.4 that P |z 6=1 is the polynomial P with all terms

of z-degree 1 removed. Be
ause of (5.5), talking about its degrees makes sense.

Lemma 5.6 The integer

l′(K) :=
1

2
span vP (A(K, t))|z 6=1 + 1 (5.9)

does not depend on t and satis�es

a(K) ≥ l′(K) . (5.10)

Proof. By 
onstru
tion, b(A(K,λmin)) ≤ a(K), so by MFW inequality (2.18), we see that (5.10) is true

for t = λmin. And for other t, note that the relation (5.4) does not add any terms of z-degree di�erent
from 1. That l′(K) does not depend on t follows for this same reason. �

But in fa
t, the z1-term of P is also interesting � and signi�
ant � and its study relates to the �
ooking�

alluded to in the abstra
t of the paper.

5.2 Estimating a(K): the pan

5.2.1 De�nition and basi
 properties of the l-invariant

Like for the 
rossing number, there are only �nitely many knots of given ar
 index.

The �
lassi
al� lower Morton-Beltrami bound for a(K) 
omes from Kau�man's polynomial F [MB℄:

a(K) ≥ MB(K) := span aF (K) + 2 . (5.11)

This 
an also be obtained from the bound (3.15) and Matsuda's inequality (5.67).

However, on
e su
h 
lassi
al tool fails to give a sharp lower estimate, the method used so far, like in

[J+℄, is to exhaustively enumerate all grids of smaller size, a feat whi
h qui
kly be
omes laborious and

unreliable when the size in
reases. To 
hange this situation here, we explain next how not to dis
ard the

z1-term in (5.10), and use it to determine a(K), and later λ(K), from the P polynomial with 
onsiderable

pre
ision.
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Write in the rest of this se
tion for simpli
ity

Kt = A(K, t)

for (the boundary of) the t-framed annulus around K. We have then from (5.4),

P (Kt) = zv + v2P (Kt−1) . (5.12)

To visualize the polynomial P (Kt), it will be helpful to plot its 
oe�
ients in the plane, with (odd) v
degrees going from left to right and z degrees going top-down. Thus negative v-degree terms, left on the

y-axis, o

ur, and will be 
onsidered. But negative z-degree terms, above the x-axis, o

ur only for z−1
,

and we stipulate to hide them. We emphasize again that the z−1
-term in P (Kt) is known (see (5.5))

[P (Kt)]z−1 = (v−1 − v) · v2t([P (K)]z0)2 . (5.13)

By iterating (5.12), we 
an see that for su�
iently high t, the polynomial P (Kt), displayed as we just

explained, starts exhibiting the pan-like shape

✲

❄

v v3 · · · vdmin vdmax

v powers

z powers

z

z3

.

.

.

1 1 1 1 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · · · · ·

· · ·

︸ ︷︷ ︸
W

(5.14)

Now remove all 1's in the panhandle of (5.14). To formalize this, we 
onsider the leftmost and rightmost


olumn [P ]vd in (5.14), for the smallest d = dmin > 0 whi
h is not of the shape

[P ]vd = z , (5.15)

and

dmax = maxdegv P . (5.16)

We 
an easily treat arbitrary t, and will do below. In that 
ase, we 
an modify the 
ondition (5.15)

for dmax < 0 (keep in mind that for a 2-
omponent link, d is always odd) to

[P ]vd = −z (5.17)

and dmin < 0 is set as min degv P . But, keeping the pan shape (5.14) in mind, assume here for simpli
ity

t ≫ 0.

Write then

l(K) =
dmax − dmin

2
+ 1 (5.18)

for the (pan) width of W in (5.14). (For the formalization of this pro
edure, see the expressions given at

the end of �5.4. Compare also with [Nu, Theorem 3.3℄.) In result, we have a way to �normalize out� the

t-dependen
e of the degrees of P (Kt) in the z1-term, giving an improved version of the lower bound l′(K)
in (5.10) for a(K). Due to the attention in
ited by the unknot, let us remark here that

a(©) = l(©) = l′(©) = 2 . (5.19)
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Theorem 5.7 With (5.9) and (5.18), for every knot K, we have

l′(K) ≤ l(K) ≤ a(K) .

Proof. Obviously l′(K) ≤ l(K), so we prove the right inequality. Be
ause of (5.19), we also assume

K 6= ©.

When we set (5.16), it is possible that some P (Kt) for small t has MFW bound < l(K). This 
an

happen if

[P ]vd = z for d = dmax and possibly d = dmax − 2, dmax − 4, et
. (5.20)

In parti
ular, we would need

dmax > maxdegv P |z 6=1 (5.21)

for su
h terms to o

ur. These terms (5.20) 
an be 
an
elled by the inverse pro
ess of (5.12) when their

v degree shifts down to 1 and then goes from 1 to −1.

We pause here for some 
autionary illustrations. We do not know whether (5.20) 
an o

ur. But

examples warn that it �almost� does. It 
an be seen from Table 1 that when K =!10132, su
h a 
an
ellation
(when t = 1) o

urs in degree dmax − 2. But it does not in degree dmax, whi
h prevents a 
ollapse in

degree.

The polynomials from Table 2 are probably even more noteworthy (re
all �2.4). By smoothing out

a 
rossing in the Whitehead double 
lasp and taking the mirror image, one 
an see that when K are

positive (2, n)-torus knots T2,n, then terms [P ]vd = −z do o

ur in large amounts. The 
oe�
ients di�er

from (5.20) only by one wrong sign. (In this sense the �panhandle� they 
reate is named �false�; it is an

intrinsi
 feature of K = T2,n and does not 
ome from large or small framing t in Kt.) These polynomials

are pe
uliar enough to merit their own treatment later in Proposition 5.9.

In parti
ular these �false� panhandles for K = T2.n, also make a signi�
ant di�eren
e to l′(K) = 4 in

(5.10), eviden
ing the pri
e tag of ignoring the z1-term all out. This is 
emented by further knots like

K = 820, 943, with l′(K) < l(K).

Sin
e we 
annot ex
lude the situation (5.20), using

a(K) ≥ min
t∈Z

MFW(Kt) (5.22)

(for (2.18)) will not be enough, at least in theory (see, though, Remark 5.8). However, noti
e that the ar


index, as bound for b(Kt), has a 
ertain stability: there is a number t = λmin with

b(Kt′) ≤ a(K) + |t′ − λmin| (5.23)

for every t′. (We know by Theorem 4.10 that λmin is unique for K 6= ©.) Using (5.23), we 
an repla
e

(5.22) by

a(K) ≥ min
t∈Z

max
t′∈Z

MFW(Kt′)− |t′ − t| . (5.24)

This will prevent the sporadi
 
ollapsing of the MFW bound from deteriorating the ar
 index bound. It


an be seen, with a bit of te
hni
al argument based on (5.12), that the right of (5.24) is pre
isely what

was de�ned as l(K). This in parti
ular shows

l(K) ≥ min
t∈Z

MFW(Kt) . (5.25)

For instan
e, there 
an be at most two hypotheti
al values of t for whi
h MFW(Kt) < l(K), and for

them 
hoosing |t′ − t| = 1 should su�
e to see

MFW(Kt′)− |t′ − t| ≥ l(K) .

An instru
tive example of the argument, allowing for two su
h t to o

ur, is the following sequen
e.

We show a transformation of the [P (Kt)]z1
terms with in
reasing t, where only the 
oe�
ients are written,
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[25℄[14℄[37℄[26℄[15℄[48℄[79℄[38℄-[69℄

55 132 -1 17

7 13 9 -21 16 -4

5 15 -15 109 -186 86 31 -25

1 15 -2 0 -80 452 -724 285 169 -100

5 15 -148 870 -1493 659 272 -160

5 15 -128 895 -1771 932 202 -130

5 15 -56 520 -1256 772 76 -56

5 15 -12 170 -536 376 14 -12

5 15 -1 29 -134 106 1 -1

7 11 2 -18 16

9 11 -1 1

[25℄[14℄[37℄[26℄-[15℄-[48℄-[79℄-[38℄-[69℄^2

56 1 0 18

-2 4 -8 21 -16 4

-8 6 1 1 16 -108 186 -86 -31 25

-8 6 2 0 80 -452 724 -285 -169 100

-4 6 148 -870 1493 -659 -272 160

-4 6 128 -895 1771 -932 -202 130

-4 6 56 -520 1256 -772 -76 56

-4 6 12 -170 536 -376 -14 12

-4 6 1 -29 134 -106 -1 1

-2 2 -2 18 -16

0 2 1 -1

Table 1: Polynomial of the annulus link A(10132, 0) and the Whitehead double W−(10132,−4) of 10132
and negative 
lasp, framing t = −4, together with the band presentation used, as obtained from (3.12)

(where ±[ij℄ stands for σ±1

i,j in (2.2), and the notation for polynomials follows �2.4).

The mirroring of 10132 
an be easily 
on�rmed from the z−1
-term of P (A(10132, 0)) and (5.5) to be

the one spe
i�ed in Example 3.7.

For A(10132, 0) we see the disappearan
e of the (short) �false� panhandle. It 
omprises two monomials

in z-degree 1. We 
all the panhandle �false� be
ause in the same v-degree 1, a term −2z3v with z3

o

urs, so that this �panhandle� is not removed when redu
ing the framing t. Note that A(10132, 0) is

not strongly quasipositive despite min degv P > 0.
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and verti
al bar stands for the separation between v-degrees −1 and 1 (making 
lear the degrees of all

other 
oe�
ients; even degrees are obviously omitted). The pan edge 
oe�
ients (see (5.64)) are boxed

at some pla
es (similarly to (5.57); see also (5.66)).

−1 − 1 2 0 0 − 1
∣∣∣ → −1 − 1 2 0 0

∣∣∣ → −1 − 1 2 0
∣∣∣1 → . . . (5.26)

. . . → −1
∣∣∣ 0 3 1 1 →

∣∣∣ 0 0 3 1 1 →
∣∣∣ 1 0 0 3 1 1

In that 
ase l(K) = 5, while for two t, MFW(Kt) = 3 is possible. But for either t and one of the two t′

with |t′ − t| = 1, we have MFW(Kt′) = 6 = l(K) + 1.

