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1. Introduction

The notion of a Seifert surface of a knot is classical [Se]. Seifert proved the existence of these surfaces by an algorithm
constructing such a surface out of some diagram of the knot. Briefly, the procedure is as follows (see [Ad, §4.3] or
[Ro]): smooth out all crossings of the diagram, plug in discs into the resulting set of disjoint (Seifert) circles and
connect the circles along the crossings by half-twisted bands. We will call the resulting surface canonical Seifert
surface (of this diagram) and its genus the genus of the diagram. The canonical (or weak) genus of a knot is the
minimal genus of all its diagrams.

The weak genus appears in previous work of several authors, mainly in the context of showing it being equal to the
classical Seifert genus for large classes of knots, see [Cr] and loc. cit. However, in [Mo], Morton showed that this is
not true in general. Later, further examples have been constructed [Mr, Ko].

Motivated by Morton’s striking observation, in [St4] we started the study of the weak genus in its own right. We gave
a description of knot diagrams of genus one and made some statements about the general case.

The present paper is a continuation of our work in [St4], and relies on similar ideas. Its motivation was the quest
for more interesting phenomena occurring with knot diagrams of (canonical) genus higher than one. The genus one
diagrams, examined in [St4], revealed to be a too narrow class for such phenomena. In this paper we will study
the weak genus in greater generality. We will prove several new results about properties of knots with arbitrary weak
genus. In the cases of weak genus 2 and 3 we have obtained a complete description of diagrams. Using this description,
we obtain computational examples and results, some of them solving (at parts) several problems in previous papers of
other authors.

For most practical applications, it is useful to consider weak genus 2. We study it thus in detail. All methods should
work also for higher genera, but applying them in practice seems hardly worthwhile, as the little qualitative renewment
this project promises is contraposed to an extremely rapid increase of quantitative effort. Diagrams of genus two turned
out to be attractive, because their variety is on the one hand sufficient to exhibit interesting phenomena and allows to
apply different types of combinatorial arguments to prove properties of them and the knots they represent, but on
the other hand not too great to make impossible argumentation by hand, or with a reasonable amount of computer
calculations. As we will see, many of the theorems we will prove for weak genus 2 cannot be any longer proved
reasonably (at least with the same methods) for weak genus 3, if they remain true at all.

We give a brief survey of the structure of the paper.

In §2 we prove our main result, Theorem 2.1, the description of diagrams of genus two. It is based on a combination
of computational and mathematical arguments. The most subsequent sections are devoted to applications of this
description.



In §3 we give asymptotical estimates for the number of alternating and positive knots of genus two and given crossing
number and classify the achiral alternating ones.

In §4 we show non-homogeneity of 2 of the undecided cases in [Cr, appendix], following from the more general fact
that homogeneous genus two knots are positive or alternating.

In §5 and §6 we use the GauBl sum inequalities of [St2] in a combination with the result of §2 to show how to classify
all positive diagrams of a positive genus two knot, on the simplest non-trivial examples 73 and 75, and classify all
2-almost positive unknot diagrams, recovering a result announced by Przytycki and Taniyama in [PT], that the only
non-trivial achiral (resp. slice) 2-almost positive knot is 41 (resp. 61).

In §7 we prove that there is no almost positive knot of genus one, and in §8 that any positive knot of genus two has
a positive diagram of minimal crossing number. We also show an example of a knot of genus two which has a single
positive diagram.

Beside the results mentioned so far, which are direct applications of the description in theorem 2.1, we will develop
several new theoretical tools, valid for arbitrary weak genus. Most of these tools can again be used to study the genus
two case in further detail. As such a tool, most substantially we will deal with behaviour of the Jones and HOMFLY
polynomial in §9. We show how unity root evaluations of the polynomials give information on the weak genus, and
use this tool to exhibit the first examples of knots on which the weak genus inequality of Morton [Mo] is not sharp.
We also give, as an aside, using some arguments from complex analysis and Lie group theory, generalizations of some
denseness theorems of Jones in [J2] about the values at roots of unity of the Jones polynomial of knots of small braid
index. Unity root evaluations of the Jones polynomial have become recently of interest because of a variety of relations
to quantum physics, in particular the Volume conjecture. (See [DLL, LG, MM].)

Since these unity root evaluations are closely related to the Nakanishi-Przytycki k-moves, we give several applications
to these moves in §10, in particular the proof of the 3- and 4-move conjecture for weak genus two knots in §10.4 and
§10.5. We also discuss how the criteria using the Jones and HOMFLY polynomial, and the examples they give rise to,
can be complemented by the Brandt-Lickorish-Millett-Ho polynomial Q.

A further theoretical result is an asymptotical estimate for the quality of the Seifert algorithm in giving a minimal
(genus) surface in §11.

In §12, we consider the hyperbolic volume. Brittenham [Br] used a similar approach to ours to prove that the weak
genus bounds the volume of a hyperbolic knot. We will slightly improve Brittenham’s estimate of the maximal
hyperbolic volume for given weak genus, and (numerically) determine the exact maximum for weak genus 1 and 2.

At the end of the paper we present the description for knot diagrams of genus three in §13, solving completely the
knots undecided for homogeneity in Cromwell’s tables [Cr, appendix].

In §14 we conclude with some questions, and a counterexample to a conjecture of Cromwell [Cr2].

Although a part of the material presented here (in particular the examples illustrating our theoretical results) uses some
computer calculations, we hope that it has been obtained (and hence is verifiable) with reasonable effort. To facilitate
this, we include some details about the calculations.

To further motivate our approach we outline applications given in several separate papers. For example, in [St7] the
description of genus 2 diagrams is used to give a short proof of a result announced in [PT], that positive knots of genus
at least 2 have ¢ > 4 (which builds on the result for genus 2 stated here in corollary 3.2), and in [St3] to give a specific
inequality between the Vassiliev invariant of degree 2 and the crossing number of almost positive knots of genus 2. In
[St5] we generalize the classification of k-almost positive achiral knots for the case k = 2 (announced also in [PT] and
given here as proposition 6.1) for alternating knots to k < 4. We will use the present framework to develop a method
for finding estimates on crossing numbers of semiadequate links in a subsequent paper.

Cromwell gives in his recent book [Cr3] (section 5.3) an introductory exposition of the concepts and work which we
give a rigorous account on in [St4] and here.

Notation.

For a knot K and a (knot) diagram D, ¢(D) denotes the crossing number of D, ¢(K) the crossing number of K (the
minimal crossing number of all its diagrams), w(D) the writhe of D, w(K) the writhe of a reduced alternating diagram
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of K, if K is alternating (this is an invariant of K, see [Ka]), and n(D) the number of Seifert circles of D. ¢ denotes
the signature of a knot, u denotes its unknotting number, g denotes its weak genus and g its classical (Seifert) genus.
!K denotes the obverse (mirror image) of a knot K. Often we will assume a diagram to be reduced without each time
pointing it out. It should be always clear from the context, where this is the case.

vo denotes the Vassiliev knot invariant of degree 2, normalized to be zero on the unknot and one on the trefoil(s). v3
denotes the primitive Vassiliev invariant of degree 3, normalized to be 4 on the positive (right-hand) trefoil. As usual,
V denotes the Jones [J], A the Alexander [Al], V the Conway [Co], O the Brandt-Lickorish-Millett-Ho [BLM, Ho],
and P the HOMFLY (or skein) [F&] polynomial. For the HOMFLY polynomial, we use the variable convention of
[LM].

For a polynomial ¥ and an integer k we denote by [¥ (x)] « the coefficient of x* in ¥ (x). The minimal (resp. maximal)
degree is defined to be the minimal (resp. maximal) k with [¥ (x)] « # 0 and is denoted by mindeg, ¥ (resp. maxdeg, Y).
The span of Y is the difference between its maximal and minimal degrees. In case Y has only one variable, its indication
in the notation will be omitted. The encoded notation for polynomials we use is the one of [St]: if the absolute term
occurs between the minimal and maximal degrees, then it is bracketed, else the minimal degree is recorded in braces
before the coefficient list.

We use the notation of [Ro] for knots with up to 10 crossings, renumbering 10143 ... 10166 by eliminating 10;¢;, the
Perko duplication of 10;¢;, as has been done in the tables of [BZ]. The notation of [HT] is used for knots from 11
crossings on. (Note, that for 11 crossing knots this notation differs from this of [Co] and [Pe].) We use the convention
of the Rolfsen pictures to distinguish between the knot and its obverse whenever necessary.

(=]
n=1

oo, Likewise, we say a, is O=(by) iff liminfdn/,, > 0, and a, = 0= (by,) iff a, is both O(b,) and O=(by,).

For two sequences of positive integers (a,);_, and (b, );_, we say that a,, is O(b,), or write a, = O(b,), iff limsupan/}, <

n—

Z,N, N1, R and C denote the integer, natural, positive natural, real and complex numbers respectively.

For a set S, the expressions | S| and #S are equivalent and both denote the cardinality of S. In the sequel the symbol *C’
denotes a not necessarily proper inclusion.

2. Khnot diagrams of canonical genus 2

It is known that a Seifert surface obtained by applying Seifert’s algorithm on a knot diagram D has genus

c(D)—n(D)+1 '

g(D) = 5

This formula is shown by homotopy retracting the surface to a graph and determining its Euler characteristic by a
simple vertex and edge count. The weak (or canonical) genus g(K) of a knot K is defined as

g(K) := min{g(D) : Dis adiagramof K } .

In the following we will describe all knot diagrams of genus 2 and deduce consequences for knots of weak genus two
from this description.

As a preparation, we (re)introduce some terminology, recalling inter alia some of the definitions and facts of [St4];
more details may be found there.

First we need to introduce some transformations of diagrams which we will crucially need later.

In 1992, Menasco and Thistlethwaite [MT] proved the (previously long conjectured) statement, that reduced alternat-
ing diagrams of the same knot (or link) must be transformable by flypes, where a flype is shown on figure 1.

The tangle P on figure 1 is called flypable, and we say that the crossing p admits a flype or that the diagram admits a
flype at (or near) p.

According to the orientation near p we distinguish two types of flypes, see figure 2.



Figure 1: A flype near the crossing p

SO0

type A type B

Figure 2: A flype of type A and B

A clasp (we call it alternatively also a matched crossing pair) is a tangle of the form

XX XX

reverse clasp  parallel clasp

distinguished into reverse and parallel clasp depending on the strand orientation.

By switching one of the crossings in a clasp and applying a Reidemeister Il move, one can eliminate both crossings.
This procedure is called resolving a clasp. For the discussion below it is important to remark how resolving a clasp
affects the genus of the diagram. It reduces the genus by one, if the clasp is parallel, or if it is reverse and the Seifert
circles on which the two clasped strands lie after the resolution are distinct. In this case we will call the clasp genus
reducing. In contrast to that, a clasp resolution preserves the genus of the diagram if the clasp is reverse and the strands
obtained after the resolution belong to the same Seifert circle (as for example in the #, move we will just introduce).
Then we call the clasp genus preserving.

We will also need a class of diagram moves studied by Przytycki and Nakanishi.
Definition 2.1 (see [Pr]) A #; move is a local diagram move replacing a parallel pair of strands by k parallel half-
twists. Similarly, a f; move for k even is a replacement of a reversely oriented pair of strands by k reversely oriented

half-twists.

A 7 move is thus replacing a reversely oriented pair of strands by a reverse clasp. Of particular importance will be, as
in [St4], a special instance of a f, move.

Definition 2.2 A 7, move is defined to be a 7, move [Pr] applied near a crossing

Kz XXX
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(together with the mirrored move), and a reducing 7, move is the reverse operation to a #, move. We call a diagram 7}
irreducible if there is no sequence of type B flypes transforming it into a diagram, on which a reducing 7, move can be
applied. Let ¢, denote the maximal crossing number of an alternating 7, irreducible genus g diagram.

A flype of type A never creates or destroys a fragment obtained from a crossing by a 7, move and commutes with type
B flypes, hence the applicability of a reducing #, move after type B flypes is independent of type A flypes. In terms of
the associated GauB diagram [FS, PV], a knot diagram is (modulo crossing changes) 7, reducible after type B flypes
iff it has three chords, which do not mutually intersect and all intersect the same set of other chords.

In order to discard uninteresting cases, we will consider mainly only prime diagrams.

Definition 2.3 A diagram D is called composite, if there is a closed curve Y intersecting (transversely) the curve of D
in two points, such that both in- and exterior of Y contain crossings of D. Otherwise D is called prime.

It is a simple observation that ¢y = 0. Two results of [St4] were ¢; = 4 (independently observed by Lee Rudolph) and
cg < 8cg_1+ 6,50 that ¢, = 0O(88). However, it was evident, that this bound is far from sharp, and later we showed in
[STV] that ¢y < 12g — 6. The starting point for a significant part of the material that follows is to obtain for g =2 a
more precise description.

Theorem 2.1 Let K be a weak genus 2 knot. Then any prime genus 2 diagram of K is transformable by type B flypes
into one which can be obtained by crossing changes and 7, moves from an alternating diagram of one of the 24 knots
in figure 3.

We will say that a diagram generates a series or a t twist sequence of diagrams by crossing changes and #, moves (so
that a 7} twist sequence is a special case of what was called in [St6] a “braiding sequence™). In this terminology the
description result of genus one diagrams in [St4] says that the only genus one generators are (the reduced alternating
diagrams of) 3; and 4;. Although we point out that some knots of figure 1 occur in multiple diagrams, it will be
sometimes possible and convenient to identify the series generated by all its diagrams and call them a series generated
by the knot.

It is convenient to use an alternating knot as a generating knot. Note that an alternating diagram which does not
admit reducing 7, moves does not admit such moves after crossing changes either. It is also important to note, that
for each alternating knot either all or no alternating diagrams are 7 irreducible modulo flypes. This follows from the
Menasco-Thistlethwaite flyping theorem [MT], the fact that the applicability of a reducing #, move is preserved by
type A flypes, and the commuting of type A and type B flypes (i.e., if we can apply a type A flype and then a type B
flype, we can do so vice versa with the same result). Hence it suffices to check the one specific diagram included in
the tables to figure out whether the knot has a 7} irreducible diagram.

For technical reasons (to have a numbering of the crossings) it will turn out useful to record and fix a Dowker notation
[DT] for each of these knots. (This is the one in the tables of [HT].)

51 6 8 10 2 4

6> 4 8 10 12 2 6

63 4 8 10 2 12 6

7s 4 10 12 14 2 8 6

76 4 812 2 14 6 10

77 4 8 10 12 2 14 6

812 4 8 14 10 2 16 6 12

814 4 8 10 14 2 16 6 12

815 4 8 12 2 14 6 16 10

923 4 10 12 16 2 8 18 6 14
975 4 8 12 2 16 6 18 10 14
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933 6 10 14 18 4 16 2 8 12

939 6 10 14 18 16 2 8 4 12

941 6 10 14 12 16 2 18 4 8

1058 4 8 14 10 2 18 6 20 12 16

1097 4 8 12 18 2 16 20 6 10 14

10101 410 14 18 2 16 6 20 8 12

10120 6 10 18 12 4 16 20 8 2 14

11123 410 14 20 2 8 18 22 6 12 16
11148 4 10 16 20 12 2 18 6 22 8 14
11329 6 12 18 22 14 4 20 8 2 10 16
121007 6 12 20 14 22 4 18 24 8 2 10 16
12120 6 20 10 24 14 4 18 8 22 12 2 16
13433 6 12 22 26 16 4 20 24 8 14 2 10 18

Proof of theorem 2.1. By [STV] any genus 2 diagram of a weak genus 2 knot can be obtained modulo type B flypes
by crossing changes and 7, moves from an alternating diagram with at most 18 crossings. Now the 24 knots in figure
3 have been obtained by checking Thistlethwaite’s tables of < 15 crossing knots for 7} irreducible alternating genus 2
diagrams.

It would be in principle possible to deal with the crossing numbers 16 to 18 also by computer, but these tables are
not yet available to me (those of 16 crossings at least at the time of the original writing), and to save a fair amount of
electronic capacity, it is preferable to use mathematical arguments instead. Let us give the following

Lemma 2.1 If there is a 7} irreducible alternating genus 2 diagram D of ¢ crossings with a matched crossing pair
(clasp), then there is a fé irreducible genus 2 diagram of ¢ — 2 crossings, or ¢ < 12.

For the proof we need to make some definitions.
Definition 2.4 A region of a knot diagram is a connected component of the complement of its underlying curve in the

plane. Every crossing p is bordered to four (not necessarily distinct) regions. We call two of them o and B opposite at
p, notationally o ? B, if they do not bound a common line segment (edge) in a neighborhood of p.

One can see that if two of the four regions bordering a crossing are equal, then they are opposite. In this case we call
the crossing reducible or nugatory, or an isthmus.

Definition 2.5 We call two crossings p and g of a knot diagram linked, notationally p N g, if the crossing strands are
passed in cyclic order pgpq along the solid line, and unlinked if the cyclic order is ppgq. Call two crossings p and g
equivalent, if they are linked with the same set of other chords, that is if Vc # p,qg: cNp <= cNgq. Call p and ¢
~-equivalent p ~ g, if they are equivalent and unlinked and ¥-equivalent p ¥ g, if they are equivalent and linked.

It is an exercise to check that ~-equivalence and ¥-equivalence are indeed equivalence relations and that two crossings
are ~- (resp. ¥ -) equivalent if and only if after a sequence of flypes they can be made to form a reverse (resp. parallel)
clasp.

Definition 2.6 If (ay,...,a,) is a finite sequence of objects, then (ay,,...,ax,) is a subsequence if k; > ki1 +1,k; > 1
and k; < n, that is, the ay,s do not need to appear immediately one after the other in (ai,...,an).



Definition 2.7 Let o be a region of D, i.e. a connected component of the complement of the plane curve of D in
the plane. Then consider the sequence of regions opposite to o at the crossings o borders in counterclockwise order
modulo cyclic permutation and call this bordering sequence for o in D.

Note, that by connecting crossings with the same region y opposite to o by arcs in y we see that the bordering sequence
for o has no subsequence of the kind ByBy.

Definition 2.8 Call a set of crossings .y, . .., &, mutually enclosed with respectto @, if a1, .. ., 0, belong to the border-
ing sequence for o and this bordering sequence can be cyclically permuted so that the sequence 0t1 0 . .. 0,0l . . . 02 O]
is a subsequence of it.

The enclosing index €4 p of ot in D is the maximum size of a mutually enclosed set of crossings with respect to o.. The
enclosing index €p of D is the maximum of the enclosing indices of all its regions.

To explain our argument for lemma 2.1 in more detail, we first need a further lemma.

Lemma 2.2 If we have a genus reducing clasp resolution D — D’, joining regions B; and B, of D to B of D', and
reduce D' to D" by Reidemeister I moves, flypes and reverse #, moves, then

c¢(D)—c(D") < 4+ 4gp,

where D is a diagram obtained by flypes from D.

Proof. In the absolute term ‘4’, two of the crossings come from the clasp, and two from the (Reidemeister I) reducible
crossings in D'.
If there were three reducible crossings a,b,c in D’ not reducible in D, then f; ? B2 in D for any p € {a,b,c}, and
a~b~cinD (and nota ¥ b'¥ ¢, as we can see form (1)), a contradiction to its t_é irreducibility (see the remark after
definition 2.5).

Separating B in D' into B; and B in D by reversing the clasp resolution, enables us to add one 7, twist to crossings
participating in two mutually enclosed sets with respect to B in D’, leading to the term involving €. o

Proof of lemma 2.1. Distinguish two cases for the matched crossing pair in D.

(i) Strands are reverse and belong to distinct Seifert circles. Then annihilating the matched crossing pair gives a
¢ — 2 crossing alternating diagram D’ of genus 2.

We claim that D’ has no 7} reducible crossings. The reason is that creating a situation of being able to perform a
75 move after elimination of the matched pair always forces the strands in the matched pair to belong to the same
Seifert circle (see figure 4). Namely, if after resolving the clasp, 3 crossings a, b and ¢ become ~-equivalent,
then there are two regions o and  of D, such that o ? B for an p € {a,b,c}. Resolving the clasp joins two

~ >B<

regions B and B, of D to one region  of D'

Bi

B2
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Therefore, as a, b, and ¢ are not all ~-equivalentin D, w.l.0.g. & j B and o ? B2 in D. But then there exists
in D a dashed arc v as in figure 4. Then all Seifert circles on D different form k, the Seifert circle in the clasp,
intersect the dashed curve 7 totally only twice. Thus both these crossings must belong to the same Seifert circle,
and hence resolving the clasp would be genus reducing.

Figure 4: When resolving a clasp makes a reducing #, move applicable, the segments of
the resolved clasp always belong to the same Seifert circle.

Moreover, D' has no reducible crossings. Assume that p were such. Then for some region o of D’ we have
o 7\ o. But then either p is reducible in D, or o = 3 and B, ? B>. Then we have a dashed curve 7y like

- S~

.-t Y
< B2
, R
1
AY
P ‘s~~ ’,/B
~.. -7 1

_______

Then consider the Seifert circle in D intersecting y and apply exactly the same argument as before to see that the
clasp resolution must be genus reducing.

(ii) Strands are parallel or belong to the same Seifert circle and are reverse. Then annihilating the matched crossing
pair reduces the canonical genus of the diagram and we obtain a genus 1 diagram D’.

We will show now that, since D is 7, reduced, D' has at most 4 7 reducible crossings. Thus D’ has at most 8
crossings, and D has at most 12. For this we apply lemma 2.2. For any genus one diagram D’ we have €y = 1,
and using ¢(D") < 4 we obtain from the lemma c¢(D) < 12, concluding the second case of the proof of lemma
2.1. |

Proof of theorem 2.1 (continued). To show that there are no 7} irreducible genus two diagrams with > 13 crossings
we proceed by induction on the crossing number.

The cases of 14 and 15 crossings were excluded using Thistlethwaite’s tables (as I mentioned above). Then the cases
of 16 and 17 crossings can be (significantly) reduced, applying lemma 2.1, to the cases with no matched pair.

These cases we exclude as follows. Let D be such a diagram (that is, a genus 2 diagram with no matched pair). A
smoothing out of a crossing augments the number of 2-gon components of the diagram complement in the plane (or
equivalently the number of matched crossing pairs) by at most 2. Thus after smoothing out a linked pair of crossings
in D we obtain a diagram D’ of genus 1 with at most 4 matched pairs. Then D’ is modulo its reducible crossings either
a diagram obtained from 3 by at most two 7, moves or one diagram obtained from 4; by at most one 7, move.

Thus D’ has at most 7 non-reducible crossings. Now we count the reducible crossings of D’. (Compare to the proof of
[St4, theorem 3.1] or of lemma 2.2 above.) The smoothing out of two crossings in D identifies either two pairs or one



11

triple of regions. If p is reducible in D/, then f3; ? B2 in D, where B, are among the identified regions. There are
two or three possible (unordered) pairs (B1,2) of identified regions in D, and so there are at most 4 or 6 crossings p
as above. Since two of these crossings must be those smoothed out, D’ cannot have more than 4 reducible crossings.
We conclude that D’ must have at most 11 crossings, so D has at most 13 crossings.

The same argument inductively excludes all higher crossing numbers, and theorem 2.1 is now proved. a
Corollary 2.1 With ¢, as in definition 2.2, we have ¢; = 13. O

Remark 2.1 Note, that some of the 24 knots may have alternating diagrams differing by a type A flype and twisting
at them gives mutated diagrams, the mutations being type A “flypes” at a 7} twisted crossing as shown on figure 5.
However, we can often ignore these mutations, since for what we will do in the sequel they will be mostly irrelevant.

For example, whenever we involve the Vassiliev invariants, signature and knot polynomials in our proofs, the ar-
guments apply for all mutated diagrams as well, as these invariants are preserved under mutation. (For Vassiliev
invariants mutation invariance holds at least up to degree 10, and all the invariants we will use are of such degree.)
This is relevant for sections 4 to 8. Also mutations do not occur in < 10 crossings (relevant for §5 and 7; the few cases
remaining can be checked directly), and rational knots and the unknot have no mutants [HR] (relevant for §6).

Thus we consider only the one diagram for each of the 24 knots given in figure 3.

XX
|
SOCK

Figure 5: A “flype” near a 7, twisted crossing is an iterated mutation.

Remark 2.2 The present description will later be used to prove non-existence of minimal canonical Seifert surfaces
for some knots of genus 2 when both the obstruction of Morton [Mo] and of the Seifert genus fail. (See remark 9.1.)
An explicit computer check gave minimal canonical Seifert surfaces for all knots up to 12 crossings (not only those of
genus 2), although not always minimal crossing number diagrams suffice to give such a surface. (Among the Rolfsen
knots examples are the genus 3 knots 10;ss, 10157 and 1059 and the genus 2 knots 1014 and 10164, where I found
only 11 crossing diagrams doing the job; many more such examples exist.)

In [St4] I showed that the number of knot diagrams of given genus g is polynomially bounded in the crossing number.
One sees that the maximal exponent in this polynomial is dg — 1, where d is the maximal number of ~-equivalence
classes in all diagrams of genus g. For genus one we had d; — 1 = 2 and for genus 2 we obtain dy — 1 = 8 for this
maximal exponent. The numbers d,, seem not less important then ¢, and will occur several times later.

Corollary 2.2 The number of diagrams of genus 2 and crossing number n is O=(n®). Hence there are 0= (n%) alter-
nating genus 2 knots of crossing number n and O(n”) positive knots of genus 2 or unknotting number 2 and crossing
number at most #.

Proof (to be continued). For the alternating case the only non-obvious point is to show that there are 0= (n®)
alternating knots and not only O(n%). I will give an argument for this at the end of §3.
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The positive case is somewhat more involved as we do not have the result of [Ka2, Mu, Th] of minimality (in crossing
number) of alternating diagrams. Therefore we have a result only for bounded but not fixed crossing number. We
also need to use that a positive genus 2 knot has a positive diagram of minimal crossing number. This is again not
straightforward and will be proved in theorem 8.1. The result for the unknotting number and positive knots follows
from the inequality u > g (see [St2, corollary 4.3]). a

3. Alternating genus two knots

The 7, twist sequences of some of the 24 knots contain those of some others as a subfamily. This happens when
resolving a clasp. The relations are given in figure 6. Therein the knots are encircled, whose twist sequences are not
contained in any other (we will call them main), and for the others not all (but at least one) of the sequences containing
them is indicated.

Remark 3.1 It is striking and suggested by the figure that inclusions of series occur only between generators of the
same parity of the crossing number. This will be so for higher genera diagrams, too. As already remarked, whenever
resolving a clasp simplifies the diagram by more than the two crossings (by removing nugatory crossings), the resulting
diagram must have already smaller genus.

We record two small consequences. First note that 63 is simple but main. Some reason for this is that it is the only knot
among the 24 where the numbers of positive and negative crossings in the alternating diagram are both odd. Therefore,
we have

Proposition 3.1 Let K be an alternating genus 2 knot with {c¢(K),w(K)} mod 4 = {0,2}. Then K is an arborescent
knot with Conway notation (p,q)rs(t,u) with p,q,r,s,t,u > 0 all odd. o

Another interesting aspect is to consider the achiral knots among the alternating genus 2 knots. First we obtain

Proposition 3.2 A prime alternating genus 2 knot K has zero signature, if and only if a diagram of K can be obtained
from a diagram of 63, 77, 812, 941, 1058 or 121202 by (repeated) t_é moves.

Proof. The one direction follows from computing the signatures of the 24 knots and the fact, that a 7, move in an
alternating diagram does not change the signature (which follows from the Traczyk-Murasugi formula, see e.g. [Tr]
or [Ka, p 437]). For the reverse direction note that by a result of Menasco [Me] the primeness of an alternating knot is
equivalent to the primeness of (any)one of its (reduced) alternating diagrams. O

Corollary 3.1 Let K be a prime achiral alternating genus 2 knot. Then a diagram of K can be obtained from a diagram
of 63, 812, 10sg or 121202 by (repeated) fé moves.

Proof. This follows from the preceding proposition by excluding the odd crossing number knots. o

It is, however, much more interesting to have an exact classification of all such knots. This is obtained by applying the
flyping theorem of Menasco and Thistlethwaite. (Here I for completeness include the composite case.)

Theorem 3.1 Let K be an achiral alternating genus 2 knot. Then a diagram of KX is either

1. a composite diagram

(a) C(q,q)#C(p,p) with p,q > 0 even or
(b) K#!K with K € {C(p,q)|p,q > 0even}U{P(p,q,r)|p,q,r >0o0dd};

2. an arborescent diagram with Conway notation (a,b)cc(a’,b’) with a,b,c,a’,b’ > 0 odd and {a,b} = {d’,b’} (in
which case the knot is +-achiral if @ = @’ and —achiral if a = b"),

3. arational diagram C(a,b,b,a) with a,b > 0 even (which is invertible so the knot is +—achiral) or
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Figure 6: Some of the inclusion relations, under resolving clasps, between the twist se-
quences of the 24 generating knots, and the indication (by encircling) of the main twist
sequences.
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4. a diagram in the 7 twist sequence of 12120y with a,b,c 7 twists at the three positive clasps and a’,b’,¢” twists
at the three negative clasps, such that a,b,c > 0 and {a,b,c} = {a’,b’,c’} (in which case the knot is +achiral
or —achiral depending on whether the cyclic orderings of (a,b,c) and (a’,',¢’) along the knot are the same or
reverse).

Proof. In the case the knot K is composite it must have two prime factors of genus one and by a result of Menasco
[Me] both are alternating. By the uniqueness of the decomposition into prime factors, if K is achiral both factors must
be so, or mutually obverse. Now use the classification of alternating genus one knots in [St4]. It is an easy consequence
of this classification that the only achiral knots among them are the rational knots C(q,q) with ¢ > 0 even. Then one
obtains the above characterization.