This argument based on (5.24) justi�es that using (5.16) is appropriate to a
hieve l(K) in (5.18) to

estimate a(K) as 
laimed. �

The equation (5.71) gives the formalization of the de�nition of l, whi
h is postponed mainly due to its

(here unne
essary) te
hni
ality. However, noti
e the following very self-
ontained spe
ial 
ase (with the

notation of (2.18)):

when t is 
hosen so that min degv P (Kt) < 0 < maxdegv P (Kt), then l(K) = MFW(Kt). (5.27)

Remark 5.8 There is a way to modify the 
al
ulation of l(K) to determine the right hand-side of (5.22)

in pra
ti
e. Remove all highest v-degree terms (5.15) for d > 0 and [P ]vd = 0 for d < 0, until you rea
h a

degree d′max (with 
oe�
ient [P ]vd) not of that form. Similarly, remove all lowest v-degree terms (5.17)

for d < 0 and [P ]vd = 0 for d > 0, �nding d′min. Then (5.25) 
an be extended to

l(K) ≥ min
t∈Z

MFW(Kt) ≥
d′max − d′min

2
+ 1 . (5.28)

Note that on the right there is still no equality, be
ause when t is �xed, the just des
ribed 
an
ellation

of terms in P (Kt) 
an only o

ur on one side (either for low, or for high powers of v, but not for both).
That is, we may in theory have a situation like

P (Kt) =

✲

❄

d′min d′max v powers

z powers

−1 −1 −1 1 1 1 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · · · · ·

· · ·
, (5.29)

whi
h is also the type that o

urs in (5.26).

Still, in the present form the estimate (5.28) is good enough to allow us to 
on�rm that in fa
t

l(K) = min
t∈Z

MFW(Kt) (5.30)

(i.e., (5.29) does not arise, and (5.25) is exa
t) for all prime knots K up to 10 
rossings. We do not know

whether this equality holds in general.
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Before moving over to some general properties of the l-invariant, it is worth paying the due tribute to

the parti
ular polynomials in Table 2, whi
h are striking enough to merit an expli
it statement.

Proposition 5.9 For the (2, n)-torus knot T2,n, the polynomial P ((T2,n)−n) is of the shape

P ((T2,n)−n) = P̃n − zv5
v2n−4 − 1

v2 − 1
, (5.31)

where

−3 = min degv P̃n ≤ maxdegv P̃n = 3 . (5.32)

In parti
ular, l(T2,n) = n+ 2, while l′(T2,n) = 4 (when n > 1).

Proof. The skein algebra of rooms with 4 inputs and 4 outputs has 4! = 24 linear generators. Thus the

polynomials P ((T2,n)−n) satisfy some linear re
ursion of length 24. What we 
laim is (mostly) that

Pn = v3/2P ((T2,n)−n)(v
1/2, z) + zv4

vn−2 − 1

v − 1

satis�es

P ∗
n =

∂4

∂v4
Pn = 0 (5.33)

for all n. These polynomials P ∗
n have a re
ursion of length 24 · 5 = 120 (where `5' is one plus the degree of

derivative). Thus it is enough to prove that P ∗
n = 0 for 120 
onse
utive odd n. By using mirror images, we


an redu
e this number to the 60 values of n = 1, 3, . . . , 119. (We observed from the below 
omputation

that the situation for even n, where T2,n is a link, is slightly more 
ompli
ated.)

Thus if we prove (5.31) for 1 ≤ n ≤ 119 odd, we would be done. For this, we 
an resort to an expli
it


omputation using the skein algebra. (A naive skein relation (2.13) 
al
ulation from the resulting diagrams

would take too long.)

It is a module of rank 24 over Z[v±1, z±1], but is generated as an algebra by the 4 elements in [DM,

p. 2964, l.12℄. (Thus only multipli
ation with these 4 elements needs to be explained.)

This implementation (in C++) 
ompleted the test in 5 minutes. (The 
omplexity is about quadrati


in n, taking into a

ount the growing skein module 
oe�
ients. Within 1 day, we were able to 
al
ulate

and test the polynomial until n ≈ 530.)

Pay attention that (5.33) will show only

−3 ≤ min degv P̃n ≤ maxdegv P̃n ≤ 3

in (5.32), but equalities easily follow from looking at [P ((T2,n)−n)]z−1
and using (5.5). �

Noti
e that [DM, Theorem 2.7℄ exhibits (by a hand argument) only the term in maximal v-degree
2n − 1 in (5.31). (The sign 
onvention for the framing there is di�erent, see below De�nition 3.1, and

either is the normalization of P .) It is hard to identify the (even �false�) panhandle from its �tip� only.

But in turn, there seem deeper reasons (see below) that a 
omputer obs
ures. We will return to dis
ussing

Diao-Morton's theorem in the proof of Proposition 5.17.

Example 5.10 One should be 
autioned that su
h extended panhandles do not only arise for T2,n. In

forth
oming work of the se
ond author with Mironov-Sati-Singh, we understood this panhandle property

for a general torus knot Tp,n. In parti
ular, we know that Tp,n is l-sharp (see below), whi
h gives a

quantum-algebra proof of Etnyre-Honda's result a(Tp,n) = p + n. We also know that MB(Tp,n) = 2p
(independently of n), when p is odd. However, the 
ase of torus links remains to be studied.
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30 1 0 14

-2 4 9 -33 41 -16

-12 4 1 1 1 1 1 25 -164 221 -80

-2 4 22 -342 468 -148

-2 4 8 -376 496 -128

-2 4 1 -231 286 -56

0 4 -79 91 -12

0 4 -14 15 -1

0 2 -1 1

38 1 0 18

-2 4 16 -56 66 -25

-16 4 1 1 1 1 1 1 1 81 -420 541 -200

-2 4 148 -1316 1778 -610

-2 4 128 -2248 3040 -920

-2 4 56 -2298 3013 -771

-2 4 12 -1457 1821 -376

-2 4 1 -575 680 -106

0 4 -137 153 -16

0 4 -18 19 -1

0 2 -1 1

Table 2: Polynomials of the Whitehead doubles W+(71, 7) and W+(91, 9) of the negatively mirrored 71
and 91. The framing t 
an be read o�, be
ause of (5.55), from the sum of the 
oe�
ients in the se
ond

row.

It should be emphasized that what appears as a panhandle is not what is illustrated in (5.14). It is at

the �wrong� end and will remain part of the pan when t is large.

Had the 
oe�
ients in these �false� panhandles been signed in the opposite way, i.e., to be −1, the

polynomials of A(!71, t) and A(!91, t) would have instantiated the possibility (5.20). (Being signed +1,

these 
oe�
ients will be
ome 2 for large t.)
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5.2.2 Estimates and l-sharpness

Sin
e P (A(K, t)) are inter
onvertible for all t, one 
an determine l(K) from P (A(K, t)) for any t, and
then hope to determine a(K) if a(K) = l(K).

De�nition 5.11 We say that K is l-sharp if a(K) = l(K), and l-unsharp otherwise.

Example 5.12 Among the Rolfsen [Ro, Appendix℄ knots, K = 10132 is the only one whi
h is not l-sharp.
Then l(K) = 8 (as shown in Table 1) but [J+℄ (see Example 3.7) and KnotInfo [LvM℄ report a(K) = 9.

There are four l-unsharp 11 
rossing knots K (up to mirror images), i.e., su
h with

a(K) > l(K) , (5.34)

namely 11379, 11424, 11455, 11459 (for whi
h l(K) = 9 and a(K) = 10), and 21 further examples of 12 
ross-

ings.

In 
ase of 10132 (and a series of other examples), there is a linking number argument that 
an help out

determining the ar
 index. We formulate it as a lemma. (It 
an also be easily modi�ed to other knots,

but for simpli
ity we just present the prototype and leave it to the reader to adapt it.)

Lemma 5.13 We have a(10132) = 9.

Proof. Assume a(10132) ≤ 8. From the polynomial of the annulus link A(10132, 0) in Table 1, and (5.4),

we 
an see that MFW(A(10132, t)) ≤ 8 o

urs for t = −8, . . . , 0, and then MFW(A(10132, t)) = 8. Be
ause
of the bottom statement of Corollary 4.3, it is enough to prove that b(A(10132, 0)) 6= 8. We 
laim that

the polynomial of A(10132, 0) in Table 1 is su�
ient to see that b(A(10132, 0)) > 8, as follows.

Assume b(A(10132, 0)) = 8, and β is an 8-braid whose 
losure is A(10132, 0). Now, the exponent sum
w(β) is made up of the exponent sums w(βi) of the two subbraids βi of β, whi
h give the individual


omponents β̂1 = C1 and β̂2 = C2 of A(10132, 0), and the linking number lk(C1, C2) = t = 0 of these


omponents. Sin
e both C1 and C2 have the knot type of 10132, and b(10132) = 4, both 
omponents C1

and C2 of A(10132, 0) must be 
losures of 4-string subbraids βi of β. Then their individual exponent sums

must be w(βi) = wmin(10132), whi
h is determined to be 3 (see the tables [St4℄ and the remarks below

(2.19)). Thus

w(β) = w(β1) + w(β2) + lk(C1, C2) = 3 + 3 + 0 = 6 .

But the polynomial P = P (A(10132, 0)) in Table 1 exhibits

min degv P = 1 ≤ 15 = maxdegv P ,

and looking at the re�ned inequality (2.17), we see that a braid β with n = 8 strands must have writhe

w = w(β) = 8. This is a 
ontradi
tion. �

For all of the 26 l-unsharp knots of Example 5.12 we haveMB(K) = l(K) in (5.11). ButMB(K) < l(K)
obviously o

urs for some �F -sparse� knots like K = 942. (However, 
ompare also with Example 5.32.)

Likewise, l′(K) < MB(K) o

urs in Table 2 (due to (5.37)), thus the z-term retains its 
redentials. See

further Example 5.10.

Question 5.14 Is

MB(K) ≤ l(K) (5.35)

for all non-trivial knots K?
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Example 5.15 In general the approximation

l(K) ≤ a(K) (5.36)

is rather good. There are 2049 ar
 index 11 prime knots up to 16 
rossings. The inequality (5.11) is sharp

for 1666 of them, while 1977 (in
luding all those 1666) are l-sharp.

Remark 5.16 Usually, F (K) is easier to obtain than P (A(K, t)). However, for small values of k, the
trun
ation P |z≤k(A(K, t)) may 
ome out faster than F (K). When F (K) is too slow, this raises the issue

of 
omputing z-trun
ations thereof (sin
e there are trun
ated versions of (5.11) as well). While the te
h-

nology is implemented [St3℄ and ready to use, we 
hoose not to delve into this here at all. As long as K is

not ex
essively 
ompli
ated, F (K) is 
omparatively e�
ient to obtain, and thus, in pra
ti
al terms, there

seems little wrong to always try (5.11) �rst as a lower bound for a(K). For suggestive reasons, (5.11) will
a

ompany us 
onstantly (see e.g. end of �5.3), but we like to fo
us on the HOMFLY-PT polynomial, and

thus will not make the 
omparison to (5.11) everywhere.

For an alternating knot K, Yokota [Yo2℄ proved that

span aF (K) = c(K) , (5.37)

and we know by [BP℄ (as 
an be seen from the proof of Corollary 4.5 in �4) that (5.11) is an equality, i.e.,

a(K) = c(K) + 2 (5.38)

for ea
h su
h knot K. Thus in parti
ular a positive answer to Question 5.14 must imply that K is l-sharp.
After some preliminary supportive 
omputations, we found that this is indeed true, and it provides a


onsiderable motivation for studying the phenomenon outside of its intrinsi
 de�nition.

Proposition 5.17 Every alternating knot K is l-sharp.

Proof. This is essentially proved by Diao and Morton [DM℄, so the present proof is an explanation how

to extra
t, adapt and simplify what of their work is needed here. We stipulate within this proof that

numeration of theorems refers to [DM℄, while propositions, tables and equations to the present paper. In

the 
ase of notation, the default will be ours here, unless we spe
ify otherwise.

Two main ingredients are needed. The �rst is Rudolph's 
ongruen
e [Ru5℄ (Theorem 2.2), whi
h

relates P (Kt) modulo 2 to F (K). For the purpose of applying (2.18), write MFWmod 2(L) for the bound
obtained from MFW(L) when the polynomial P (L) has its 
oe�
ients redu
ed modulo 2, so that

MFWmod 2(L) ≤ MFW(L) ≤ b(L) .

(This notation is not to be 
onfused with (2.20).)

Thistlethwaite has extended his proof of (5.37) in [Th℄, and the se
ond ingredient is a re�nement of

Thistlethwaite's work, in the 
ase of alternating links, due to Cromwell [Cr3℄ (Theorem 2.3). It exhibits

(5.37) through expli
it odd 
oe�
ients

[F (K)]zk1al1 = [F (K)]zk2al2 = 1 with l2 − l1 = c(K). (5.39)

(Alternatively, see [Th, Corollary 1.1(iv)℄.)

When D is a redu
ed alternating diagram of K, and D is not a (2, n)-torus link diagram (we may

assume n odd), then k1, k2 > 1. Via Theorem 2.2, this immediately implies that MFW(Kt) ≥ c(K) + 2
for all t, and be
ause of (5.25) and (5.38), this shows our 
laim.

However, if D is a (2, n)-torus link diagram, then one of k1, k2 in (5.39) is 1, and there is exa
tly one

framing t for whi
h MFWmod 2(Kt) < c(K)+2. Note that we have en
ountered this 
ase in fa
t: these are
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the �false� panhandles of Table 2 and Proposition 5.9. Diao and Morton then engage in a tri
ky 
al
ulation

(Theorem 2.7) to show that the �tip� of these panhandles is a `1' signed the wrong (i.e., un
an
ellable)

way, so that still MFW(Kt) = c(K) + 2.

But one of the ni
e features of our approa
h is that this 
omplexity (or its 
omputerized alternative

from Proposition 5.9) is not needed here, when instead of (5.25) we use (5.27). With (5.39), one 
an

obviously 
hoose a framing (with the notation of [DM℄) f so that the right hand-side of the 
ongruen
e

in Theorem 2.2, 
all it

Rf (v, z) = v2f
(
−1 +

v−1 + v

z

)
F (K)(v2, z2)

(keep in mind our opposite 
onvention of both framing f and a-powers in F ), has

min degv(Rf ) mod 2(v, z) < 0 < maxdegv(Rf ) mod 2(v, z) . (5.40)

The 
ongruen
e then implies (with our notation, but f retaining its role) that

min degv P (Kf ) < 0 < maxdegv P (Kf ) , (5.41)

whi
h with (5.37), (5.39) and (5.27) shows l(K) ≥ c(K) + 2, as needed. �

Remark 5.18 To establish the minimality of the band presentations where (2.18) fails modulo 2, Theorem

2.7 of [DM℄ 
an be repla
ed not only by a 
omputer 
al
ulation (Proposition 5.9), but also by a simpler

(manual) argument using Bennequin's inequality (see the proof of Proposition 6.9). Thus, if one is still

allowed to invoke [Cr3, Ru5℄, this gives a se
ond alternative path towards the main result in [DM℄, this

time without proving that (2.18) is exa
t on all Kt. The work in [DM, �3℄ is of 
ourse understood here as

well, e.g., Corollary 4.1. We formulate in Proposition 6.14 the extended version of Diao-Morton's result

we obtain.

The argument based on Rudolph's 
ongruen
e implies that the answer to Question 5.14 is a�rmative

if in the de�nition MB(K) in (5.11), 
oe�
ients of F are redu
ed modulo 2. Noti
e that, histori
ally, this
weaker form of the inequality (5.11) had been previously dis
overed by Nutt.

The proof of Proposition 5.17 also yields a more generalized version, whi
h is a very pra
ti
al way to

test Question 5.14.

Corollary 5.19 Assume F (K) has odd 
oe�
ients [F (K)]alizmi , i = 1, 2, so that l1 = min dega F and

l2 = maxdega F . Then (5.35) holds for K.

Proof. The assumption means that

span aF mod 2(K) = span aF (K) . (5.42)

If span aF (K) ≥ 1, then
span v(Rf ) mod 2(v, z) = 2 + 2 span aF ≥ 4 , (5.43)

and so we 
an �nd an f with (5.40), and the rest of the argument is the same as for Proposition 5.17,

with `c(K) + 2' repla
ed by `MB(K)'.

Now assume

span aF (K) = 0 . (5.44)

We only use that MB(K) = 2, and remark that sin
e [P (K)]z0 6= 0, from (5.5) we have span vP (A(K, t)) ≥
2, as needed. �

Remark 5.20 When (5.44), it 
an be argued that F (K) = 1. The �rst two properties enumerated at the

end of �2.4 imply that F (K) = zk for some (integer) k. The third one (2.27), together with the known

property V ′(−1) = 0 for any knot K, shows that k = 0. But this is not needed for the proof.
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Computation 5.21 The inequality (5.35) holds for all prime knots K up to 16 
rossings. Among knots

up to 10 
rossings, only 946, 10142, and 10160 fail the premise of Corollary 5.19. This suggests that it �lters

potential 
ounterexamples rather well. Testing (only) non-alternating knots up to 15 
rossings, we �nd

that the assumption fails on 7,328 out of 201,702. They 
an then be dealt with through approximating

l(K) by su

essive trun
ations of P (Kt). (The work took 2h on an old 2013 laptop.) For 16 
rossings, see

Computation 5.44.

Another appli
ation of Corollary 5.19 is when K is a torus knot: the inequality (5.35) holds for all

su
h knots (not always as an equality). But torus knots require a longer separate treatment. Example

5.10 is a very partial indi
ation.

We further know that for prime knots K up to 18 
rossings, l(K) ≥ 4. This uses Rudolph's 
ongruen
e
and was a ben
hmark test for the (z-)trun
ated F method of [St3℄. (It required 4h. To save spa
e, we

do not delve into this veri�
ation further. We also as
ertained that MB(K) ≥ 5 in that range, but with

Example 5.10, less improvement 
an be expe
ted there.)

In general, l(K) is not easy to 
al
ulate on in�nite families of knots. Noti
e that, unlike (2.28) and

a 
orresponding property of the right hand-side of (5.11), it is not even evidently (2 sub-)additive under


onne
ted sum.

Question 5.22 Is l(K1#K2) = l(K1) + l(K2)− 2?

This turns out to be the 
ase in a few examples, like 10132#(!)31 and 10132#(!)10132, but as long as it
is not 
on�rmed, the possibility exists to extra
t further information from l as a lower ar
 index bound,

using the relationship (2.28). Still, the answer is a�rmative if polynomial 
oe�
ients are taken modulo

2.

In view of this presumable behavior of l(K), perhaps a reasonable expe
tation regarding (5.36) as an

ar
 index bound is like this: is there a positive 
onstant C with C · l(K) ≥ a(K) for all K? Su
h 
onstant

does not exist for MB(K). Example 5.10 shows, in a way, that the worst-
ase performan
e of (5.11) is as

bad as possible.

5.3 Appli
ations of Cabling

Conje
ture 2.3 unders
ores the importan
e of 
abling in settling braid, and thus also ar
 index issues.

This is a perhaps less pleasant, but still more universal means than Lemma 5.13, to treat some l-unsharp
knots K.

Computation 5.23 For K = 10132 the links L we 
onsider with MFW(L) = 8 < a(10132) = 9 are

� L = A(K, t) = Kt for t = 0, . . . ,−8,

� L = W+(K, t) for t = 0, . . . ,−7, and

� L = W−(K, t) for t = −1, . . . ,−8.

(Of 
ourse, for the rest values of t we 
an 
on
lude MFW(L) ≥ 9 using the relation (5.12), or a similar

relation for Whitehead double polynomials.)