In the case the knot K is prime, using corollary 3.1, we need to discuss 4 cases.

121202: It is easy to see (e.g., by looking at the Gauf3 diagram [FS, PV] shown of figure 7) that the diagram of 1219
and any other diagram in its 7, twist sequence does not admit a flype. Hence the knot is achiral if and only if
the Gauf} diagram is isomorphic to itself (or its mirror image) with the signs of the crossings switched, which
happens exactly in the cases recorded above.

1058: To show that we have no achiral knot here we use the intersection graph of the Gaufl diagram. Its vertices
correspond to the arrows in the Gauf3 diagram and are equipped with the sign of the crossing in the knot diagram.
Two vertices a and b are connected by an edge if and only if the arrows in the Gaull diagram intersect (or the
crossings are linked in the sense of definition 2.5). A flype preserves the intersection graph and hence the
intersection graph of an achiral alternating knot diagram must have an automorphism reversing the signs of all
vertices. To see that any diagram in the 7} twist sequence of 10sg does not have such an automorphism, consider
the equivalence relation between vertices from definition 2.5. Then the number of ~- and %-equivalence classes
of positive resp. negative crossings in each such diagram is 2 resp. 3, and hence there cannot be an automorphism
of the desired kind.

812: Use again the intersection graph. Looking at the number of positive and negative arrows intersecting only one
~- or ¥-equivalence class of arrows, we find that in the form C(a,b,c,d) we must have a =d. Then b = ¢
follows from looking at the number of positive and negative arrows at all (or the writhe). One can also use
generally known arguments about rational knots.

63: The Gauf} diagram is shown schematically on figure 7. Looking at the number of positive and negative arrows
intersecting only ones of the same sign we find ¢ = ¢/, and hence by the writhe argument a + b = a’ +b'. Then
counting the number of intersections between arrows of the same sign we find ab = a’b’, whence {a,b} =
{d.b'}. O

Remark 3.2 As far as orientation goes for the composite case, the non-invertible genus 1 alternating knots are
P(p,q,r) with 3 < p < g < r[T]. So, taking one of these knots K, the knot K#!K is +achiral and K#—!K is —achiral.
The rest of the knots are invertible and so +—achiral.

Using the intersection graph arguments we can now easily complete the proof of corollary 2.2 in the alternating case.

Proof of corollary 2.2 (continued). The only point is to convince oneself that the O=(n®) alternating diagrams
remain at that quantity after modding out by flypes. For this consider just diagrams, where the number of 7, moves
applied to any ~ equivalence class of crossings in the diagram generating the series is different. Then there cannot
be an isomorphism of any two of the intersection graphs (just because the sets of cardinalities of the ~ equivalence
classes are never the same). But the number of compositions of length k of some number  into strictly ascending parts

is the same as the number of compositions of n — (2) into k non-strictly ascending parts (or the number of partitions

of n— (g) of length k), which is O=(nk=1).

The proof of corollary 2.2 is now complete modulo theorem 8.1. O

Considering the signature 6, we mention a final consequence of theorem 2.1 for positive knots, which also follows
from [PT].
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63 121202

Figure 7: Schematic drawing of the GauB diagrams in the 7 twist sequence of 1215, and
65. Orientation of the arrows is abused. A number like a at each chord denotes that it
stands for a family of a neighbored non-intersecting chords. The crossings are negative
for the groups labeled by ', b’ and ¢’ and positive for the groups labeled by a,b and c¢. For
121202 all 6 numbers are even and for 65 odd.

Corollary 3.2 A positive genus two knot has ¢ = 4.

Proof. It is clear that 6 < 4. To show ¢ = 4 it suffices to check it on the (positively crossing switched) generating
diagrams on figure 3, as a 7, move never reduces G. O

4. Homogeneous genus two knots

In [Cr], Cromwell introduced a certain class of link diagrams he called homogeneous, which possess minimal (genus)
canonical Seifert surfaces. Roughly, a diagram is homogeneous, if the connected components, called blocks, of the
complement of its Seifert picture (set of all Seifert circles lying in the projection plane) contain only crossings of the
same sign. Letting this sign always remain the same or always change when passing through a Seifert circle, we obtain
the positive (or negative) and alternating diagrams as special cases. For five 10 crossing knots Cromwell could not
decide about the existence of a homogeneous diagram — 10144, 10751, 10158, 10160 and 101¢5. Two of them have genus
2 — 10144 and 10;¢5. The present discussion enables us to handle these cases.

Theorem 4.1 Any homogeneous genus two knot K is alternating or positive.

Note, that this is no longer true for genus three, as shows Cromwell’s example 943.

Corollary 4.1 The knots 10144 and 1045 are non-homogeneous.

Proof. The knots 10144 and 10;¢5 violate obstructions to being positive (e.g. [Cr, theorem 4(b)] or [St2]) or alternating
(one edge coefficient of its Jones polynomial is not -1, see [Ka2, Mu, Th]), hence cannot be homogeneous. O

Before we start with the proof of theorem 4.1, we need one more definition.

Definition 4.1 The interior of a Seifert circle is the bounded component of its complement in the plane, and its
exterior is the unbounded one. The Seifert circle is called separating, if both its in- and exterior contain at least one
other Seifert circle (or equivalently, at least one crossing), and non-separating otherwise.

First we record a statement we will use later to reduce the number of cases to discuss.
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Lemma 4.1 Let D be an alternating diagram with (i) exactly three negative crossings, all connecting a non-separating
Seifert circle, or (ii) with exactly two negative crossings. Assume furthermore that, whatever case (i) or (ii) we are in,
no flype can be performed at any one of these two or three crossings. Then any homogeneous diagram in the series of
all diagrams obtained from D by flypes is either positive or alternating.

Proof. Assume a knot has in (all) its alternating reduced diagram(s) at most 3 negative (or positive) crossings. Then
the fact that alternating diagrams are homogeneous shows that any Seifert circle must be connected from the same
side by crossings of the same sign and then by the non-existence of isthmus crossings any Seifert circle is connected
by either no or at least two negative crossings. So, if they are at most three, all the negative crossings connect the
same pair of Seifert circles (there cannot be three Seifert circles, each one connected with the other two, because of
orientation reasons). Then they belong to the same block.

If the crossings are three, by assumption one of the two Seifert circles to which they connect has an empty interior (or
exterior), and the diagram does not admit a flype near one of these crossings. Then (e.g. by looking at the chords of
the three crossings in the Gauf} diagram) one convinces himself that the triple of crossings is preserved by flypes, and
so the Seifert circle stays empty after any flype. Thus any alternating diagram of the knot has at most one separating
Seifert circle, and then each homogeneous diagram in the series of this diagram is either positive or alternating.

If the negative crossings are two and the diagram has two separating Seifert circles, then these are exactly the Seifert
circles connected by the two negative crossings, and both inside the inner one and outside the outer one (or inside both
if the one does not contain the other) there are crossings. But then these negative crossings admit a flype. O

Proof of theorem 4.1. With g(K) = 2, a homogeneous diagram of K, if it exists, must lie in one of the 24 series (the
composite diagrams are connected sums of alternating pretzel diagrams, so the claim is trivial for such diagrams).

The series of 938, 10101, 10120, 11123, 11329, 121097 and 134233 are excluded by positivity (their alternating diagrams
are positive, and hence so is any homogeneous diagram in their series).

Consider the series of 939, 941, 1097, 11148 and 1215092. The diagram of 121592 does not admit a flype (hence it is
the only alternating diagram of 1215(7) and it has exactly one separating Seifert circle. 939, 1097 and 11148 have two
negative crossings which do not admit a flype. Finally, 94; has three negative crossings, all of which do not admit a
flype and together bound an empty Seifert circle. Then by the lemma each homogeneous diagram in the series of all 5
knots is either positive or alternating.

There remain the 12 arborescent generating knots 5; ...9;,5 and 10s5g. To handle these series, use the < 3 negative (or
positive) crossing argument of lemma 4.1. It works except for 63, 76, 77, 812 and 1053. (Note, that in most cases of
two negative crossings they form a flypable clasp and hence cannot admit a flype themselves.)

63 is excluded because it has only three Seifert circles, hence it cannot have two separating ones.

812 is excluded because it admits only type B flypes and so the series of all its diagrams are equivalent, but the one of
C(2,2,2,2) contains only rational knots, and such knots are alternating.

Now, 1053 has an alternating diagram with 5 clasps, two of them negative (say, modulo mirroring). We find out that the
only possibility to flype is to flype the tangles of these clasps, giving us (modulo symmetries) a total of 4 alternating
diagrams of 1053. The only way to make them homogeneous, but not positive and not alternating, is to switch exactly
one of the clasps in 3 of these diagrams, and then possibly to perform 75, moves. As 10sg’s alternating diagrams differ
only by type B flypes, it suffices to consider one of these 3 diagrams. But it is easy to see that the diagram simplifies
to an alternating one of one crossing less.

76 is excluded similarly. We have the 2 negative crossings admitting a flype, the flypable tangle being a positive clasp.
The proof of lemma 4.1 shows that the possibility to obtain modulo flypes a homogeneous diagram is to switch or not
the negative and/or the flypable positive clasp. From the four cases only the two where the flypable clasp is switched



are neither alternating nor positive. We end up with
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But in both cases one can see that after performing any series of 7, moves the diagram can be simplified to an alternating
one.

77 one excludes the same way. The only way to obtain a homogeneous non-positive and non-alternating diagram is to
switch exactly one of the two positive flypable clasps, but all diagrams in this series simplify to an alternating one.

In fact, one should be even a little more careful. Theorem 2.1 just said that one obtains a diagram in the series modulo
type B flypes (and a type B flype may change the homogeneity of the diagram). But one can find out that the only
cases where the flype is necessary are to have 2 and 2 (for 7¢ and 10sg) and 2 and 1 (for 77) flypable crossings on both
sides of the flypable negative clasp(s), and these cases one handles exactly as above. O

5. Classifying positive diagrams of some positive genus 2 knots

The strict increase of v, and v3 under 7, moves at a positive diagram enables us to classify with reasonable effort all
positive diagrams of positive knots of genus 2 (or higher genera, if an analogue of theorem 2.1 is worked out), if they
are not too complicated. We describe this procedure for the examples 73 and 75 (for which the use of v, suffices). The
result is a special case of a more general procedure, so the discussion aims to show how in principle such a task can
be solved.

Denote by K for an alternating knot K the diagram obtained from an alternating diagram of K by making it positive
by crossing changes (this is defined up to flypes).

positive diagrams of 75 are: 75, 8¢, 8s, 814, 98, 915, 919, 1035.

Proof. We have v,(75) =4 and v»(73) = 5. Let D be a positive diagram of 73 or 7s. Then D belongs to the twist
sequence of one of the 24 knots above. In case of 815, 923, 938, 10101, 10120, 11123, 11329, 121097 and 134233 the
alternating diagrams are positive and, since 7, moves preserve alternation, all positive diagrams of their twist sequence
are alternating diagrams with at least 8 crossings, and hence by [Ka2, Mu, Th] never belong to 73 or 75. The same is
true for the twist sequence of 75, with the exception that in it exactly the diagram of 75 belongs to itself and no one
belongs to 73.

By an analogous argument the only diagram in the twist sequence of 5; belonging to 73 is 73’s usual (1,1,1,1,3)
pretzel diagram, and no diagram belongs to 75.

In the series of 939, 941, 1097, 11143 and 12705 the positive diagram obtained by crossing changes from the alternating
one has v, > 5, and as v, is (strictly) augmented by applying 7, moves to a positive diagram (by the Polyak-Viro
formula, see [St2, exercise 4.3]), 73 and 75 do not occur here.

We are left with 9,5, 1053, 814, 812, 77, 76, 63 and 6,. We discuss these series separately in brief phrases.

62: Making 6;5’s diagram positive by crossing changes, we obtain 5. The (positive) diagram has Dowker notation
4 —8 1012 —2 6, the alternating one the same notation only without minus signs.

By increase of v under 7, moves on a positive diagram we need to apply twists on the positive generator diagram
only as long as vo < 5.
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63:

T7:

812:

814:

9252

1058:

5 Classifying positive diagrams of some positive genus 2 knots

Twisting at crossings 2 to 6, we obtain the diagrams 84 and 811 of 73 (the P(1,—4,3) and P(1,—2,5) pretzel
diagrams), and at crossing 1 the diagram 8¢ of 7s. In the case of the diagrams of 73, further twists can be
excluded, since v, = 5, but for 75 (with vo = 4), we must also consider a double twist at crossing 1. This gives
a diagram of 97 (with v, = 5), which finishes the case distinction for the series of 6,.

—4 —-810 —2126.

Since v, attains the value 5, 7, moves at crossings 2,3,4 or 6 cannot appear with another 7, move. These twists
yield the diagram 83 of 73. Twists at crossings 1 and 5 yield the diagram 8g of 75. For two twists we thus need
to consider only these two crossings. Twisting twice at one of them gives 97, and once at each of both 9,3. Both
97 and 9,3 have vy = 5, and so we see that there are no more relevant diagrams.

48122 —146 —10.

To save work, note that we have 5 ~ 7 in the sense of definition 2.5. Thus crossing 7 can be excluded from
twisting at. Without twists, this is a diagram of 51. The twists at crossings 2, 3, 4 or 6 give the diagrams 915, 9,
of 73. The twists at crossings 1 and 5 result in the diagrams Og and 9;5 of 75. Two twists at crossing 1 or 5 give
97, and one twist at each of both 9,3, and so we are done.

—48 —-10122 —146.

Without twists, this is a diagra@f 51. The twists at crossings 2, 4, 5 or 7 give the @gram 9,4 of 75. The twist
at crossing 3 gives its diagram 937. The twists at crossings 1 or 6 give the diagram 919 of 75. Two twists at latter
crossings again give 97 and 93.

4 —-81410 -2 —166 —12.
This is a diagram of 5;. We have three reverse clasps, (2,5), (3,7) and (6,8), and also 1 ~ 4. Thus consider

only crossings 1,2,3 and 6. Twisting once at 1 or 6, we obtain 75 (1035) and at 2 or 3, 73 (10y3) with v, = 5. For
two twists we need to consider only crossings 1 and 6. Then one obtains diagrams of 97 and 9,3 with v = 5.

Thus more twists cannot give any diagram of interest.

4 -81014 —216612.

Without a twist this is a diagram of 75 (814). The alternating diagram has a negative clasp (2,5). Not affecting
a crossing there by a 75, move gives a diagram of an alternating knot of > 9 crossings, which is excluded. Thus
consider twists at a crossing in the clasp (both crossings are equivalent with respect to twists). A twist gives 93
with vo > 5, which is excluded, so there are no more diagrams of 73 and 75.

48122 —16618 —10 14.

Again there is a negative clasp (5,8). Use the above argument (for 814). Without twists it is 85, and with one
twist near a crossing in the clasp 91g with v» > 5, so there are no diagrams.

4 -81410 -2 —18620 —1216.