All the links listed above have b(L) = 9. We easily observe b(L) ≤ 9. One 
an obtain a 9-string band

presentation from that for A(10132, 1) with positive bands, given in (3.12), by making some bands negative

and doubling a positive band for W+ and a negative one for W−. (Table 1 gives some examples.) At

the opposite end, we tested b(L) ≥ 9 with parallelized trun
ated 2-
able (MFW) P , as dis
ussed in �2.4.

The pro
edure took on a 4-CPU 10-year-old 2013 laptop between 2 and 15 h depending on individual

examples: an agreeable performan
e, when taking into a

ount that the diagrams resulting from 2-
abling
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the modi�
ations of (3.12) have more than 200 
rossings. (They depi
t ↑↑↓↓ oriented degree-4 satellites

of 10132.)

This 
omparative e�
ien
y o�ers the opportunity for more extensive 
he
ks (for other K). However,

this option was waived on, sin
e it still is not readily amenable to larger quantities, and it leaves un
lear

what insight to expe
t. (We will use the above 
ompiled examples for later referen
e, though.)

Remark 5.24 Using Computation 5.23 for K = 10132, and the veri�
ation of (5.30) and l(K) = a(K)
(see Example 5.12) for all other prime knots K up to 10 
rossings, we 
an 
on
lude that the answer to

(both parts of) Question 4.6 is a�rmative for all these 249 knots.

When (5.34) o

urs, i.e., K is not l-sharp, the following simpli�
ation of 
abling may potentially be

useful. Sin
e κ(A(K, t)) = 2, one 
an 
able an individual 
omponent of A(K, t), obtaining a ↑↑↓ oriented

parallel A∗(K, t, t′) of K, where t′ is the framing of the doubled 
omponent. (Here thus t′ 
an be a

half-integer when the two 
opies of the doubled 
omponent get 
onne
ted, i.e., κ(A∗(K, t, t′)) = 2 when

2t′ ∈ Z but t′ 6∈ Z.) Cabling an individual 
omponent only roughly doubles (and does not quadruple) the


rossings in the braid word βD for A(K, t) = β̂D.

Lemma 5.25 For every t with b(A(K, t)) = a(K) and every 2t′ ∈ Z, we have

b(A∗(K, t, t′)) ≤ 3

2
a(K) . (5.45)

Proof. When b(A(K, t)) = a(K), then one of the 
omponents of A(K, t) in an a(K)-braid representative

β is a subbraid on at most a(K)/2 strands. Thus doubling this 
omponent C, regardless of what framing

t′ is used, 
an be done by adding at most a(K)/2 braid strands. (The framing 
an be 
orre
ted by adding

half-twists whi
h do not add more strands.) This gives a braid representative of A∗(K, t, t′) of at most

3a(K)/2 strands, resulting in (5.45).

Note that A(K, t) is ex
hangeable up to simultaneous reversal of orientation of both 
omponents, whi
h

does not a�e
t braid index arguments. Thus whether C is the 
omponent we 2-
able to obtain A∗(K, t, t′)
from A(K, t), or we 
able the other 
omponent, is not relevant. (Note, though, that the framing t′ of the


abled 
omponent may be di�erent with respe
t to the bla
kboard framing of the diagram β̂.) �

Algorithm 5.26 The following explains how one 
an try to use this lemma. Sin
e the 
ontrapositive of

its statement is really used, some 
are is needed how to pro
eed, and we formulate it in several steps as

an algorithm.

1. Use a band presentation βD (as in (3.1)) for a grid diagram D of K of size µ. This gives a band

presentation of A(K, t) for some t.

2. Make some bands negative to as
ertain that P (A(K, t)) has no panhandle. For example, when

K = 10132 and µ = 9, then we know that there are nine values of t ∈ Z for whi
h MFW(A(K, t)) =
l(K) = 8, namely t = −8, . . . , 0. The statement below (4.4) says that it is enough to treat one of

these t. Thus we 
an 
onsider t = 0 (whi
h requires one negative band), and use the polynomial in

Table 1. In general, one 
an remove the panhandle (i.e., adjust t by making bands negative) only

by looking at P (A(K, t))|z≤1 .

3. Then double, with bla
kboard framing with respe
t to the diagram β̂D, one of the 
omponents of

the link β̂D = A(K, t). One obtains a link A∗(K, t, t′). There are in general two possibly (but

not always) distin
t integers t′, depending on whi
h 
omponent of β̂D one 
hooses to double. (It


an be argued that these two t′ will add up modulo 2 to the same parity as the �band width� sum

µ∑
k=1

(jk− ik−1) in (2.5); whi
h in turn has the same parity as µ; thus two distin
t t′ will in parti
ular

always o

ur when µ is odd.)
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4. Try to prove that su
h a link A∗(K, t, t′) has braid index stri
tly greater than ⌊3(µ− 1)/2⌋. This

will prove a(K) = µ.

Example 5.27 For instan
e, when we do this 
onstru
tion for K = 10132 with (3.12) (one band needs

to be made negative here), this gives A∗(10132, 0, t
′) for t′ = 3, 4. We found (see (2.20)), though, that

MFW10(A
∗(10132, 0, t

′)) = 12

for both t′. Thus unfortunately, for K = 10132, the observation (5.45) does not seem useful to show

a(10132) = 9, at least as far as (2.20) is applied (within reasonable 
omputability).

However, there is a number of su

essful 
ases. For example, when we 
arry out this pro
ess for

K = 1427072, with the size-12 grid

13 24 58 7C 3B 1A 6C 59 8B 7A 49 26

(where A,B,C stand for 10,11,12; see De�nition 3.4), we �nd l(1427072) = 11, but making 3 bands negative,

we obtain

MFW2(A
∗(1427072, 2, 1)) = 17

(here t′ = 1 is the same for both 
hoi
es of doubled 
omponent), whi
h rules out a(1427072) = 11.

Other examples, again with µ = 12 (and a single t′), are

16 466746: 13 46 25 7A 8B 9C 3A 4B 16 7C 28 59

15 123702: 13 24 57 9C 6A 38 17 5B 49 8C 2A 6B

and

14 19935: 13 25 48 7B 3A 16 59 8B 7A 49 26

16 459158: 14 25 38 6A 7B 49 18 5A 29 6B 37

for µ = 11 (using 5 negative bands, with two di�erent t′, both having MFW2(A
∗(K, t, t′)) = 16).

These examples do require some sear
h, but keep in mind that even for trun
ated polynomials, the

in
rease in 
rossing number has severe (
omplexity) 
onsequen
es. (Here we tried only trun
ation degree

d = 2, whi
h does not 
ost mu
h time and allows for testing a larger number of examples.) Thus Lemma

5.25 provides a viable option to try out.

Remark 5.28 We add the following pra
ti
al hints about the determination of the ar
 index.

1) For more 
ompli
ated knots K, it is better to approximate l(K) from below by using z-trun
ations
of the HOMFLY-PT polynomial, as explained in �2.4. This was used to assist the �rst and third

authors' ongoing e�ort to tabulate the ar
 indi
es of the (non-alternating prime) 14 
rossing knots.

But it also emphasizes that it is useful to have a good upper estimate of a(K) in advan
e. On
e


oin
iden
e with the lower bound is rea
hed, one 
an then save 
al
ulation of further trun
ations

(and the full polynomial).

We 
larify that how an upper estimate of a(K) was obtained relates to the (knot-spoke) method of

[JP℄, �nding 
ertain proper non-alternating ar
s in diagrams of K. It is not ne
essary (and takes

extra e�ort) to obtain a minimal grid diagram expli
itly.

2) As noti
ed while proving Lemma 5.13, the statement below (4.4) provides another signi�
ant short-


ut to help determining a(K) when l(K) fails. For instan
e, to see (in an alternative way to Lemma

5.13) that a(10132) 6= 8, it su�
es to 
al
ulate a (trun
ated) 2-
able polynomial of A(10132, t) for
only (any) one of the nine values of t that o

ur in the enumeration of Computation 5.23.
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3) Observe that the linking number argument of Lemma 5.13 
an be adapted to A∗(K, t, t′) as well. One
has to 
onsider instead of lk(C1, C2) = t the total linking number of the 
omponents of A∗(K, t, t′),
whi
h is 2t+ t′ for t′ ∈ Z (and κ(A∗(K, t, t′)) = 3) and 2t otherwise (when κ(A∗(K, t, t′)) = 2). We

will give relevant examples at a separate pla
e, where we dis
uss the ar
 indi
es of the 14 
rossing

knots.

4) Noti
e also Question 5.22 and the remarks below it.

To give a lookout at where we stand thus far, regarding the said at the beginning of �5.2, we have now

gained a toolkit to rule out 
ertain values of the ar
 index. We related it to a braid index (see Conje
ture

6.1 below, although Part 2 of Remark 5.28 explains that we need a weaker statement), and then in turn

to the HOMFLY-PT polynomial (
ompare Conje
ture 2.3). These 
onne
tions work out at least in a

pra
ti
al sense, whi
h gives an approa
h to determine a(K) for most K.

We �nish the subse
tion on 
abling with some remarks on the relation to ar
 indi
es of 
ables of K,

and a prospe
tive (new) use of the Kau�man polynomial.

Proposition 5.29

a(Kt0) = 2a(K) when w(D) = −t0 is a writhe of a minimal grid diagram D of K. (5.46)

Moreover, ea
h su
h w(D) satis�es

maxdega F (K) + 1 + br(K)− a(K) ≤ w(D) ≤ min dega F (K)− 1− br(K) + a(K) . (5.47)

Also

min { a(Kt) : w(D) = −t satis�es (5.47) } = min { a(Kt) : t ∈ Z } = 2a(K) . (5.48)

Proof. For `≥' in the �rst statement, noti
e that the ar
 index of a link is not less than the sum of ar


indi
es of its 
omponents. To see equality, take a minimal size a(K) grid diagram D of K and build the

(dis
onne
ted) bla
kboard-framed 2-parallel of D with reverse orientation of both 
omponents. This gives

a grid diagram of size 2a(K) of Kt0 for t0 = −w(D). With the same reasoning, we have (5.48).