This is a diagram of 8;5. With one twist we obtain diagrams of 1055 and 10g3 with v» > 5, so there are no
diagrams we seek.

By this exhaustive case distinction we have the desired description. O

Beside the diagrams we were interested in, we came across many others used to exclude further possibilities. From
this we obtain also the following useful

Example 5.1 The knot !10145 is not positive. It is then obviously almost positive as shows its Rolfsen diagram [Ro,
appendix]. This is the reason for the difficulties to show its non-positivity by obstructions based on skein arguments
(see e.g. [CM]), as skein arguments apply for almost positive knots in the same way as for positive ones. The first
non-positivity proof is due to Cromwell [Cr, corollary 5.1] using the monicness of the Alexander polynomial. In our
context the fact follows from the proof of proposition 5.1. We have v,(!10145) = 5 and g(!10145) = 2, and so if 1045
were positive, we would have encountered it in the above case distinction, but it did not.
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6. Classifying all 2-almost positive diagrams of a slice or achiral knot

In this section we give a proof of the classification, announced by Przytycki and Taniyama in [PT], of 2-almost positive
achiral and slice knots. Our proof will actually also describe all 2-almost positive diagrams of such knots.

Proposition 6.1 The only non-trivial achiral 2-almost positive knot is 4; (the figure eight knot), and the only non-
trivial slice 2-almost positive knot is 61 (stevedore’s knot). Each one of them has only the two obvious 2-almost
positive (twist knot) diagrams.

Our arguments will apply also to the unknot. We thereby extend the result, announced by Przytycki and Taniyama
and proved in [St3], determining all almost positive unknot diagrams. Our work can be also considered a partial
extension, for special diagrams, of the description of almost alternating unknot diagrams given recently by Tsukamoto
[Ts]. Although for the unknot the full description of 2-almost positive (and 2-almost special alternating) diagrams
is not short enough to be nicely formulable, we have the following more self-contained statement, closer in spirit to
Tsukamoto’s result.

Proposition 6.2 All 2-almost special alternating unknot diagrams have an unknotted clasp. All 2-almost positive
unknot diagrams are trivializable by crossing number reducing Reidemeister LII, and Reidemeister III moves.

This proposition will not be proved separately, since it can be checked as a consequence of the list of unknot diagrams
obtained while proving proposition 6.1. We will, however, give a shorter proof in subsequent work, where we will
obtain extensions to 3- and 4-almost positive unknot diagrams. Here we focus on the proof of proposition 6.1. The
procedure for this task is similar to the one in the previous section, with the difference that it is better now to use the
signature instead of Vassiliev invariants.

Proof of proposition 6.1. By the slice Bennequin inequality (see [Ru]), 2-almost positive diagrams of achiral or slice
knots have canonical genus g < 2 and 6 = 0. For simplicity we content ourselves only to the (interesting) case, where
the diagram is prime, as the composite case reduces to it and to the almost positive diagram case.

& =0: A prime diagram of canonical genus zero has no crossings, and is hence not 2-almost positive.

XXX

then the diagram D reduces to a prime almost positive diagram and so D belongs to a positive or almost positive
knot. If such a knot is slice or achiral, then it is the unknot. Let p and g be odd and even positive integers.
All prime almost positive diagrams of the unknot are unknotted twist knot diagrams [St3] (that is, a twist knot
diagram with one of the crossings in the clasp changed). Hence D is either an unknotted twist knot diagram
with one of the crossings in the twist changed, a pretzel diagram P(3,—1, p) with one of the crossings in the
3-crossing group changed, or a rational diagram C(4,—g) with two of the crossings in the 4-crossing group
changed.

g = 1: If we have a subdiagram like

If we do not have a subdiagram like the one above, then the classification of diagrams of canonical genus one
[St3] shows that we have either a C(—2,q) or P(p,—1,—1) diagram, which are the even and odd crossing
number diagrams of the (negative clasp) even crossing number twist knots. The only achiral twist knot is 4; (a
fact, which is almost trivial to prove using knot polynomials) and the only slice twist knot is 6; (a fact, which is
less trivial to prove, and it was done by Casson and Gordon [CG], see [Ka3, p. 215 bottom]). After discussing
the case § = 2 below, in which only the unknot occurs, we will conclude that each of these knots has only the
two 2-almost positive diagrams we just found.

¢ = 2: Again we discuss the 24 cases separately. Consider all diagrams D obtained by switching the crossings of the
generators so that exactly two are negative. Then apply #, moves at some of the positive crossings of Dy. Using
the fact that 6 does not decrease when a 75, move is applied to a positive crossing in any diagram, we can exclude

oo
|
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6 Classifying all 2-almost positive diagrams of a slice or achiral knot

any diagrams obtained by 7, moves (at positive crossings) from D, if (D) > 0. (Here D will be obtained by
some 7, moves from Dy.)

Hereby some symmetries reduce the number of cases to be checked. When fixing the crossings to be switched
to become negative, only one choice of crossing(s) in each ~ and ¥ equivalence class needs to be considered.
The diagrams for the other choices are obtained (even after 7-twists) by flypes from the choice made. Also,
when applying twists, it needs to be done only at one choice of crossing(s) in a ~ equivalence class. (In a
% equivalence class, a priori all crossings must be discussed, if more than one crossing is involved in the
twisting, and we would like to take care of mutations. However, signature and unknottedness are invariant under
mutations, so that the outcome of our calculation a posteriori justifies also symmetry reduction in ¥ equivalence
classes.)

For 51, using the signature and symmetry arguments, and that 6(P(—1,—1,1,3,3)) > 0, we see that the only
diagrams with ¢ = 0 are P(—1,—1,1,1, p), with p odd and up to permutation of the entries, and they are all
unknotted. Considering the remaining 23 series, a complete distinction of the cases was done using KnotScape
and is given in the 3 tables on the following pages. By explicit computation of 6 we find that 6(Dg) > 0 except
for the choices of negative crossings given in the tables below (where the aforementioned symmetries have been
discarded). To explain the notation used in the tables, therein “ 13” means: the diagram obtained from
this of 6, (given by its Dowker notation specified in §2) by switching crossings so that all crossings are positive
except 1 and 3. It turns out that in all cases of 6(Dg) = 0 the diagram Dy is unknotted. Then we start applying 7}
moves at (combinations of) positive crossings of Dy, noticing that either all these moves do not change G, or until
some 7, move gives a knot diagram with 6 > 0. In latter case we exclude any further 75 moves at that crossing.
It former case it turns out that we always obtain the unknot. (That arbitrarily many twists at some specific knot
diagram give the unknot can be seen in each situation directly, but it also follows from checking the first two
diagrams in the sequence because of the result of [ST].) The twisting procedure is denoted, exemplarily, in the

following way:
13 4 —3
2% 5% — 04

The notation means: the diagram 13, described above, with one twist at the crossing numbered by 4 gives
the trefoil (with 6 = 2, so we cannot have twists at crossing 4), and arbitrarily many twists at crossings 2 and
5 give the unknot. Hereby a ‘,” (comma) on the left of a term ‘x — y’ means ‘or’, while ‘and’ is written as a
space. Thus ‘4 4, 1 5’ means double twist at crossing 4 or twists at crossings 1 and 5. The ~ and ¥ equivalences
for each generator are denoted below it to justify why certain crossings are not considered for symmetry reasons.
O

13 2—0 13 2—0; 24-—3
4 — 37 2%x5%« — 0y 4 — 0 25 — 0 2%5%x — 0
5 — 01 5 — 0y 45 — 0 4%5%x — 0y
2~5 6 — 3 2% 4
3%4%6 3~6 23 1 —0 14 — 3
23 1—0; 46 — 3 5~7 4 — 0y 15— 0 1%5%x — 0y
4 — 0 5— 07 45— 0 4x5%« — 0
6 — 07 1x4%x — 0y
1 %x6%x — 0 24 1 — 67
3 — 0y 3% — Oy
34 1 — 34 5 — 3
2—>01 2*—>01
6—>01 6*—)01 25 l—>01
26 — 34 3— 07 1%3%x — 0y
4 — 34

Table 1: Proof of proposition 6.1: the series of 6, and 7.
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13 2—0; 2% — 0
4—>31
13 2—0 22 — 0, 6 — 7g
4 — 0 24 — 34 2%5%x — 04 2~5
5 — 0y 44 — 0 4x — 04 4~7 14 2 — 0 2x6%x — 0
6 — 3 25— 0 3 — 3
2% 4 6 — 0
3%6 23 1,4—0; 14,46,56 — 37 4x5x — 0
56 —0; 15,16,45— 07 1%x5%x— 0y 23 1 — 0
1x6%x — 04 4 — 0 1 %4%x — 0y
6 — 3
24 1 — 6,
3 — 01 36 — 34 3% — 04 24 1 — 0
5 — 3 6x — 0y 3— 07 1%3%x6x— 0
6 — 0 6 — 0
25 1 — 0 26 1 — 0
3 — 01 36 — 34 1%3% — 0y 3 — 3 1 %x4%x — 0
4—>31 1*6*—>01 4—>01
6 — 01
34 1 — 3
36 1 — 3 2 — 0y 2x6%x — 0
2—>01 22—>01 4*—>01 6—>01
4—>01 24—>31 2*—>01
5 — 6o 44 — 0 36 1 — 74
2—>31 4*—>01
4 — 0

Table 2: Proof of proposition 6.1: the series of 65 and 7.

Remark 6.1 Looking more carefully at our arguments, we see that we only needed the knot to be slice or achiral
to ensure that the diagram has genus at most two, then we only used that the signature is zero. We could therefore
hope to eliminate completely the condition of achirality or sliceness by the condition of zero signature. (This would
reprove the result of Przytycki and Taniyama [PT] that the only 2-almost positive zero signature knots are twist and
additionally show that they have only the two obvious 2-almost positive diagrams.) For this we would basically need
a version of the “slice Bennequin inequality” of [Ru] with signature replacing the slice genus. But the inequality
6(D) > |w(D)| —n(D) + 1 is not true for arbitrary diagrams. Lee Rudolph disappointed my hopes in this regard,
quoting the braid representation of the untwisted Whitehead double of the trefoil in Bennequin’s paper [Be, fig p. 121
bottom]. It a is 7-string braid (so n(D) = 7) consisting of 8 positive bands (so w(D) = 8), but clearly ¢ = 0.

7. Almost positive knots

Almost positive knots, although very intuitively defined, are rather exotic — the simplest example !10145 has 10 cross-
ings. Therefore, non-surprisingly, several properties of such knots have been proved. For example, they have positive
G, and v3 (see [PT] and [St3]), so they are chiral and non-slice, and are non-alternating [St5]. Here we add the
following property:

Theorem 7.1 There is no almost positive knot of genus one.

Proof. Assume there is an almost positive knot K of genus one. By the Bennequin-Vogel inequality (or “slice Ben-
nequin inequality” of [Ru]) an almost positive diagram D of K has genus at most 2. The description of genus one
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75| 23 1 — 0 11 — 0y
4 — 0 14 — 04 1 x4%x — O

1~6,2%5,3%47%7 5 — 3 44 — 0
82| 13 7 —5; 4 — 3 2%6x — 0y
23 7 — 3 5 — 3 1 %x6%x — 0
1~4,2~53~7,6~8 26 5—5; 8§ — 3 1%3%x — 0O

814 14 7—>52 3—>31 2*6*—)01
24 57 —3; 1,3,6 —0; 1#3%6% — 0
2~5,4%7,6~8 34 1,7 —3; 2,6 —0; 2%6x — 0
8i5] 25 4 — 3 8§ — 3 1%3%x7%« — 0
2% 4,3~6,5%8

93| 24 5 — 3 8§ — 3 1%3%x7%« — 0

1~6,2%75,4%8, 7~

=]

95| 25 4 —3 8§ — 5 1437+ — 0

27 4,3~6,5~8, 7~

e

10sg| 26 5 —15; 9 — 5, 13%8x — 0

1~4,2~53~7,6~9, 8~ 10

Table 3: Proof of proposition 6.1: the series of 75 and the 8 to 10 crossing generators.

diagrams relatively easily excludes the cases where g(D) = 1 or D is composite. Thus again we need to consider the
24 series.

To have an almost positive diagram of an almost positive knot we need to switch (exactly) one crossing in the generator
diagram to the negative, all others to the positive, and possibly apply 75 moves at the positive crossings.

First note, that the negative crossing must have no ~-equivalent or ¥-equivalent crossing. Otherwise, after possible
flypes, the negative crossing can be canceled by a Reidemeister II move or a simple-to-see tangle isotopy, giving a
positive diagram.

Then note, that the 75, move at a positive crossing p in an almost positive diagram D changes V (the Conway polyno-
mial) by a multiple of V7, where L is the link resulting by smoothing out the crossing p in D. Now, by Cromwell [Cr,
corollary 2.2, p. 539], V has only non-negative coefficients, hence such a fé move never reduces a coefficientin V, in
particular not [V]_s. Hence if at some point [V] 4 > 0, any further 75 moves cannot produce a genus one knot.

In many cases [V] 4 > 0 already after the crossing switch (without 7, moves) and we can exclude such cases a priori.

Finally note, that D must have at least 11 crossings, as the only almost positive knot of at most 10 crossings is !1014s,
which has genus two.

There arguments exclude after some check all but 7 of the series. We discuss these cases in more detail.

The argument we apply for these cases basically repeats itself 7 times and consists mainly in drawing and looking
more carefully at the corresponding pictures to see how to eliminate the negative crossing by Reidemeister moves in



23

most of the cases, and to check that in the remaining cases maxdegA = 2. I list the cases, leaving the drawing of the
pictures to the reader.

62: We have 3 ¥ 4% 6 and 2 ~ 5. The negative crossing may be chosen to be 1 or 3. If it is 1, the diagram simplifies
to a positive diagram, unless at 3 is twisted. However, if we apply no twists at one of 3, 4 and 6, then by flypes
this crossing can be made to be 3, hence at all these three crossings there must be 75, moves. The resulting 12
crossing diagram has maxdegA = 2.

63: 2% 4 and 3 ¥ 6. Then modulo flypes and inversion the negative crossing only needs to be chosen to be 1 or 3.
In case it is crossing 1, the resulting diagram can be transformed into a positive one, unless at both crossings 2
and 4 there are 75, moves applied, in which case maxdegA = 2. In case crossing 3 is changed to the negative, the
transformation into a positive diagram is always possible.

76: 3~6,5~7,27% 4. This reduces to checking the negative crossings to be 1. Then the diagram can be transformed
into a positive one, unless at both 2 and 4 is twisted, in which case maxdegA = 2.

77: 2~ 5,4 ~ 7 and inversion symmetry leave us with the negative crossing being 1 or 3. Former case simplifies to
a positive diagram unless at crossings 3 and 6 is twisted, and so does latter case, unless at crossings 1 and 6 is
twisted. In both remaining situations maxdegA = 2.

814: 2~5,47% 7 and 6 ~ 8 leave us with crossing 1 or 3. 1 simplifies unless 3 is twisted, in which case maxdegA =2;
3 simplifies unless 1 is twisted, in which case again maxdegA = 2.