An issue with using (5.46) as an ar
 index obstru
tion is that one does not really know a priori well

what t0 would have to be. One way to restri
t t0 is from [JLS, �3℄. A generally better alternative arises

using a known value or estimates of λ(K). The form (5.47) we o�er uses Corollary 3.8 with µ(D) = a(K).
Note further that Z(D) ≥ br(K), sin
e rotating D by −π/4 would turn NW-
orners into lo
al maxima

(and SE into lo
al minima) of a Morse presentation of K. This obviously holds for NE (or SW) 
orners

as well (when rotating by π/4), and shows

br(K) ≤ Z(D) ≤ a(K)− br(K) . (5.49)

Then we have from (3.5), and (3.15), when K 6= ©, that

w(D) − Z(D) = −λ(D) ≤ −λ(K) ≤ min dega F (K)− 1 ,

whi
h yields

w(D) ≤ min dega F (K)− 1 + Z(D) . (5.50)

Applying the argument on the mirror image !D gives

w(D) ≥ maxdega F (K) + 1− Z(!D) = max dega F (K) + 1− a(K) + Z(D) . (5.51)

Use now (5.49) in (5.50) and (5.51), whi
h shows (5.47). (When K = ©, the 
laim is trivially 
he
ked.)

�

Further noti
e that altering individual 
omponent orientation of a link does not 
hange the ar
 index,

and thus, for an unrestri
ted t ∈ Z, we may regard hereKt as a dis
onne
ted 2-
able ofK. This would also
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lend a meaning to Kt for a half-integer t ∈ 1
2Z \ Z, as a 
onne
ted 2-
able. This situation was 
onsidered

by the �rst author and Takioka [LT℄, where they write q = 2t. Still, one must be 
areful with the sign

swit
h of t that o

urs. To avoid 
onfusion, let us write K̂t for the 2-
able of K with framing t ∈ 1
2Z, so

that when t ∈ Z, then K̂t arises by reversing one 
omponent in K−t.

From here we see that we 
an also �2-
able� (5.11).

Corollary 5.30

2 + min { span a F (Kt) : t ∈ Z } ≤ 2a(K) . (5.52)

Proof. For span a F as well, it is immaterial how individual link 
omponents are oriented, and thus

span a F (Kt) = span a F (K̂−t). This is the reason why when minimizing over t ∈ Z, one 
an repla
e Kt

by K̂t. �

It is not ne
essary to expli
itly 
al
ulate F (K̂t) for more than two values t ∈ 1
2Z, sin
e there are

re
urren
e relations (analogous to (5.12)), whi
h determine all other F (K̂t) therefrom. Thus in pra
ti
e,

a 
onstraint like (5.47) is not very helpful, and it seems a bit easier to use t ∈ Z in (5.48).

Example 5.31 The �rst author and Takioka have employed this idea to determine span a F (K̂t) for prime

knots K of up to 8 
rossings (and any t ∈ 1
2Z), and show that (5.11) 
an be used to �nd (inter alia) a(K̂t)

(and thus also a(Kt) when t ∈ Z) in all these 
ases. They did not 
onsider a(K), but their 
al
ulations
[LT, Appendix A℄ establish that the pra
ti
al variant of (5.52),

a(K) ≥ 1 +

⌈
1

2
min { span a F (Kt) : t ∈ Z }

⌉
, (5.53)

is sharp in their range. This was of 
ourse of little interest there, sin
e a(K) had long been determined

previously. But it does motivate now a 
loser look at (5.53).

Example 5.32 Sin
e (5.11) is not sharp for K = 819, there is some improvement from (5.53) over (5.11).

In 
omparison to Theorem 5.7, the obvious instan
e to try out is again K = 10132. It 
an be 
he
ked

with some te
hni
alities (of the same style as those handled by Lee and Takioka) that (5.53) is sharp for

K = 10132. (Still (5.52) is o� by 1. Thus (5.11) does not yield enough information to determine a(K̂t) for
K = 10132, at least when t ∈ 1

2Z\Z and the sublink argument at the beginning of the proof of Proposition

5.29 fails.)

This suggests the possibility that (5.53) is in fa
t quite powerful as an ar
 index bound. In how far

(5.53) is useful in general remains to be seen. Certainly, when K has more 
rossings, the 
al
ulation of

F (K̂t) is very strenuous. But the trun
ation te
hnique (Remark 5.16) 
ould again 
ome into e�e
t.

Trun
ations 
ould also be
ome even more useful for higher 
ables. For instan
e, we 
an modify (5.53)

to

a(K) ≥
⌈
1

3

(
2 + min { span a F (A∗(K,−w(D), w(D))) : w(D) satis�es (5.47) }

)⌉
, (5.54)

and here (5.47) be
omes rather relevant again, sin
e the re
ursions between F (A∗(K, t,−t)) (exist but)
are mu
h more 
umbersome. Pay attention that (5.47) also involves a(K), but this poses no problem in

using (5.54) as an obstru
tion, in trying to falsify it when a parti
ular value of a(K) is �xed.

This approa
h does merit further study, but it de�nitely has to �nd its pla
e in a separate paper,

where we try it out on some 14 
rossing knots.

5.4 Estimating λ(K): a 
ooking re
ipe

Note the spe
ial form of the Conway polynomial (2.23) in our examples,

∇(Kt) = P (Kt)(1, z) = tz , (5.55)
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Returning to (5.14), we use the substitution (5.55) to extra
t further information from the pan.

Let a1, . . . , al, for l = l(K), be the z-degree 1 
oe�
ients in W in (5.14):

[W ]z1 =
l∑

i=1

aiv
dmin+2i−2 . (5.56)

Obviously ai form the edge of the pan (drawn below without its handle) � whose general use is to break

your eggs when frying them.

a1 a2 · · · al

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

(5.57)

Note, though, that the possibility a1 = 0 (or al = 0) does exist (although we did not investigate whether

or how often it materializes). Furthermore, a0 = 1 
an o

ur also for dmin > 0 if [P ]vdmin has terms in

z-degree 6= 1. Here is the way we put the pan edge to our own use.

Proposition 5.33

l∑

i=1

ai ≤ λ(K) ≤
l∑

i=1

ai + (a(K)− l(K)) . (5.58)

Proof. Now remember that min degv P (Kt) > 0 (property (5.3)) for Kt strongly quasipositive (i.e.,

t ≥ λ(K)), as well as that there is a t ≥ λ(K), namely t = λmin, so that maxdegv P (Kt) ≤ 2a(K) − 1
(property (5.1)). Thus, for the polynomial P (Kλ(K)) we have a(K)− l(K) + 1 possibilities

✲

❄

1 2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai

✲

❄

3

1

2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + 1

· · ·

✲

❄

2a(K)− 1

1 1 · · · 1︸ ︷︷ ︸
a(K)−l

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + a(K)− l

(5.59)

distinguished by the panhandle length 0, . . . , a(K)− l(K).

The pan edge 
oe�
ients ai are not 
hanged for di�erent panhandle length, and by looking at (5.55),

we see (5.58). �

Thus, rather pre
ise, information about the Thurston-Bennequin invariant manifests itself in the 
o-

e�
ients of the polynomial, not in its degrees

1

. It provides an additional bonus of 
omputing P (Kt) (for
some t), beyond determining l(K). Namely, if l(K) = a(K), then one obtains λ(K) pra
ti
ally for free.

This �frying eggs in the pan� pro
edure 
an be useful, for instan
e, in 
omparison to Theorem 4.10, when

a(K) is found without 
onstru
ting a minimal grid diagram expli
itly (see Part 1 of Remark 5.28), or as

additional information in obstru
ting to the existen
e of 
ertain grid diagrams of a given knot. Remark

5.41 gives a hint how to pro
eed when l(K) < a(K).

To illustrate the use of (5.58), 
onsider the following examples.

1

Of 
ourse, if one is allowed to use [P (K)]z0 , then t 
an be retrieved from [P (Kt)]z−1 using (5.13) as well.
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Example 5.34 The polynomial

2

✲

❄

1 1 1 1

❵❵❵❵❵❵❵

1 2 3

7 5 6

6=1

has panhandle length 4 and pan-width l(K) = 3. If a(K) = 5, then (5.58) has on the right (5− 3) + (1 +
2 + 3) = 8, so (5.58) reads 6 ≤ λ(K) ≤ 8.

Example 5.35

✲

❄

1 1 2

❳❳❳❳❳❳❳❳❳❳❳❳

1 1 2 3

7 5 6

W

6=1

has panhandle length 2 and pan-width l(K) = 5. If a(K) = 6, then (5.58) has on the right (6− 5) + (2 +
1 + 1 + 2 + 3) = 10, so (5.58) reads 9 ≤ λ(K) ≤ 10.

We have then the following �Matsuda-Dynnikov-Prasolov� (see Remark 5.38) type of relationship.

Proposition 5.36 With the notation of �2.2 for mirror image,

l(K) ≤ λ(K) + λ(!K) ≤ 2a(K)− l(K) . (5.60)

Proof. We prove the right inequality. The argument 
an easily be modi�ed to show the left one. We also

assume, after inspe
tion, that K is non-trivial. We have (!K)−t =!(Kt) . Note that (2.15) (with κ = 2 as

for Kt = A(K, t)) gives
P (!Kt)(v, z) = −P (Kt)(v

−1, z) . (5.61)

Now by mirroring property (5.1) using (5.61), we see that there is a t = λmin(K) ≥ λ(K) with

maxdegv P ((!K)−t) ≤ −1 , min degv P ((!K)−t) ≥ 1− 2a(K) .

By how l(K) was de�ned, and again using the mirroring (5.61), there is an odd

0 > d ≥ −1− 2a(K) + 2l(K) (5.62)

2

We emphasize that the polynomials in this and the next example are not HOMFLY-PT polynomials of real knotted

annuli, i.e., the reader should not try to guess what K they were obtained from; we just hand-invented the polynomials for

illustrative purposes.
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so that

[P ((!K)−t)]vd 6= −z (5.63)

holds. (The 
ondition (5.15) mirrors through (5.61) to (5.17).)

✲

❄

1− 2a(K) d
P ((!K)−t)

powers of v

pan

edge

a1 · · · al

powers of z

a1 a2 · · · al −1 − 1 · · · − 1︸ ︷︷ ︸
a(K)− l(K)

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

−1

0

0

.

.

.

0

6=

(5.64)

The repeated appli
ation of (5.12) then shows

min degv P ((!K)a(K)−t) ≥ 1

and by (5.62)

maxdegv P ((!K)a(K)−t) ≥ 2l(K)− 1 . (5.65)

✲

❄

2l− 1

2a(K)− 1

P ((!K)a(K)−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

To see this last inequality (5.65), note that the terms annihilated by (5.12) when t in
reases are exa
tly
those for d < 0 where (5.63) does not hold. Sin
e a(K) = a(!K), the inequality (5.65) means that the

largest t′ with maxdegv P ((!K)t′) ≤ 2a(!K)− 1 satis�es

t′ ≤ 2a(K)− l(K)− t .
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✲

❄

2a(K)− 1
P ((!K)2a(K)−l(K)−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l1 1 · · · 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

Now we 
an apply Lemma 5.1 on !K. We have

λ(!K) ≤ t′ ≤ 2a(K)− l(K)− t = 2a(K)− l(K)− λmin(K) ≤ 2a(K)− l(K)− λ(K) ,

as we 
laimed. �

Example 5.37 We show a (�
titious) exemplary transformation of the [P (Kt)]z1
terms with in
reasing

t, with the symboli
s used in (5.26).

5 4 1 − 1 − 1
∣∣∣ → 5 4 1 − 1

∣∣∣ → 5 4 1
∣∣∣ → (5.66)

→ 5 4
∣∣∣ 2 → 5

∣∣∣ 5 2 →
∣∣∣ 6 5 2 →

∣∣∣ 1 6 5 2 →
∣∣∣ 1 1 6 5 2

It 
onsists of 7 steps: a(K) = 5, l(K) = 3, thus 2a(K)− l(K) = 7.

Remark 5.38 Matsuda [Ma℄ (see also [Ng℄) proved

a(K) ≥ λ(K) + λ(!K), (5.67)

whi
h improves the right inequality in (5.60). But in fa
t, Theorem 4.10 with Corollary 3.8 shows that

equality holds, answering [Ng, Question 1℄:

a(K) = λ(K) + λ(!K) . (5.68)

Then Proposition 5.36 
an be interpreted by saying how mu
h the HOMFLY-PT polynomial �sees� from

that geometri
 reasoning. But we approa
h (5.60) from the viewpoint of strong quasipositivity, whi
h


an later be adapted to quasipositivity. To make 
lear that even with Theorem 4.10, our argument is not

redundant, we quote the statement here, albeit its treatise has to be moved out to [St℄.

Proposition 5.39 ([St℄) With

λq(K) := min{ t : A(K, t) is quasipositive } , (5.69)

we have {
l(K) ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) if K is not sli
e

l(K)− 1 ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) + 1 if K is sli
e

(5.70)

Remark 5.40 When K is an amphi
heiral knot, K =!K, then A(K, 0) is an (orientedly) amphi
heiral

link. One 
an use this and (2.15) to 
on
lude that in that 
ase both l′(K) (see Lemma 5.6) and l(K) are
even (see also (5.75)). This is 
ompatible with the fa
t that a(K) is even through (5.68). Furthermore, the

ai in (5.56) exhibit a shifted antisymmetry: in the normalization dmin > 0, they satisfy ai+al(K)+1−i = 1.
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For 
omputational purposes, we repeat here the formal self-
ontained (but not very pleasant) expression

for l(K) and the estimate (5.58) that is valid for arbitrary t. Take P = P (Kt) for some t ∈ Z. The

quantities dmin and dmax 
an be determined as follows. Set

m̃in degvP =

{
min degv P min degv P < 0

min{ d > 0 : [P ]vd 6= z } min degv P > 0

and

m̃ax degvP =

{
maxdegv P maxdegv P > 0

max{ d < 0 : [P ]vd 6= −z } maxdegv P < 0
.

Then

l(K) =
1

2

(
m̃ax degvP − m̃in degvP

)
+ 1 , (5.71)

and setting

θ(K) = [P ]z1(v = 1) +

{
⌈−1/2min degv P ⌉ min degv P < 0

−
⌊
1/2m̃in degvP

⌋
min degv P > 0

}
, (5.72)

(5.58) 
an be stated as

θ(K) ≤ λ(K) ≤ θ(K) + a(K)− l(K) . (5.73)

Remark 5.41 Again, if (5.34) o

urs, then one 
an adapt the arguments in Remark 5.28 to disambiguate

the value for λ(K). This gives a pra
ti
al way to 
al
ulate this number for any given K.

The formula (5.72) 
an be also applied to

P = Pd(Kt) = P (Kt)|z≤d

for any d ≥ 1 (odd). This will give lower bounds for θ(K) that 
an in 
ertain 
ases, in 
ombination with

(3.15) and (5.68), be used to determine a(K) and λ(K) when (5.11) is stri
t without 
al
ulating the entire

P (Kt).

Example 5.42 The knot K = 11404 has ar
 index 10. But MB(K) = 9. However, we know from (3.15)

additionally that λ(K) ≥ 7, λ(!K) ≥ 2. But when we use the left inequality in (5.73) for P = P1(K1),
we get λ(K) ≥ 6, and by taking the mirror image via (5.61), we obtain from (5.73) also λ(!K) ≥ 3. For
referen
e, the trun
ation P1((!K)−1) is given below (with the way of reading it as explained in �2.4).

44 404 -1 1

-3 7 9 -33 52 -44 20 -4

-7 9 4 -4 22 -133 278 -282 124 6 -16

In this example [P1]z1(v = 1) = −1, and the bra
ed term in (5.72) evaluates to 4, thus giving θ(!K) ≥ 3.
Then we have

λ(K) ≥ 7, λ(!K) ≥ 3 , (5.74)

and with a size-10 grid of K, we have from (5.68) that a(K) = 10, and that (5.74) are also equalities.

Of 
ourse these 
on
lusions would follow from 
omputing l(K) = 10 as well, but the point is that

P1(Kt) was about 17 times faster to obtain than the entire P (Kt). (The di�eren
e is here between 0.03

and 0.5s CPU time, but more 
rossings will stret
h the delays far less pleasantly.) A similar example is

11453.

It may be very hard, though, to �nd l-unsharp examples where this method is e�e
tive. I.e., it should

de
ide a(K) when both MB(K) and l(K) fail separately. This is related to the di�
ulty of Question 5.14,

sin
e one 
an see that

θ(K) + θ(!K) = l(K) . (5.75)
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This is our own �estimate� version of (5.68), given that the right hand-side of (3.15) satis�es a similar

property for MB(K) instead of l(K). Thus Question 5.14 
an be extended here: is

θ(K) ≥ 1−min dega F (K) ? (5.76)

The following is the re�nement of Corollary 5.19.

Proposition 5.43 Assume the premise of Corollary 5.19 is satis�ed for i = 1. Then (5.76) holds for K.

Proof. Assume �rst (5.42) holds. If span aF (K) ≥ 1, then �nd an f with (5.40).

Write θ mod 2(K) for (5.72) when for P = P (Kf), the degrees min degv P and maxdegv P are repla
ed

by min degv P mod 2 and maxdegv P mod 2 for P mod 2(Kf ), provided the analogue of (5.41) holds,

min degv P mod 2(Kf ) < 0 < maxdegv P mod 2(Kf ) . (5.77)

(Sin
e we need [P (Kf)]z1(v = 1) = f , we 
annot entirely repla
e P (Kf) by P mod 2(Kf) when we de�ne

θ mod 2(K).)

Then 
learly

θ mod 2(K) ≤ θ(K) . (5.78)

Noti
e that by (5.40), the 
ondition (5.77) is true. It is thus enough to show θ mod 2(K) = 1−mindega F (K).

Furthermore,

min degv P mod 2(Kf ) = min degv(Rf ) mod 2(K) = 2mindega(F )− 1 + 2f < 0 . (5.79)

The �rst equality is Rudolph's 
ongruen
e, provided the value is negative, whi
h it is by (5.77), and the

se
ond follows similarly to the equality in (5.43).

Thus (with [P ]z1(v = 1) = f ; keep in mind (5.55))

θ mod 2(K) = f + ⌈−1/2min degv P mod 2⌉ = ⌈−1/2 (2min dega(F )− 1)⌉ = 1−min dega F (K). (5.80)

With (5.78) we are done.

When (5.42) holds and span aF (K) = 0 (i.e., F (K) = 1 by Remark 5.20), then noti
e that in the

pre
eding argument, we only needed the left inequality in (5.40) (in 
onjun
tion with (5.79)) to evaluate

θ mod 2(K) as in (5.80).

But for the left inequality in (5.40) alone, we do not need span aF (K) ≥ 1 to �nd su
h an f . Then

the rest of the argument repeats.

This same observation allows us to relax (5.42) to the stated assumption. The fa
t that we do not

need the right inequality in (5.77) applies for the 
ase that span aF (K) ≥ 1 as well. �

Computation 5.44 The inequality (5.76), and hen
e also (5.35), is true for prime knots K up to 16


rossings, as was veri�ed by re�ning and extending Computation 5.21. Here we need to treat mirror

images separately. The premise of Corollary 5.19 for i = 2 will yield (5.76) for !K. (The veri�
ation for

16 
rossings took about 33h with about the same 
omputing 
apa
ity.)

Be
ause of (5.75), Proposition 5.17 implies that (5.76) must hold as an equality when K is alternating.

There is, though, one further noteworthy spe
ial 
ase to add besides alternating knots.

Corollary 5.45 For every positive knot K, the inequality (5.76) holds as an equality.

Proof. By Yokota's result [Yo℄, min dega F (K) = min degv P (K) = 2g(K), and up to variable 
hange,

the minimal terms 
oin
ide. And by (2.16), the term [P (K)]v2g(K)z2g(K) = ±1 is odd. This shows (5.76).