939: 1 ~ 4,2~ 6,3 ~ 8 leave us with crossings 5, 7 and 9 to be negative. When 5 is negative, then already
maxdegA = 2. When one of 7 and 9 are negative, the diagram simplifies unless at the other one there is a 7,
move, in which case maxdegA = 2.

Finally, we have

941: 2~6,3~8,5~9]leave 1, 4 and 7 to be negative. However, the diagram has (modulo S2 moves) a Z3-symmetry
(rotation around 27m/3), hence we need to deal just with crossing 1 switched to the negative. This simplifies to a
positive diagram unless at both 4 and 7 is twisted, in which case maxdegA = 2. O

Similar properties to the one I proved remain still open.
Question 7.1 Is there an almost positive knot of 4-ball genus or unknotting number one?

The expected answer to both is negative. (Note that in this case the answer to the second part of the question is a
consequence of the answer to the first part.) To give a negative answer, one could try to apply the argument excluding
10145 — namely that it has an almost positive genus three diagram — to the other knots occurring in our proof whose
diagrams are not straightforwardly transformable into positive ones (instead of showing maxdegA = 2 for them), but
this appears to require hard labor.

8. Unique and minimal positive diagrams

One of the achievements of the revolution initiated by the Jones polynomial was the proof of the fact that an alternating
knot has an alternating diagram of minimal crossing number [Ka4, Mu, Th]. Unfortunately, such a sharp tool is yet
missing to answer the problem in the positive case. Hence the question whether there is a positive knot with no positive
minimal diagram is unanswered. In [St5] I managed to give the negative answer to this question in the case the positive
knot is alternating, and subsequently I received a paper [N], where this result was proved independently. Moreover, it
follows from [St4] that the answer is the same for (positive) knots of genus one (in fact, a positive genus one knot is
an alternating pretzel knot). Here we extend this result to genus two.

Theorem 8.1 Any positive genus two knot has a positive minimal diagram.



24 8 Unique and minimal positive diagrams

) (=2 X K00

) 0 -1 1 4
Figure 8: The Conway tangles.

With this theorem we finish also the proof of corollary 2.2. The main tool we use to prove it is the Q polynomial of
Brandt-Lickorish-Millett [BLM] and Ho [Ho] (sometimes also called absolute polynomial) and some results about its
maximal degree obtained by Kidwell [Ki]. (They were later extended by Thistlethwaite to the Kauffman polynomial.)

Recall, that the Q polynomial is a Laurent polynomial in one variable z for links without orientation, defined by being
1 on the unknot and the relation
Al +A_1 =z(Ag+Ax), (2)

where A; are the O polynomials of links K;, and K; (with i € Z U {e}) possess diagrams equal except in one spot, where
an i-tangle (in the Conway sense) is inserted, see figure 8. (Orientation of any of the link components is unimportant
for this polynomial.)

The following result on maxdegQ is the one that will be subsequently applied.

Theorem 8.2 (Kidwell [Ki]) Let K be a knot. Then maxdegQ(K) < ¢(K) — 1 with equality if and only if K is
alternating.

Corollary 8.1 Let D be a positive diagram with maxdeg Q(D) = ¢(D) — 2. Then the knot K represented by D has a
positive minimal diagram.

Proof. By the theorem 8.2, either ¢(K) = ¢(D), in which case the claim is trivial, or ¢(K) = ¢(D) — 1 and K is
alternating, in which case the claim follows from the above mentioned result of [St5]. O

Lemma 8.1 With the above notation in (2), the Q polynomial satisfies the following property:
An = (= 1)(An—2—An—s) +Ans. 3)

Proof. We have from (2)
Ay+A, 2 =z(An-1 + Ax) . “

Now, adding two copies of (4) for n and n — 2 we obtain

Ap 424, 2+ Ay 4 =22Ac+2(An 1 +An3) = (22 +22)A+ %A, 2. (5)
So
Ap = (2 +22)Aw+ (22 —2)Ap2—Aps.
Therefore
A= (2 =2DAn2+Ana = A2 — (£ = 2An-a+Ans,
which is equivalent to the assertion. a

Proof of theorem 8.1. Take a positive diagram D of a positive genus 2 knot K. If D is composite, the genus one
case shows that K is the connected sum of two alternating pretzel knots, hence K is alternating. Thus consider the
prime case. The series of 121997 and 134233 and their progeny in figure 6 contain only positive diagrams which are
alternating, so these cases are trivial. Considering 1143, the diagram is made positive by switching the negative clasp.
But all diagrams arising by 7, moves from this diagram can be simplified near the switched (and possibly twisted)
clasp by one crossing, so as to become alternating. The same argument excludes (the series of) 1097, 925, 814 and 7.
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The case of 81 is trivial, because it contains only rational knots, which are alternating. For 10553 and 77 apply the clasp
argument separately to the two negative clasps.

This leaves us with 121202, 941, 939 and 63. By corollary 8.1 is suffices the check that for any positive diagram D
in their series maxdeg Q(D) = ¢(D) — 2. By the lemma 8.1 and theorem 8.2 this reduces to calculating Q for at
most one #, move applied near a crossing and a (reverse) clasp being positive or resolved. However, when the clasp
is resolved, the diagram reduces to one in the series of some specialization, for which maxdeg Q(D) = ¢(D) —2 or
maxdeg Q(D) = ¢(D) — 3 by the above discussion. The formula in the lemma 8.1 then shows that we need to consider
just positive clasps without 7, moves. This leaves a small number of diagrams. E.g., the diagram of 1220, consists
only of clasps, hence only one diagram needs to be checked. Switching all crossings in the diagram of 1215, to the
positive, we obtain a diagram of the knot 12549, for which maxdeg Q = 10 is directly verified. 939 and 941 have 3 non-
clasp crossings, hence there are 8 diagrams to be checked, and for 63 we have 64 diagrams. Using various symmetries
one can further reduce the work, but even that far I had no longer serious difficulty checking the 8 + 8 + 64 = 80
relevant diagrams by computer. a

Our proof actually also shows the following:
Corollary 8.2 Any positive (reduced) diagram of a positive genus 2 knot K has at most ¢(K) + 3 crossings. a

This is, in this special case, a much better estimate than the general bound ¢(K)? /2 known from [St2].

The method used in the proof can also be used further. In [St4] I exhibited the (p,q, r)-pretzel knots with p,q,r > 1
odd as positive knots with a unique positive diagram (up to inversion and moves in $7) and asked whether these are
the only examples. The reason behind this question was that (as I already expected at that point) the number of series
generators grows rapidly with the genus and hence so does the number of diagram candidates for a positive knot of
that genus. Here we observe that at least for genus 2 the variety on generators is not sufficiently large, so that such
examples still exist. We take one of our generators.

Example 8.1 The knot !10;2¢ has a unique positive diagram. To see this, first exclude the series of the knots up to
9,5, and 10s5. Positive diagrams in these series are, or simplify to arborescent alternating diagrams, and !10129 has
no such diagram. The series of 933, 10191, 11123, 11329, 121997 and 134233 are excluded because all positive diagrams
in these series are alternating (and the only 7} irreducible diagrams they contain are the generators themselves and 7}
(ir)reducibility is preserved by flypes). 1097 is excluded, because by the above discussion the maximal degree of Q
on positive diagrams in its series is equal to the crossing number minus 2, and hence all maximal degrees are even
(whereas clearly maxdeg Q(10120) = 9). The same argument excludes 1215, and reduces checking positive diagrams
in the series of 1143 only to the one with no t’é moves applied, which belongs to 10191, and the diagrams of 939 and
941 made positive by crossing changes and with exactly one 7, move applied. In all the latter cases maxdegV = 11,
whereas maxdegV (!10120) = 12. To finish the argument, it remains only to notice that the alternating diagram of 1059
does not admit a flype itself and because of the crossing number, any 7} twisted diagram in its series cannot belong to
1t.

9. Some evaluations of the Jones and HOMFLY polynomial
9.1. Roots of unity

The first obstruction to particular values of g is an inequality of Morton [Mo]: maxdeg,, P/2 < g, which shows that
g > g for the untwisted Whitehead double of the trefoil [Mo, remark 2] and also for one of the two 11 crossing knots
with trivial Alexander polynomial, which according to [Ga, fig. 5] has genus 2 (I cannot identify which one). In this
section we will discuss an alternative approach to such an obstruction, and apply it to exhibit the first examples of
knots on which the weak genus inequality of Morton is not sharp.

Theorem 9.1 There exist knots K with g(K) > 2 = maxdeg,, P(K)/2.
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series 51| 62| 63 | 75 | T6 | 77 | 812 | 81a | 815 | 923 | 925 | 938 | 939 | 941

#Vyx 47 | 121 | 202 | 226 | 136 | 119 | 52 302 702 418 479 | 1195 | 413 268

#Py 47 | 121 | 202 | 226 | 136 | 119 | 52 | 302 | 710 | 418 | 487 | 1231 | 413 | 268
#Vsg =#Psgx | 112 | 408 | 919 | 988 | 538 | 456 | 146 | 1610 | 4281 | 2634 | 2554 | 8588 | 2271 | 1270

series 1058 | 1097 | 10101 | 10120 | 1li23 | 1liag | 1l3z9 | 121097 | 121202 | 134233 total
#Vax 157 | 980 2380 2587 2284 1041 2858 5791 197 5604 6645
#Pyx 163 | 1020 | 2429 2673 2349 1073 2970 6084 209 5915 6974
#Vsx = #Psx | 624 | 8161 | 23,714 | 27,510 | 22,817 | 8489 | 34,905 | 104,620 | 938 | 102,940 | 128,898

Table 4: The number of evaluations of V and P in the eighth and tenth roots of unity on
each series, and in total. (The number of evaluations for V and P coincide for tenth roots
of unity.)

The present diagram description opens the question for alternative criteria which can be applied to exclude a knot from
belonging to a given 7, twist sequence. (We noted that some of the 7} twist sequences contain others, so we need to
consider only main 7, twist sequences.) Such a criterion is the following fact, which is a direct consequence of the
skein relations for the Jones [J] and HOMFLY [F&] polynomial and has been probably first noted by Przytycki [Pr].

Theorem 9.2 (Przytycki) Let a* = 1, a # £1. Then V(a) € C and P(ia,m) € C[m?] (for i = \/—1) are 7»;(-move)
invariant.

\2k _ % _
Corollary 9.1 The sets 7y, := { Px mod (1_1)127_11 | (K) =g} and V¢, := { Vk mod % | 3(K) = g } are finite

for any k and g € N.

Proof. From the theorem it is obvious that for every generator K, the sets of residui

Ver = Vo mod 2L and Py = P mod 2=
kK = VK mo l‘zj an kK = g mo ﬁ
are finite on the series of K. 2y, and V), are a finite union of such sets. O

Proof of theorem 9.1. We will explain how the knots have been found. The obvious idea is to compute the sets in
corollary 9.1 for some appropriate k in all 24 series and to hope not to find the value of some knot therein, for which
maxdeg,, P < 4. Note, that the polynomials are preserved by mutations, so we need to consider just one diagram for
any generating knot.

The cases k = 2 and k = 3 did not suggest themselves as particularly interesting at least for V, because the corre-
sponding evaluations can be well controlled [LM2, Li]. Thus I started with k = 4. In case of V, this is mainly the
information given by its evaluations at ¢™/* and ¢3™/* (modulo conjugation and the value at i, which is equivalent to
the Arf invariant [J2, §14] and hence not very informative). Table 4 summarizes the number of evaluations of each
series.

As noted in remark 2.2 (and established also in [Ga]), § = g = maxdegA for < 10 crossing knots, so we need to look at
more complicated examples. Examining Thistlethwaite’s tables, I found 2010 non-alternating 11 to 15 crossing knots,
for which maxdeg,, P < 4. (Among these 2010 knots only the expected 12 pretzel knots had maxdeg,, P < 2.) The
unity root test for V and k = 4 does not exclude any of these 2010 knots from having § = 2. The test for P with k =4
produced the same disappointing result. (The above table shows that it does not bring much improvement compared
toV.)
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However, examining V with k = 5 exhibited four 15 crossing knots of the type sought. These examples are shown on
figure 9. One explanation of this outcome may be that for k = 5 all four relevant evaluations (at eMi/S fork=1,2,3,4)
admit very little control. The only known result about them is Jones’ norm bound for k = 1 in terms of the braid index
and bridge number (cite [J2, propositions 15.3 and 15.6]) and the fact that this evaluation is finite on closed 3-braids
(see [J2, (12.8)]). Experiments with P and k = 5, however, revealed significantly more time and memory consuming,
and all the values on all of the 24 series reported by my C++ program repeated those of V, so considering P appears
little rewarding. O

(k&b

o

15130745 15136972 15210586 15221824

Figure 9: The simplest examples of knots, for which g > 2 can be proved using Jones
polynomial unity root evaluations, but not using Morton’s inequality.

Remark 9.1 M. Hirasawa was able to find a genus 2 Seifert surface for the last example on figure 9, 1522824, SO
that the ordinary genus is not an applicable obstruction either to weak genus two in this case. Later Jake Rasmussen
showed that the other 5 knots from figures 9 and 11 all have genus 2 either, though his argument, based on direct
calculation of the knot Floer homology, is not constructive.

It would clearly be helpful to find some nice properties of the sets occurring in Corollary 9.1, but such seem unlikely
to exist or at least are obscured by the electronic way of obtaining them.

Here is some more special example.

Example 9.1 Consider the knots 1554486 and 154487 on figure 10. These knots are slice (generalized) pretzel knots,
which are mutants. Their (common) Jones polynomial is

V(15184486) = V(15184487) = (=13 —613 —1617 —1912 —7 [4] 4 -54 -31)

. | : . o . .
A check of the evaluation of V mod ——— shows that the polynomial modulus is not realized in any main series of

2
even crossing number. Thus these knots do not have a (reduced) genus 2 diagram of even crossing number (although

clearly they have some in the series of 51). A similar situation occurs for 1519757.

)
@), I oo
T 3T

15184486 15184487 15197572

@/@%@

Figure 10: The three 15 crossing pretzel knots (two of them mutants), for which we can
show at least that they have no (reduced) diagram of even crossing number of genus 2,
but which have maxdeg,, P = 4.
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9.2. The Jones polynomial on the unit circle
While the unity root values of V have been useful in a practical purpose, we can continue the discussion of the
polynomial evaluations in a more theoretical direction.

More generally than just in roots of unity, it is possible to say something about the evaluations of the polynomials on
the unit circle. Here are two slightly weaker but hopefully also useful modifications of corollary 9.1. They are also
possible for P, but I content myself to V for simplicity.

Proposition 9.1 Let z € C with |z] = 1 and z # —1. Then the set { Vk(z) |§(K) = g} C C is bounded for any g € N.