We re
all that by the argument of Tanaka [Ta2℄, for a positive knot K, we have

λ(K) = 1−min dega F (K) , (5.81)

and thus (5.76) is an equality. �
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6 Braid indi
es revisited (and problematized)

6.1 Framing 
ones and the ar
 index

Here we summarize some remarks provided on various braid indi
es, and add dis
ussion of related natural

questions. They are meant to point out a series of subtleties, whi
h may be signi�
ant or not, but whi
h

are easy to overlook while less straightforward to resolve. One having some parti
ular importan
e in

this 
ontext is Question 4.6. We reformulate part (a) here as a 
onje
ture, with the insight gained from

Corollary 4.3 and Remark 5.24.

Conje
ture 6.1

a(K) = min
t∈Z

b(A(K, t)) (6.1)

The following reasoning will appear in several modi�ed versions below, thus we re
ord it as a lemma.

Compare with Theorem 4.10.

Lemma 6.2 Assume (6.1) is true. Then (3.8) holds, in parti
ular λmin is unique.

Proof. Take an a(K)-band positive band presentation of A(K, t) for t = λmin ≥ λ(K), and make one

band negative. By Remark 3.2, one has then an a(K)-band presentation of A(K, t−1). Now sin
e A(K, t)
is strongly quasipositive, it is Bennequin-sharp. But

χ(A(K, t)) = χ(A(K, t− 1)) , (6.2)

and thus the a(K)-band presentation of A(K, t − 1) is not Bennequin-sharp, i.e., it does not make (2.6)

an equality. But still b(A(K, t − 1)) = a(K) by (6.1). Now, if A(K, t − 1) is strongly quasipositive,

then be
ause of Theorem 2.2, every minimal braid representative of b(A(K, t − 1)) would make (2.6) an

equality. Thus we have that A(K, t− 1) is not strongly quasipositive. This means that t− 1 < λ(K), and
so t ≤ λ(K), with the reverse inequality already observed. �

Remark 6.3 Note that Conje
ture 6.1, when K is alternating, is related to Proposition 5.17. But it is

not entirely implied by it, be
ause of the sporadi
 
ollapsing s
enario elu
idated in the proof of Theorem

5.7. The way l(K) was de�ned, MFW(Kt) < l(K) for some t 
an o

ur. Of 
ourse, repla
ing l(K) with
the bound l′(K) in (5.10) avoids the 
ollapsing problem. But we remind from the proof of Theorem 5.7

that we veri�ed (5.10) to be (even very) unsharp in same 
ases.

More generally than (3.8), we have:

Lemma 6.4 Conje
ture 6.1 implies a positive answer to Question 4.8, that Φ(K) is a single 
one

Φ(K) = C(a(K), λ(K)) .

Proof. Conje
ture 6.1 implies that in any band presentation on s = a(K) + k strings with > k negative

bands will give an non-strongly quasipositive A(K, t). The framing t 
hanges with the sign of bands in an

obvious way (
ompare with Remark 3.2). Thus if (s, t) ∈ Φ(K), then t− (s− a(K)) < λ(K), in parti
ular

(s, t− (s− a(K))) 6∈ Φ(K). Therefore,

(s, t) ∈ Φ(K) =⇒ t ≤ λ(K) + s− a(K) .
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That is, there are no points in Φ(K) like the en
ir
led:

✲
µ

✻ t

�
�
�
��

�
�
�
��

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

a(K)

λ(K)

This shows the 
one shape of Φ(K). �

Lemma 6.4 pertains to the situation one may expe
t. But one 
an also use Theorem 2.2 for a version

when Conje
ture 6.1 is unresolved (or false).

De�nition 6.5 De�ne the defe
t of K by

δ(K) = a(K)−min
t∈Z

b(A(K, t))

Then the argument for Lemma 6.4 modi�es to show that an a(K)-band positive band presentation of

A(K, t) gives
λ(K) ≤ t ≤ λ(K) + δ(K) , (6.3)

and any positive band presentation of A(K, t) on s = a(K) + k strings will have

λ(K) ≤ t ≤ λ(K) + δ(K) + k = λ(K) + δ(K) + s− a(K) . (6.4)

From this, we 
an 
on
lude the following.

Proposition 6.6 For a non-trivial knot K, we have that Φ(K) is the union of at most 1 + δ(K) 
ones.

Note that for K = ©, we have δ(K) = 0, so that the 
laim is false due to the 
ir
umstan
e (3.7).

(But, again, this 
ase 
an be worked out separately: see Example 4.9.) In Remark 5.24 we have veri�ed

that δ(K) = 0 for all prime knots K up to 10 
rossings.

Proof. The 
ondition (6.4) pla
es (s, t) into a trapezoid whi
h is the union of the 
ones (a(K), t) for t in
(6.3). Now, Φ(K) in obviously only 
ontained in this union. Call a 
one C(µ, t) in Φ(K) essential , if it is
not properly 
ontained in any other 
one in Φ(K). Among 
ones C(µ, t) of �xed t − µ in Φ(K), there is
always a maximal one, namely the one of the smallest µ. The same is true among 
ones C(µ, t) of �xed t
in Φ(K). Note also that there are no values t with λ(K) ≤ t < λmin, sin
e for K 6= ©, we have

λmin = λ(K)

by Theorem 4.10.

Also, for ea
h value x = λ(K) + 1 − a(K), . . . , λ(K) + δ(K) − a(K) there is at most one essential


one C(µ, t) in Φ(K) with t− µ = x. We 
all this essential 
one type X . Obviously C(a(K), λ(K)) is also
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essential, and every other essential 
one is of type X, by the above maximality remark. Now we have at

most δ(K) type X essential 
ones. With C(a(K), λ(K)), this 
ompletes a set of δ(K) + 1 essential 
ones,

as 
laimed. �

Obviously, from the de�nition,

δ(K) ≤ a(K)− 2b(K) .

Thus in parti
ular from (6.4), we have

λ(K) ≤ t ≤ λ(K) + s− 2b(K)

for any positive band presentation of A(K, t) on s ≥ a(K) strings. Note also that, for 
omputational

purposes, one may repla
e `1 + δ(K)' in Proposition 6.6 by `1 + a(K) − l(K)', with an analogous proof

argument. (An analogous 
aveat regarding K = © is needed, where a(K) = l(K) = 2; see (5.19).) We

thus obtain the following proposition.

Proposition 6.7 When K is a non-trivial knot, then Φ(K) is the union of at most 1+a(K)− l(K) 
ones.
�

6.2 Indi
es from braided surfa
es

We return to De�nition 2.1, and the inequality

bsqp(S) ≥ b(S)

for a strongly quasipositive surfa
e S.

Question 6.8 While it is more than suggestive, we do not know if always equality holds. I.e., is ev-

ery strongly quasipositive surfa
e always realizable on its minimal number of strings in a positive band

presentation?

Be
ause of Theorem 2.2, this is true if b(S) = b(K) (where of 
ourse K = ∂S). This is also related to

the Baker-Motegi question if all minimal genus surfa
es of a strongly quasipositive knot K are strongly

quasipositive (see [St2℄). From [HS℄, we know that b(S) > b(K) for some minimal genus surfa
e S of K.

But S (and K) is not strongly quasipositive in these examples. Rudolph's question (4.1) is then equivalent

to asking whether

bsqp(S) = b(K) (6.5)

is satis�ed for some strongly quasipositive surfa
e S of K. It is tempting to ask if (6.5) holds in fa
t for

every strongly quasipositive surfa
e S of K.

In 
ase of the links L = A(K, t) and W±(K, t), the minimal genus surfa
es SL of L are unique (and

plumbing equivalent), so there is no need to distinguish between bb(SL) and bb(L), and between bsqp(SL)
and bsqp(L).

Proposition 6.9 We obviously have

min
t≥λ(K)

bsqp(A(K, t)) = a(K) , (6.6)

and for t ≥ λ(K), we 
an in
orporate Whitehead doubles into the diagram as

bsqp(A(K, t)) ≥ b(A(K, t))

(*)

≥

bsqp(W+(K, t)) ≥ b(W+(K, t))

(6.7)

Also, if K is l-sharp, then all inequalities are equalities.
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Proof. The verti
al inequality (*) holds be
ause one 
an double any (positive) band in a strongly quasi-

positive band presentation of a t-twisted annulus for K (Example 3.13).

Now, 
onsider the 
ase that l(K) = a(K). Sin
e for K = © the equality questions in (6.7) 
an be

settled by dire
t inspe
tion, assume that K 6= ©, to avoid 
ompli
ations.

Consider L = A(K,λ(K)). We have

maxdegv P (L) = 2a(K)− 1 , (6.8)

and this means by (2.17) that an a(K)-braid (band) presentation of L 
annot be of writhe less than a(K).
Sin
e we did not assume l′(K) = a(K), there may be a 
an
ellation of terms in z-degree 1 (similarly to

the �rst polynomial in Table 1). Thus min degv P (L) > 1 is, in prin
iple, possible. But the writhe of an

a(K)-braid (band) presentation of L 
annot be more than a(K) due to Bennequin's inequality (2.6). This
means that the writhe of an a(K)-braid (band) presentation of L is unique, and hen
e b(L) = a(K).

Then one 
an start with t = λ(K) and propagate the bound in (2.17) through the re
ursion (5.4),

while applying positive stabilizations (see (3.9)). �

Remark 6.10 By noting that we needed in the above proof only (6.8), for whi
h l(K) = a(K) is su�
ient

but not ne
essary, one also obtains equalities in (6.7) for K = 10132. Pi
torially speaking, this extra

argument su

eeds be
ause the �missing terms� in P (A(K, t)), a

ounting for the di�eren
e (5.34), are

missing �at the bottom�, i.e., in low v-degrees. (See the �rst polynomial in Table 1.) The mirroring

of 10132 of 
ourse 
ontinues to be relevant; keep in mind Example 3.7. And the situation immediately


hanges when v-
onjugating the polynomial (by (2.15)), whi
h explains why the tri
k de�nitely fails for

the mirror image !10132.