Proof. We use the Jones skein relation to expand the Jones polynomial of a knot in the 7 twist sequence of a diagram in
terms of the Jones polynomials of the diagram and all its crossing-changed versions. We obtain a complex expression
of partial sums of the Neumann series for z2 and z~2. Now we use the boundedness of these partial sums if |z| = 1 and
z# —1. (The value V(1) = 1 is of little interest.) g

Proposition 9.2 Let z € C with |z| < 1 and z # —1. Then the set { Vk(z) | K is positive and g(K) = g } C C is bounded
for any g € N.

Proof. In case of positive 7} twists only, the Neumann series for z~% do not occur, and we are done as before. a

This result seems similar to the boundedness of some other sets of evaluations of V on closed braids of given strand
number considered by Jones [J2, §14]. The nature of our sets is quite different, though. Note, for example, that their
closure is countable (so in particular its set of norms has empty interior) for |z| < 1, while Jones showed that for the
evaluations he considered, the closure is an interval.

Theorem 9.3 The map f = f, : S! — R defined for g € N by

fe(q) == sup{ |Vk(q)| | §(K) =g}

has the following properties:

1) f(g) = f(q), where bar denotes complex conjugation;

2) f() =1, f(=1) = oo

3) f is upper-semicontinuous on S'\ {—1}, that is, for g € S! and ¢ # —1 we have limsup fo(gs) > f(q) -
n#4q; qn—q

4) fg satisfies the bound
2 dyg
< max |V, | —+1 ,
o) < max o) - (2 +1)

where the maximum is taken over L being a(n alternating) link diagram obtained by smoothing out some sets of
crossings in an alternating 7} irreducible diagram of genus g. In particular, the order of the singularity of f, at
—1is at most d,.

The same properties hold if we modify the definition of f, by taking the supremum only over positive or alternating
knots.

Proof. The explicit estimate follows from the same argument as in the proof of proposition 9.1. If V,, denote the
Jones polynomials of L,, where L, are links with diagrams equal except in one room, where n antiparallel half-twist
crossings are inserted, then from the skein relation for the Jones polynomial we have

2n
g —1 _
Vania(9) = @Vi(@)+ 5 (¢"* =4 *)Vulg),
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with V.. denoting the Jones polynomial of L.. and L. being the link obtained by smoothing out a(ny) crossing in the
room.

Expand this relation with respect to any of the dj crossings, at which 7, moves can be applied, obtaining 2% terms to
the right, and take the norm, applying the triangle inequality and using |¢| = 1.

The upper-semicontinuity of f, is straightforward from its definition and the continuity of V. Thus the only fact
remaining to prove is f,(—1) = eo. For this first one easily observes that the determinant (even the whole Alexander
polynomial) depends linearly on the number of 7, twists. Thus we could achieve arbitrarily high and low determinants
in the 7, twist sequence (and at least one of both in alternating or positive diagrams), unless all linear coefficients in
this dependency are zero. But the fact that the determinant never changes sign by a 7 twist implies that all knots in the
series have the same signature, and as any diagram can be unknotted by crossing changes, it must be 0. This is clearly
not the case, and so we have a contradiction. ]

9.3. Jones’s denseness result for knots

This subsection is unrelated to our discussion as far as weak genus two knots are considered. However, it is interesting
in connection with (or rather contrast to) the properties of their Jones polynomial unity root evaluations.

In [J2, proposition 14.6], Jones exhibited the denseness of the norms of V (ezm/ k) on closed 3-braids in [0,4cos? 7t /],
if ke N\ {1,2,3,4,6,10}.

Here we modify this result restricting our attention to knots, which are closed 3-braids.
Proposition 9.3 If k € N\ {1,2,3,4,6,10}, then

[0,4cos’>m/5 — 1] k=5

[4cos’mt/k—3,4cos’m/k—1] k>7

} C {|Vk (e2@/%) | : K isaclosed 3-braid knot } C [0,4cos*m/k]. (6)

Proof. We follow closely Jones’s proof. The second inclusion is due to him. The essential point is the first inclusion.

In the following by W we denote the (reduced) Burau representation. If 3 is a braid, then yg = () is its Burau matrix.
We also write y, for the n-strand Burau representation, when dealing with different strand numbers. (Since numbers
and braids are disjoint, the subscripts of Y cannot be interpreted ambiguously.)

By Jones’s proof, we have for B € B3 with even exponent sum [B] (in particular when [3’s closure ﬁ is a knot), that

; | 2mi/k _ o 1 1
4cos’m/k i (e ) = fllyp)) =1 ZCOSZTC/k+4COSZTC/k tr(p) @

with y being the reduced Burau representation of B3.
Now by [Sq], up to a conjugation (not affecting the trace), y(B) € U(2), and hence, if additionally k divides [f], then

vy () ‘{BEBatkHB]} cSU@),

in particular tr(y(f)) is real.

Now
I :={BeBs: ﬁisaknotandkHB]}

is a coset in B3 /T, where I" is the kernel of B +— (c(P), i/ k) € 83 x Zi. (Here G is not the signature, but the induced
permutation homomorphism B3 — S3.) Again I" C B3 is normal and of finite index, hence the closure of y(I") C SU(2)
has non-trivial connected sets. In particular the connected component of 1 contains an S! > —1. Therefore, y(I") with
each ' also contains a coset of S we call Gy (not necessarily a subgroup), with Gy > —y/’.

If now for some ' € y(I") we had tr(y') = T (where T € R), then |f] ‘G / would be a continuous function on Gy

admitting the values f(—1) and f(t), and for T # 0 we would apply Jones’s argument.
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Therefore, we are interested in some ' where |t| is maximal. Now if &, » are the eigenvalues of Y’ (with |§; 2| = 1),
then because of I'"* := {Y* : ye I"} C I" for any 3 { k, we consider the maximal trace of W’* with 3 { k, which is

u(g) := sup|1+&"|
3tk

with & := &, /E,. One sees that u is minimized by & = ¢*2™/3, where it is 1. Therefore, f ranges at least between

f(—1) and f(1) on one of the G\y«, which implies the assertion. O

While this is likely not the maximum we can get in our restricted situation for 3-braids, Jones’s corollary specializes
completely to knots.

Corollary 9.2 If k € N\ {1,2,3,4,6,10}, then { | Vk (¢2®/¥) | : Kisaknot } =[0,00).

Proof. Use that 1 is always in the interior of the interval to the left of (6) and apply connected sums. O

Now we attempt to generalize corollary 9.2 to the case k = 10. According to Jones [J3, p. 263 top], by the work of
Coxeter and Moser [CMo], the image of B3 in the Hecke algebra is finite, so we need to start with 4-braids, which
makes the situation somewhat more subtle.

Proposition 9.4 { |V (¢™/5) | : Kisaknot } =[0,c0).

Proof. First we show that {|Vk (¢™/3) | : K isa4-braid knot } contains an interval. This argument starts along
similar lines as the proof of proposition 9.3.

Consider I' C B4, which is the kernel of

B4 >B — ([B] mod 10,6(B),w3(B)) € Zio x Sa x H(e™/3,3),
where H (e™/3,3) denotes the 3-strand Hecke algebra of parameter ¢™/3, = is the homomorphism By — B3 with 513 =
G1, G2 = O3, and all other notations are as before. (W3 = y is the reduced 3-strand Burau representation.) Again
I' C B3 is normal and of finite index, hence the closure of y4(I") C SU(3) is non-discrete.

All subgroups S' of SU(3) can be conjugated to subgroups of the standard maximal toral subgroup, which are of the
form

eZkTEiu 0 0
uel0,1] — 0 2w 0
0 0 e—2(k+l)mu

for some k, I € Z with (k,I) = 1. We will refer to these S's as standard S's and denote them by S,&vl. (The case of
(k,1) > 1 gives no new subgroups, at least as subsets of SU(3).)

Therefore, Y4 (T') contains some AS ll,lAil for some A € SU(3).

Now, consider some B € B4 with 6(f3) a 4-cycle, and write down the weighted trace sum for 4-braids. The result is
Vo (15) = mo(B) = 86— 6c 4 5 + (s B)) + (6 2 ) (i (B)) ®
B 2c ¢ 2c ’
with ¢ := cos 1—7; (Keep in mind, that 3 4 denote Burau representations of different braid groups.)

If | o or is not constant, we would find the desired interval. Therefore, assume that in particular || o is constant,

for the set
@ =B [y, (AS,A7")NT].

Now, y3 (E) is constant on any coset of B4/, and AS,&\ IA‘1 C I" acts by multiplying by unit norm complex numbers
the columns, so in particular the diagonal entries &; of Ay, (B)A~! (i = 1,2,3). Therefore, for these &,

f(u) — fél-@z-@s (u) — ezmkual +62nilu§2+672ni(k+l)u§3
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must lie for all u € [0,1] in a sphere (boundary of some ball) in C, which is specified from (8).

That this happens only in exceptional cases follows by holomorphicity arguments. Namely, with (8),

y=— <8c3 —6c+% + %tr(\m(ﬁ))) /(6c— %)

must be the center of this sphere, i.e.
U fe b8 (u) =y

must be of constant norm on [0, 1]. Then so is

() =¥* = (f(w) =0 (f(w) =),
which is holomorphic, since f(u) = fagg(—u). Thus | f(u) —7|? is constant for any u € C.

Assume now that tr(y4(B)) = &1 + & + &3 # 0. We claim that E;A; = 0 for i = 1,2,3, with A} :=k, Ay :=1, A3 :=
—(k+1). In particular, since (at least) two of the A;’s are non-zero, (at least) two of the &;’s are zero.

Assume the contrary, that is, some &;A; # 0. Then, since (A,A2,A3) is completely characterized by being a triple of

relatively prime integers summing up to 0, we can by symmetry assume that €1 # 0 # k. Since any a0 € C\ {0} is of
the form 2™ for u € C, we have that

P(a) = o' + o'y + a F g5 —y

has constant norm for any o € C\ {0}. Letting oo — 0 or o0 — oo, we see that this is possible only if P(o)) =C €
Cla, o0~ !] is a constant as Laurent polynomial in o. This in turn is possible (up to interchange of A23 and &; 3) only if
W& =& =0andk=—-I=1or(ii) & = —&,, & = 0 and k = [ = 1. Both cases contradict the assumptions &; # 0

or tr(y4(B)) # 0 resp.

Thus we have shown that if |750|Lp is constant, then Ay4(B)A~! € a0, where & is the (closed) subset of U(3),
consisting of matrices with zero trace or least two zero diagonal entries.

But if 6(B) is a 4-cycle, so is 6(B***!) for any k € Z, so that in particular by the same argument any odd power of
Aya(B)A~! must lie in 9 . Taking B = 610203 ' and setting U := e /A4 (B)A~" we obtain an element of infinite
order in SU (3), with all its odd powers lying in 4/ . But now, U% C SU(3) is an Abelian closed non-discrete subgroup,

and hence UZ contains some S!. But UZ contains the dense subset U221 which is also a subset of 4 , and hence UZ
is contained itself in 9/ . Therefore,  NSU(3) contains an S' =A'S}, A",

To show that this is impossible, consider again the trace. If tr # 0, we have from the two zero entries and Cauchy-
Schwarz for the third, that |tr| < 1 on the whole o . But integrating the (conjugacy invariant) squared trace norm on
the standard S', and using that for any X € Z[t,t 7],

1

2
XX (/D)o = [ % (@) [ du,
0
we obtain
1
/ ‘e21timu+e21tinu+e—2(m+n)7'ciu ‘Zdu _ 3 for |{m, n, —m—n}‘ =3
5 5 f0r|{m,n,—m—n}‘:2

Thus we must have |tr| > 1 somewhere on the standard, and hence on any other S! C SU(3), providing us with the
desired contradiction.

In summary, we showed that |VK (e"i/ 5) | is dense in some interval when taking knots K ranging over closed 4-
braids. From this the proposition follows by taking connected sums once we can show that there are knots K » with
|Vk, (e™/3) | > 1and 0 # | Vg, (e™/5) | < 1. Luckily, already K| = 3; (trefoil) and K, = 5; ((2,5)-torus knot) do the
job, and we are done. O
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Remark 9.2 V. Jones pointed out, that for/ =0,...,n—1, |V (el”i/ ”) ‘ is invariant under a n-move (adding or deleting
subwords Gl-i"). Thus for 4 1 k our result follows directly from his, in particular for k = 10. However, since no proof
was given in this case in [J2], it is worth including one here anyway.

There is another way to prove the last two statements on norm denseness in [0,c), avoiding any braid group theory,
and just applying connected sums. It would pass via showing for every k the existence of knots K, such that
In | Vg, (e2™/%) | /In| Vi, (e*™/¥) | is irrational. It is unclear how to find such knots for general &, but for single values
this is a matter of some calculation. The following example deals with £k = 10, and thus indicates an alternative (but
much less insightful) proof of proposition 9.4.

172 _~_t7n71/2

Example 9.2 Consider the knots 63, 942, 11391 and 1534295. Writing V},, (t):= ,note that V(4;) = Vi

(A2 4172
is (up to units) the minimal polynomial of e™/5 The polynomials of our four knots are given by:
V(94) =V,  V(63) =V + Vg +1,  V(lls)=2-Vj,  V(15130) =3 -2V3;.

/5 1+v/5

Their evaluations at e™/> are s 2 and 3 resp. Then we use that the first two numbers are inverse up to sign,

and In3/1n2 is irrational. (Except for 63, the knots are not amphicheiral, although they were chosen to be with
self-conjugate V to make its evaluation at ™/ as simple as possible.)

To apply our results in this subsection to the weak genus, we obtain

Corollary 9.3 For any even k > 6 and any g € N there are infinitely many knots K with braid index

3 k#10
blK) = { 4 k=10
which are not k-equivalent to a knot of canonical genus < g. O

Note that, when replacing k-equivalence just by isotopy, this is well-known, because of the result of Birman and
Menasco [BM, theorem 2] that there exist only finitely many knots of given (Seifert) genus and given braid index. We
will consider the k-moves in more detail later.

10. k-moves and the Brandt-Lickorish-Millett-Ho polynomial
10.1. The minimal coefficients of O

It becomes clear from the previous discussion that the Jones polynomial evaluations for themselves will unlikely give
some significantly more powerful and applicable criteria for showing § > 2 than Morton’s inequality, so it is interesting
to find additional methods that sometimes provide an efficient amplification. Here we study the Q polynomial in this
regard. This is where the effort in examining the 8th roots of unity of V came to use in practice.

First, we have the following (not maximally sharp, but easy to apply) criterion on the low degree coefficients of Q.
Proposition 10.1 Let k be a prime. Then Q mod (k, z¥) is 74 invariant.

Proof. As in the proof of lemma 8.1, adding two copies of (4) for n and n — 2, we get (5). Now we iterate this

procedure and obtain
k _ ok

k
K
Y () A = Fpit 24w ©)
i=0 ! -2

Now, when orienting K,,, the twists are antiparallel, and thus K,,_ is a knot, even if k is odd (so that mindegA,,_; = 0).
From the primality of k, so that modulo k the left hand-side collapses to two terms, we get modulo & and z*

k k
-2

An +An—2k = (ZZ ) ‘Ao .
z—2

Subtracting two copies of this equality for n and n — 2k instead of n gives the assertion. ]
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Remark 10.1 The proof also shows that Q mod (k, 71 ) is invariant under a 744 move (because always mindegA,_ >

—1.

Working with unity roots of V of order 8 and 10 it turns out useful to consider the criterion for k = 5. This criterion
has some chance to give partial information as long as the number of cases left over by the unity root evaluations is
sufficiently less than the total number of values of Q mod (5,z°), which is very likely 5% = 3125.

Another criterion for the Kauffman polynomial F(a,z+ 1/z) follows again from Przytycki’s work (see [Pr, corollary
1.17, p. 629]). The Kauffman polynomial is a powerful invariant, but, especially when dealing with many and/or high
crossing number diagrams, too complex for practical computations. Hence, to make this result more computationally
manageable, we set again a = 1 and use the Q polynomial. Then from corollary 1.17 (b) of [Pr] it follows that
O(z+1/z) is invariant under a 7 move for k-th roots of unity z. However, we need to prove this condition in a slightly
sharper form, replacing the order k by 2k. Our proof is somewhat different from (and less technical than) Przytycki’s,
since it uses generating series.

2k _ 4k _
Proposition 10.2 Q(z+1/z) mod ﬁ)kll is Iy, invariant, and in particular Q(z+1/z) mod ZZ4 11 is 44 invariant.
AHCDF -

Proof. We use the formula in the proof of theorem 3.2 of [St8]. We observed there that the formula (4) and lemma
8.1 imply that the generating series

flz,x) := Z A (2)x"
n=0
is of the form
P(z,%)
(1—x)(1+(2—22)x+x2)
for some P € Z[z,x]. The invariance of Q(z) under a 2k-move is equivalent to the denominator dividing x* — 1. Thus
we need to choose z so that the zeros of 1+ (2 — z?)x 4 x? are distinct k-th roots of unity, different from 1. Now if xo

and x| are these zeros, then xox; = 1. Thus xo,; = e™2™/¥ for some 0 < I < k — 1. We must assume that [ # k/2 (for
even k) and [ # 0, since then xo = x; is a double zero. Then 2 — z> = —xo — x; = 2cos(2In/k), hence

27 s
2 =2+2cos (7 -l> = 4cos’ (E-l),

f=

and z = +2cos ( % . l). (Since [ can be replaced by k — [, the sign freedom is fictive.)

Thus Q(z+ 1/z) is invariant, if z+ 1/z = 2cos (% -l), with 1 <1 <k—1 and [ # k/2 for even k, which means
z = e=™/k for such [, and these are exactly the zeros of the modulo-polynomials stated above. a

In the following we decide to use the second property in proposition 10.2 for k = 5. (One could also take k = 10 for
the first property.)

Clearly, the (Przytycki type) criterion in proposition 10.2 is more efficient than the one in proposition 10.1, already
because the number of values of the invariant is infinite. But our first criterion is easier to compute, and at least it is
not a consequence of the second one, as shows the following

-1
T

Example 10.1 Consider kK = 5. The knots 11367 and 9; have Q polynomials that leave the same rest modulo Z;O_

But modulo 5 they differ in the Z*-term, so 11367 and 9, are not fg equivalent.

In this example, the difference of Q(z) mod (k,z) comes out in the highest coefficient covered (this of zX~!). Sur-
prisingly, this turns out to be the case for all other examples I found, that is, proposition 10.2 was suggested to imply
the weaker version of proposition 10.1 for ¢4y moves noted in remark 10.1. Later we indeed deduced this implication
rigorously, but the argument (using some properties of Bernoulli polynomials) requires some space, and we better
omit it here.
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I tested all prime and composite knots of at most 16 crossings for k = 3,5,7; for k = 3 there were about a million
4k _

Zz“——ll with different O(z) mod (k,z¥), for k = 5 they were about 3200, and for k = 7

4k

only one, so in this range of knots for higher k there are too few coincidences of Q(z+ 1/z) mod S— 11 to have an

coincidences of Q(z+ 1/z) mod

4
A
Interesting picture.

10.2. Excluding weak genus two with the Q polynomial

The original intention for the Q polynomial criteria was to exclude further knots from the set of 2010 from having
g = 2. Then I was fairly surprised that the most promising candidates (that is, the knots, whose V moduli appeared the
least number of times in the series) showed up in (at least one of) the series of 121p97 and 134233. Thus in practice the
above criteria have been useful to reduce the number of diagrams in the series to be considered to identify these knots.
The identification was done using KnotScape.

First, I considered diagrams in the series of 134233 and 12097 obtained by switching crossings and performing at most
one 7, move at each crossing/clasp, that is, with < 4 crossings in each ~-equivalence class. (Resolving clasps gives
diagrams in the subseries of 134233 and 12097 in figure 6.) Then I added all the (other) diagrams in these series of at
most 17, resp. 18, crossings. From the set of diagrams thus obtained, I selected diagram candidates for any knot with
maxdeg,, P < 4 by calculating the Jones polynomial, and tracking down coincidences. Finally, on the diagrams with
matching polynomials, Thistlethwaite’s diagram transformation tool knot £ ind was applied to identify the knot. By
this procedure I managed to identify all the < 15 crossing knots with maxdeg,, P < 4 in genus two diagrams expect 6.
We already know four of them — they were given in figure 9, and the other two are shown on figure 11.

Thus these 2 knots deserved closer consideration under the Q polynomial criteria. These criteria proved the two knots
to share the status of those in figure 9. We give some details just for the first knot, the other one is examined in the

& (%0

15216607 15217802

Figure 11: The two prime knots of at most 15 crossings, for which one can use the Q
polynomial to show that the lower bound 2 for g, coming from Morton’s inequality is not
sharp. In all remaining (including composite) cases it is sharp (if it is 2), except for the four
knots on figure 9.

Example 10.2 Consider 15516607 (figure 11). We have
1101

2—1

V(152166O7) mod = ([—3]0 -2 -31-52 —4).
It turns out that in the series of 134233 the modulus of V for k = 5 appears 28 times. They can be encoded by the rwist
vectors:

{27_17 1/ lr 11_21_11 Ol_l}l {
{lr 1/ 1/ 27_11 ll_ll 21_1}/ {
{lr 1/ 1/ Or lr 11_21_21_1}1 {

’ 1, 1, 11_21_2}!
1,—1,—1, 11_2}7
’ 1/ 11_11 Ol_l}l

[
~
|
= P o
~
e
N
=
~
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{1, 1, 1, 0, 1,-1,-2,-2, 1}, {01, 0, 1,-2, 1, 0,-2, 0},
{1, 1, 1, 0, O, O0,-2,-2, 0}, {0, 1,-2, 1, 0,-2, 0, 1, O},
{1, 1, 1,-1,-1, 1,-1, 2, 2}, {0, 0, 0,1, 1, 1, 0,-2,-2},
{1, 1, 1,-1,-1, 1,-1,-2, 1}, {0,-2, 0, 1, 1,-2, 0, 1, 0O},
{1, 1,-1, 2,-2, 1, 1,-2,-1}, {-1, 2, 1, 1, 1, 1,-1, 2,-1},
{1, 1,-1,-1, 1, 1,-2, 1,-1}, {-1,-1, 1, 1, 1, 1, 2, 2,-1}%,
{1, 1,-1,-1,-2, 1, 1,-1, 1}, {-1,-1, 1, 1, 1, 1, 1,-2,-1}%,
{1, 1,-1,-1,-2, 1, 1,-2, 2}, {-2, 2, 1, 1, 1,-1,-1,-2, 1},
{1, 1,-2,-1, 2, 1,-1, 0O,-1}, {-2, 1, 1, 1, 0, O, 0,-2, 0O},
{1, 1,-2,-2, 0, O, O, 1, O}, {-2,-1, 1, 1, 1,-1, 2,-2, 1},
{1, 0, 1, 1, 1, 1,-1,-2,-2}, {-2,-1, 1, 1, 1,-1, 1,-1, 1}

We explain this notation. First, the crossings are numbered as specified above in the order of the Dowker notation of
134233 given by
6122226164202481421018.

In this notation one skips an entry of a crossing appearing in a clasp with some crossing (entry) on its left. For example,
crossings denoted by ‘6’ and ‘26’ in the notation form a clasp, so the fourth entry ‘26’ is skipped, and crossing number
4 in the list refers to the crossing represented by the fifth integer ‘16’ in the above Dowker notation. To facilitate this
renumbering, the integers of the crossings to be skipped are underlined. An entry x; at position i (1 <i < 9) in some
list denotes the switching and number of 7, moves applied to the crossing at number i. There are two possibilities.

If the crossing numbered as i is a single element in its ~-equivalence class, then x; = —1 means a switched crossing
in the alternating diagram, x; = O the crossing in the alternating diagram as it is, and for x; > 1 (resp. x; < —1) the
crossing in the alternating diagram (resp. the switched one) with x; (resp. —1 —x;) 7, moves applied to it.

If the crossing i builds (up to flype) a reverse clasp with another crossing (that is, there are two elements in its ~-
equivalence class), ‘x; > 0" means the clasp unswitched with 7, moves applied x; — 1 times, ‘x; = 0’ means the clasp
resolved, and ‘x; < 0’ means the clasp switched with —1 — x; twists applied.

Note, that all the values of x; need to be considered, and hence are meant, only modulo 5.1

Similarly for the other main series (clearly only such need to be considered) the modulus of V appears 22 times for
the series of 121997 and once for 1097.

Checking the 51 diagrams resulting from these vectors modulo 5, we obtain the following values for Q(z+ 1/z) mod
10

z7—1,

Z2-1"

([-13] 0030284228 30), ([-23] 0040386238 40), ([-25] 0054 54 84 54 54).

But
10

1
0(15516607) mod ZZZ = = ([-17]0038 40 56 40 38)

does not occur among them. Thus the Q polynomial criterion in proposition 10.2 excludes all remaining possibilities,
and so g(15216607) > 2. (In remark 9.1 we mentioned that g(15216607) = 2.)

10
7z -1 . .
1 to be an honest polynomial P in z

Remark 10.2 1t is striking that if we take, as above, the rest Q(z+ 1/z) mod
2—
of degree < 7, then always [P]; = [P] = [P|s — [P]¢ = [P]3 — [P]7 = 0 (with [P]; = [P] ). This is in fact true whatever

01
Zzz 1 generated by z+1/z = —z° — 20 — 7' is the Z-
module with basis 1,z°,z* +z° and z* 4 77, and hence is a rank 4 subalgebra of an algebra of rank 8 over Z. Therefore,

polynomial Q € Z[z] may be, because the subalgebra of Z[z,1/z] /

!To avoid confusion, let us remark that in a previous(ly cited) version of the paper a different convention for the twist vectors was used. There,
for every crossing an entry x; = 0 meant the crossing in the alternating diagram switched, x; = 1 the crossing in the alternating diagram as it is, and
x; > 2 (resp. x; < 0) the crossing in the alternating diagram (resp. the switched one) with x; — 1 (resp. —x;) ; moves applied to it. Thus if a crossing
builds a (reversely oriented) clasp with another one, as before ‘1’ means the clasp as it is, ‘0’ means the clasp resolved, and ‘—1’ the clasp switched.
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1N [l

161265905 16636716
Figure 12: A weak genus two knot Figure 13: Does this knot have
with no reduced weak genus two di- weak genus two?

agram of odd crossing number.

Proposition 10.2 becomes less efficient whenever this subalgebra (considered also with 10 replaced by other values n)
is small.

For n divisible by 5 an additional restriction comes from the Jones-Rong result [J4, Rn], showing that (depending on

the parity of dimg, H (Dx,Zs)) Q(z+ 1/z) mod * Lis always either of the form £5% or +5%(22° +22% + 1) for

S_
z—1
some natural number k.

Remark 10.3 For both knots in figure 11 not only the modulus of the Jones polynomial, but the whole polynomial
itself, and even the HOMFLY polynomial, are realized by weak genus 2 knots (1427627, 1434335 and 15123857 for
15217802, and 1435025 for 15216607), so that the HOMFLY polynomial cannot give complete information on the weak
genus 2 property.

We obtain in summary that the 6 knots on figures 9 and 11 are indeed the only examples up to 15 crossings where
Morton’s weak genus estimate § > 2 is not exact. This reveals Morton’s inequality as extremely effective, at least for
g =2, even at that “high” (in comparison to Rolfsen’s classical tables) crossing numbers.

Beside the ones given above, this quest produced some further interesting examples with no minimal crossing number
diagram of weak genus two. Contrarily, using a similar argument as in the proof of theorem 8.1 for the maximal degree
of the O polynomial on the non-alternating pretzel knots, one can show that for § = 1 any (weak genus one) knot has
a genus one minimal diagram.

10.3. 16 crossing knots

After the verification of 15 crossing knots, the 16 crossing knot tables were released by Thistlethwaite. A check therein
shows that there are 2249 non-alternating 16 crossing prime knots with maxdeg,, P < 4. (There were no knots with

maxdeg,, P <2.) Most of these knots again have weak genus 2. There are 19 knots, which can be excluded using
10 _ 10 _

V mod 22711 and 3 using additionally Q(z+ 1/z) mod % As a counterpart to the knots in figure 10, there is
2—

one knot, 161265905, whose V modulus occurs only in (main) series of even crossing number, so this knot can have no

reduced genus two diagram of odd crossing number.

As another novelty, there is one knot, 16636716, Which cannot be decided upon. It has the same V and Q moduli (in
fact the same V and P, but not Q polynomial) as two weak genus two knots, 16419178 and 16733071. Thus our criteria
cannot exclude weak genus 2. (Apparently Przytycki’s Kauffman polynomial criteria do not apply either.) But, after
testing all (still potentially relevant) diagrams in the series of 121097 and 134233 of < 49 crossings corresponding to
twist vectors with all |x;| <9, I was unable to find a diagram of this knot.

Remark 10.4 It is interesting to remark that unusually many of the above examples are slice, inter alia 1534436,
15134487 and 15221824 from figures 9 and 10, and the knots on figures 11, 12 and 13. It is so far quite unclear whether
and what a relation exists between sliceness and exceptional behaviour regarding Morton’s inequality.
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10.4. Unknotting numbers and the 3-move conjecture

Among the family of k-moves defined above, 3-moves are of particular interest because of their relation to unknotting
numbers. An important conjecture of Nakanishi [Na] is

Conjecture 10.1 (Nakanishi’s 3-move conjecture) Any link is 3-unlinked, that is, 3-equivalent to some (unique) un-
link.

This conjecture is by trivial means true for rational and arborescent links and by non-trivial work of Coxeter has been
made checkable for closures of braids of at most 5 strands, as he showed in [Cx] that B,/ < Gl-3 > is finite for n <5,
so proving the conjecture reduces to verifying (a representative of) a finite number of classes. Qi Chen in his thesis
settled all of them except (the class of) the 5-braid (616,6364)'°.

As for our context, we get a finite case simplification for the conjecture for knots of any given weak genus. The weak
genus one case is arborescent and hence trivial, and we can now do by hand the proof of the 3-move conjecture for
weak genus two knots.