It follows from Computation 5.23 that all inequalities in (6.7) are equalities at least when minimum

over t ≥ λ(K) is taken. This then holds for all Rolfsen knots, with mirror images (see also Example 6.12).

We 
an expe
t in (6.7) the horizontal `≥' to be `=' in general, in a

ordan
e with Rudolph's Question

(4.1). However, we do not know about (*). Obviously SW+(K,t) = SA(K,t) ∗ H is a plumbing with a

positive Hopf band H . But we know that

bsqp(S ∗H) < bsqp(S)

is possible, even for a strongly quasipositive �ber (in parti
ular unique minimal genus) surfa
e S; examples

were given in [St2℄. These examples, unsurprisingly, have higher genus, but they should still 
aution about

seeing (*) as suggestive in some way.

Also, regarding (6.6), we 
an add

min
t≥λ(K)

bsqp(A(K, t)) = a(K) = min
t∈Z

bb(A(K, t)) , (6.9)

be
ause every band presentation of Bennequin surfa
e of A(K, t) gives a grid diagram of K, and gives a

strongly quasipositive surfa
e of A(K, t′) for some t′ ≥ λ(K) by making all bands positive.

Proposition 6.11 Then for instan
e for t < λ(K), we have a similar diagram of inequalities to (6.7)

bb(A(K, t)) ≥ b(A(K, t))

(**)

≥

bb(W−(K, t)) ≥ b(W−(K, t))

(6.10)

And if K is alternating, then all inequalities are equalities.
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Proof. The inequality (**) results from doubling a negative band in a minimal band presentation (a

negative band always exists when t < λ(K); see the remarks following Example 3.13.

For the rest of the proof, we assume l(K) = a(K), and argue that all inequalities are in fa
t qualities.

We 
an infer this with a similar thought to Proposition 6.9. (Again, ex
lude K = © after a dire
t 
he
k.)

First, when t ≥ λ(K) (and K is l-sharp), then A(K, t) has a minimal string band presentation that is

positive. The argument with Bennequin's inequality is still needed to as
ertain b(A(K,λ(K))) = a(K) if

MFW(A(K,λ(K))) < a(K) . (6.11)

By Theorem 2.2, then any other minimal string minimal genus (i.e., Bennequin) band presentation of

A(K, t) must be positive either. The same holds for W+(K, t). Thus we 
an fall ba
k onto Proposition

6.9. Simiarly, when t ≤ λ(K) − a(K), then any minimal string mand presentation of A(K, t) must be

negative, and we 
an use Proposition 6.9 for the mirrored links. Thus we assume now thourhout the rest

of the proof that

λ(K)− a(K) < t < λ(K) , (6.12)

and argue that all quantities in (6.10) are equal to a(K). We know

bb(W−(K, t)), bb(A(K, t)) ≤ a(K) , (6.13)

by 
onstru
tion of the band presentation (use Nutt's 
onstru
tion on a minimal grid diagram of K and

make some bands negative).

The only framing t for whi
h 
an
ellation (6.11) may 
ollapse the bound MFW(A(K, t)) < a(K) is
when all bands in an a(K)-strand band presentation of A(K, t) are positive or negative, that is, t = λ(K)
or t = λ(K)− a(K). This 
ase was ex
luded with (6.12). Thus bb(A(K, t)) = b(A(K, t)).

However, the situation for bb(W−(K, t)) ≥ b(W−(K, t)) is slightly tri
kier, sin
e a 
an
ellation may

o

ur for t = λ(K) − 1. (Indeed, as we will see from long 
omputations in [St℄, there are very di�
ult

l-sharp examples K, among others, (p, 3,−3)-pretzel knots.)

However, under the stronger (keep in mind Proposition 5.17) restri
tion that K is alternating, it 
an

be seen, essentially be
ause k1, k2 ≥ 1 in (5.39), that this 
an
ellation never o

urs. So, in that 
ase as

well

MFW(W−(K, t)) = MFW(A(K, t)) = a(K) . (6.14)

Finally, to see (**) is an equality, it is enough to see that b(A(K, t)) = b(W−(K, t)). We 
an restri
t

to the values (6.12). Then we know (6.14) and (6.13). This is su�
ient. �

Again (while it is tempting to suspe
t) we do not know if equalities hold in general.

Example 6.12 From Computation 5.23, we know that for all t ∈ Z,

b(A(10132, t)), b(W±(10132, t)) ≥ 9 = a(10132) . (6.15)

Obviously, as in Table 1, is it possible to write down expli
it band presentations of A(10132, t) and

W−(10132, t) for some t < λ(10132) on 9 strings, so that we have

bb(A(10132, t)), bb(W−(10132, t)) ≤ 9 .

With Computation 5.23 we again know that thus for K = 10132, the inequalities (6.10) are equalities at
least when their hand sides are minimized over t < λ(K). Under mirroring (using the 
omputations and

band presentations for W+(10132, t)), we 
an 
on
lude the same for K =!10132, and thus for all Rolfsen

knots.

When (5.34) o

urs, though, this reasoning always relies on an expli
it 
he
k for spe
i�
 t using a

2-
able polynomial. And while we expe
t l-unsharp knots to be relatively rare, su
h instan
es K 
learly
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in
rease with 
rossing number (see Example 5.12). The method in Computation 5.23 soon be
omes

problemati
 
omplexity-wise, despite algorithmi
 optimizations. This puts a limit to the 
apa
ity of our

algebrai
 approa
h to ta
kle a geometri
 issue like the sharpness of the inequalities (6.10). (But of 
ourse

it is the only information we have available so far.)

As an appli
ation of Propositions 6.9 and 6.11, we have one of our statements of the introdu
tion,

formulated there for more self-
ontainedness (only) for alternating knots via Proposition 5.17.

Corollary 6.13 Assume K is l-sharp.

1. Assume L = A(K, t) for some t. Then L has a minimal string Bennequin surfa
e. Also, if L is

strongly quasipositive, then L has a minimal string strongly quasipositive band presentation.

2. Let t′ be so that

maxdegv P (A(K, t′)) > 0

and assume

max cf vP (A(K, t′)) 6= ±z−1 . (6.16)

Assume L = W+(K, t) for some t. Then L has a minimal string Bennequin surfa
e. Also, if L
is strongly quasipositive, then, without (6.16), L has a minimal string strongly quasipositive band

presentation.

3. Let t′ be so that

min degv P (A(K, t′)) < 0

and assume

min cf vP (A(K, t′)) 6= ±z−1 . (6.17)

Assume L = W−(K, t) for some t. Then L has a minimal string Bennequin surfa
e.

Proof. If K = ©, then again the 
laims are easy to test expli
itly, so let us ex
lude this 
ase hen
eforth.

If L = A(K, t) then Propositions 6.9 and 6.11 show the 
laim dire
tly. (Note that in the 
ase L =
A(K, t) and K is alternating, one 
an obtain this result from [DM℄ as well; see Remark 5.18.) They also

do ex
ept for the Bennequin surfa
e 
ase when L = W+(K, t) and t < λ(K) and L = W−(K, t) and

t ≥ λ(K).

When L = W+(K, t) and λ(K) − a(K) < t < λ(K), then a band presentation of A(K, t) on a(K)
strands has a positive band, and one 
an double it to obtain L. It 
an be 
he
ked with a skein 
al
ulation

that b(A(K, t)) = MFW(A(K, t)) = MFW(W+(K, t)). Condition (6.16) is needed for t = 1−λ(K)−a(K),
but this 
ase is not relevant for strong quasipositivity.

When L = W+(K, t) and λ(K)−a(K) ≥ t, then grid-stabilize positively a band presentation on λ(K)−t
strands and double a positive band to obtain L. By a skein 
al
ulation MFW(W+(K, t)) = λ(K)− t+ 1.

Finally, when L = W−(K, t), the 
laim follows from the argument for W+(K, t) under mirroring.

(However, L is never strongly quasipositive, so this part trivializes.) We need (6.17) to handle the 
ase

t = λ(K)− 1.

When L = W−(K, t) and t ≥ λ(K), then grid-stabilize a t− λ(K) + a(K)-string band representation

of A(K, t) negatively and double a negative band. By a skein 
al
ulation MFW(W−(K, t)) = t− λ(K) +
a(K) + 1. �

We �nish by stating the generalization of [DM℄, whi
h follows along the same lines as Corollary 6.13.

Proposition 6.14 Assume K is a non-trivial l-sharp knot. Then

b(A(K, t)) =





λ(K)− t if t ≤ λ(K)− a(K)
a(K) if λ(K)− a(K) ≤ t ≤ λ(K)
t− λ(K) + a(K) if t ≥ λ(K)

(6.18)

�
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Note that for K being the unknot this expression still holds when λ(K) = 0 is repla
ed by 1 (see

(3.16)). There is, of 
ourse, also a formula for b(W±(K, t)) for l-sharp K (ex
luding the ex
eptional t0
for W−, unless K is assumed alternating), but we leave this to the reader. Furthermore, 
omparison with

Diao-Morton's statement implies, besides (5.38), an expression of λ(K) for K alternating in terms of a


he
kerboard 
oloring of a redu
ed alternating diagram of K. (But one must reverse signs, as explained

below De�nition 3.1.) When one uses the degrees of F instead of the geometri
 quantities (as 
an be done

for alternating knots), then this identi�
ation was given by Yokota [Yo2℄.

Example 6.15 The 
ase of l-unsharpK is far more 
ompli
ated. For instan
e, when K = 10132 (and as a

re�nement of Remark 6.10), then in (6.18) we still know the last two alternatives. For λ(10132)−a(10132) ≤
t ≤ λ(10132), we have (6.15), and for t ≥ λ(10132), the tri
k with Bennequin's inequality 
an still be used.

But this tri
k does not work for t < λ(10132)−a(10132), be
ause the missing terms in P (A(K, t)) o

ur at
the �wrong� end of the v-degree. Potentially one may adapt some 
onsideration like for Proposition 5.9,

but this only promises a tenuous and very involved argument.

For further appli
ations to the Bennequin sharpness problem (2.9) of Whitehead doubles, see [St℄.
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