Proposition 10.3 Any weak genus two knot is 3-unlinked.

Proof. Applying 3-moves near the 7, twisted crossings in the 24 generators, we can simplify any genus 2 knot diagram
to one of the generators with possibly a crossing eliminated or switched, and a clasp resolved or reduced to one
crossing. We obtain this way a link diagram of at most 9 crossings. These links are easy to check directly, but this has
previously also been done by Qi Chen [Ch]. m|

Remark 10.5 A few years after our work was originally done, Dabkowski and Przytycki disproved the 3-move con-
jecture [DP].

10.5. On the 4-move conjecture

Similar arguments as for the 3-move conjecture allow us to give a proof of Przytycki’s 4-move conjecture for weak
genus two knots.

Conjecture 10.2 (Przytycki [Pr]) Any knot is 4-equivalent to the unknot.
Thus we have
Proposition 10.4 Any weak genus two knot is 4-equivalent to the unknot.

Proof. By 4-moves we can simplify any genus 2 knot diagram to one of the generators of the 24 series with possibly
crossings switched. As the conjecture is verified by Nakanishi for knots of up to 10 crossings, we need to consider just
the diagrams of the 6 last generators (with possibly crossings switched). In their diagrams we still have the freedom
to change clasps.

The 11 crossing generators and 134233 have one of the tangles

It is easily observed that, in which way ever the non-clasp crossings are changed, the clasps can be adjusted so as the
diagram to simplify by one crossing (and then it still has genus < 2). Then for the 11 crossing generators we are done,
while for 134233 we work inductively over the crossing number.
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121097 has the tangle
|

and the same argument as for 77 applies, unless none (or all) of crossings a, b and ¢ are switched. In this case, by
switching the lower clasp in the diagram of 12097, one simplifies the diagram by 2 crossings independently of how
the remaining crossings are switched:

~

7

-
!
o
I
&ng
9;

SR

11. An asymptotical estimate for the Seifert algorithm
The Seifert algorithm gives us the possibility to construct a lot of Seifert surfaces for a knot, and although there is

not always a minimal one, we may hope that these cases are rather exceptional. Theorem 3.1 of [St4] together with a
property of the Alexander polynomial give us the tools to confirm this in a way we make precise followingly.

Theorem 11.1 Fix g € N. Then

#{D : maxdegA(D) =g(ID) =g(D) =g.c(D)<n} |
#{D:g(D):g,C(D)Sn} n— oo

; (10)
where D is a knot diagram, g(D) denotes its genus and [D] the knot it represents.

This theorem says that for an arbitrary genus g diagram with many crossings, the probability the canonical Seifert
surface to be of minimal genus is very high. For the proof we use the Alexander polynomial.

Remark 11.1 There is a purely topological result due to Gabai, which also can be applied (see corollary 2.4 of [Ga2]),
as a 7, move corresponds to change of the Dehn filling of a torus in the complement of the Seifert surface. (Gabai
needs the condition the manifold, obtained from the knot complement by cutting out this torus, to be Haken, but this is
true for any 3-manifold whose boundary is a collection of tori.) This leads to a slightly weaker version of the theorem,
in which the property of the degree of the Alexander polynomial does not appear.

The proof of our theorem bases on the following lemma.
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Lemma 11.1 Let S be s subset of Z" with the following property: if (x1,...,Xk—1, &,Xp41 - --,Xn) € S and (x1,..., X1,
b,Xgt1-..,%,) €S for some a # b, then (x1,...,Xk—1,Xk,Xk+1---,X%n) €S forall x; € Z. Then Vn3Ie,, k,Vk >k, :
—— >¢, —k, k"
2k+1)"  —

. . . S 1
Proof. Fix some parameter p € N and use induction on n. For n = 1 the claim is evident: set &} = 2 and k; = p.
D

Assume now the assertion holds for n — 1. Let S C Z" and set
nig = #(SN (kA" x (i), i <k.

Setg, :=1—(1—g,_1)% If now 3k}, Vk > k{, have maximally one iy such that

nj k
7 = &1,
Qk+ 1)1 = !
then for each such &
k .
) Mk - ! +€1 T €1 <E
= (2k+l)n 2k+1 n—1 k — oo n—1 n -
Therefore, 3k such that Vk > k(|
| SN[~k k]"|

@+ o

and, choosing k, large enough, there is nothing to prove, as the premise of (11) does not hold. Therefore, assume that
kg @ Tk > kg Jip # iy

Ny k My k
—— 2 &1, 2 & .
Qkt 11 = kgt = o
Set ky, := kn—1. Then for k >k, 3K > k: S D [k, k']~ x {ip,i1}. Then S D [—K',K']", s0 S D [—k,k]". ]

Note, that yet we have the freedom to vary the parameter p. We need this now.
Lemma 11.2 Lemma 11.1 can be modified by replacing “Then Vn3e,,k, :...” by “Then VnVedk,¢ :...”.

Proof. Let p — oo in the proof of lemma 11.1. a

Proof of theorem 11.1. Clearly (even taking care of possible flypes) it suffices to prove the assertion for the 7 twist
sequence of one fixed diagram D, which we parametrize using the twist vectors (n1,...,n;) introduced in §10.2 by
{D(x1,... ,xn)};‘;:,w, so that a positive parameter corresponds to a 7 twisted positive crossing.

Then we apply the previous lemma to
Si={(x1,...,x,) : §(D(x1,...,x,)) > maxdegA(D(xy,...,x,)) }.

The property needed for S in the preceding lemma is established by the simple fact that the Alexander polynomials of
knots in a 1-parameter 7} twist sequence form an arithmetic progression.

Denoting c, , the fraction on the left of (10), assume liminfc, , < 1. It is equivalent to use the k-ball around O in the
s n—oo :

II.]1 or || || norm, so this means to assume 3& > 0 : Vko Ik > ko : | SN [—k,k]" | > €(2k+ 1)". Then by lemma 11.2

we have S D [—k,k]" for k > ky¢, hence S = Z". But this is clearly impossible, since for example by the canonical

Seifert surface minimality of positive diagrams we have SNN" = &. Hence liminfc, , = 1. Therefore lim ¢, , exists,
Nn—o0

n—oo

and itis 1. O
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12. Estimates and applications of the hyperbolic volume

We conclude the discussion of the weak genus in general, and weak genus two in particular, by some remarks con-
cerning the hyperbolic volume. Surprisingly, it turned out that with regard to the hyperbolic volume, the setting of
[St4] has been previously considered in a preprint of Brittenham [Br2], of which I learned only with great delay. Parts
of the material in this section (for example, the reference to [Ad2]) have been completed using Brittenham’s work.

Definition 12.1 For an alternating knot K define a link K by adding a circle with linking number [k = 0 (i.e. disjoint
from the canonical Seifert surface) around a crossing in each ~-equivalence class of an alternating diagram of K.

(The orientation of the circles is not important.)

In this language one can obtain all weak genus g knots by 1/n;-Dehn surgery along the unknotted components of
K for the genus g generators K. (In fact, the main generators suffice, and the cases of composite generators can be
discarded.)

In this situation we can apply a result of Thurston (see [NZ]). To state it, here and below vol (K) denotes the hyperbolic
volume of (the complement of) K, or 0 if K is not hyperbolic. K(n,...,n;) denotes, as in [St6], the knot in the series
of K with twist vector (np,...,n;), as explained in §10.2.

Theorem 12.1 (Thurston) If vol (K) > 0, then for all vectors (n1,...,n;) € Z',
vol (K(ny,...,n;)) < vol(K),
and
vol (K(ni,...,n;)) — vol(K),
as Hll{l || — oo.
As a consequence, we obtain the following theorem.
Theorem 12.2 Let
S := {vol(K) : K main generator of genus g } .
Then
sup{vol(K) : §(K) =g} = maxS$,. O

Proof. The K are augmented alternating links in the sense of Adams [Ad2], and hence by his result are hyperbolic,
if K is a prime alternating knot different from a torus knot. Applying Thurston’s result, it remains to prove that the
alternating torus knot is never a main generator. This is an easy exercise. O

This theorem shows in particular that the hyperbolic volume of knots of bounded weak genus is bounded, with an
explicitly computable exact upper estimate.

In particular, we obtain from theorem 12.2 by explicit calculation:
Corollary 12.1
sup{vol(K) : g(K) =1} = vol(3;) ~ 14.6554495068355,

and
sup{vol(K) : §(K) =2} = vol(134233) ~ 58.6217980273420. O
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The (approximate) volumes of K for the main generating knots K of genus 2 are given as follows:

K vol (K)
63 36.6386237671
941 38.7476335870

1097 43.9663485205
11148 43.9663485205
121097 | 58.6217980273
121202 | 38.7476335870
134233 | 58.6217980273

There is a further application of the hyperbolic volume.

Proposition 12.1 If vol (K) > vol (K’) for two generators K and K’, then a generic alternating knot in the series of K
has no diagram in the series of K'. m|

To make precise what ‘generic’ means we make a definition:

Definition 12.2 A subclass B C ¢ in aclass ¢ of links is called asymptotically dense or generic, if

For example, in [Th2] Thistlethwaite showed that the non-alternating links are generic in the class of all links. Simi-
larly, a result of [St9] is that any generic subclass of the class of alternating links contains mutants.

The proof of proposition 12.1 is similar to the arguments in §11, but simpler, and is hence omitted. (Again avoiding
K’ to be a torus knot is easy.)

Example 12.1 We have
vol (933) ~ 47.2069898171 > vol (1697) ~ 43.9663485205,

so that a generic alternating knot in the series of 93g will not have a diagram in the series of 1097. (Note that both
series have seven ~-equivalence classes and thus the number of diagrams in them grows comparably.)

The fact that vol (134233) and vol (E1097) are equal is unfortunate, as otherwise we would be able to conclude that
a generic genus two alternating knot of one of the crossing number parities has no genus two diagrams of the other
crossing number parity (as we did for specific examples before using the values of the Jones polynomial at roots of
unity). Also, this value is much higher than the volume of any non-alternating < 16 crossing knot. (The maximal
volume of such a knot is about 32.9, and the maximal volume among those knots with maxdeg,, P < 4 is about 22.9.)
Thus the volume does not seem to have much practical significance as an obstruction to ¢ = 2. On the other hand, we
can use the fact that vol (134233) = vol (12}097) is higher than vol (K) for the other main generators K. From this, and
proposition 12.1, we obtain

Corollary 12.2 A generic alternating genus two knot has no non-special genus two diagrams (i.e. such diagrams with
a separating Seifert circle). i

This is not true for weak genus one, because of the alternating knots of even crossing number. For odd crossing
number genus one alternating knots it is, contrarily, trivial. However, being such a narrow class, genus one diagrams
are not interesting anyway.

To estimate max S, Brittenham uses a remark of W. Thurston that any link L satisfies vol (L) < 4Voc(L), with Vj being
the volume of the ideal tetrahedron. (In [LG, §1.5], Garoufalidis and Le quote private communication with I. Agol and
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D. Thurston, stating vol (L) < vg(c(L) —2) for a knot L, where vg ~ 3.66386 is the volume of the ideal octahedron.)
Then Brittenham studies
C, := {c¢(K') : K main generator of genus g },

where K’ is obtained from K by resolving in K clasps of ~-equivalence classes with two crossings. (This move
preserves the link complement.) Brittenham shows that max C, < 30g — 3.

We conclude this section by giving an estimate for max C,, which is the best possible for g > 6.
Proposition 12.2 max C, < 30g — 15, and this inequality is sharp for g > 6.
In particular, we have a slight improvement of Brittenham’s volume estimate:

Corollary 12.3
sup{vol(K) : g(K) =g} < (120g—60)Vp. O

However, we also know now that a significant further improvement of Brittenham’s volume estimate is possible only
by studying the volume of the K directly, and not via their crossing number.

Proof of proposition 12.2. We know from [STV] that d, < 6g — 3, and in each ~-equivalence class we need 4
crossings for the trivial loop, and at most one crossing for the generating knot. (Recall that d, are the numbers
introduced at the end of §2.) If some ~-equivalence class of the generating diagram has two ~-equivalent crossings,
their clasp can be resolved, since this preserves the link complement. Thus each ~-equivalence class contributes at
most 5 crossings to ¢(K’), showing the estimate claimed.

To show that the estimate is sharp, we need to construct a prime alternating knot K = K, of genus g > 6 with 6g —3
~-equivalence classes, all consisting of a single crossing.

Once this is done, it is easy to show that ¢(K') = ¢(K) = 30g — 15. Let Ly, ..., L, be the trivial components of K. Then
K U L; is non-split for any i, since 1/n; surgery on L; changes K, as it may give an alternating knot of higher crossing
number. Also, as this knot is prime (by [Me] and the primality of the diagram), L; cannot be enclosed in a sphere
intersecting K in an unknotted arc (otherwise the result from K after 1/n; surgery on L; will always have K as prime
factor). Thus L; and K have at least 4 mixed crossings in any diagram of K. Since K appears in a reduced alternating
diagram in the diagram of K obtained by the replacements (12), it is also of minimal crossing number.

We give the K, in terms of their Seifert graphs; since all K, are special alternating, these graphs determine uniquely a
special alternating diagram of K, (see e.g. [Cr]; these graphs are trivalent and bipartite). We include the graphs only
for g =6 and g = 7. (The genus can be determined easily, since the number of regions of the graph is 2g + 1.) Given
a graph of a knot of genus g, one can obtain a graph of a knot of genus g + 2 by the replacement

performed so that the number of edges in each face remains even.

= =

Remark 12.1 Brittenham uses his proof that weak genus bounds the volume to show in [Br] that there are (hyperbolic)
knots of genus one and arbitrarily large weak genus. Because of the use of Thurston’s theorem, however, for a given
lower weak genus bound, his construction cannot concretely identify the example. Such examples, although not
hyperbolic, have been previously given in [Mr, St10].
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Remark 12.2 One can check that for g < 5 the knots K, do not exist. This follows for g = 1 from [St4], for g =2
from our discussion, and for g = 3 from the calculation given later in §13.2. For g =4, 5, one can establish this in
the following way. It follows from the results of [MS] and [SV] that the Seifert graphs of the alternating diagrams of
K, are exactly the planar, 3-connected, bipartite, 3-valent graphs with 4g — 2 vertices and an odd number of spanning
trees. A list of candidates for such graphs was generated and then examined with MATHEMATICA. It showed that
for g < 5 no such graphs exist.

13. Genus three
13.1. The homogeneity of 10,5;, 10;55 and 10,4

After having some success with § = 2, I was encouraged to face the combinatorial explosion and to try to obtain at
least some partial results about § = 3. One motivation for this attempt were the 3 undecided genus 3 knots in [Cr,
appendix]. They can now be settled, and thus, together with corollary 4.1, Cromwell’s table completed.

Proposition 13.1 The knots 1057, 10153 and 10;¢p are non-homogeneous.

Proof. These knots all have monic Alexander polynomial, and hence a homogeneous diagram must be a genus 3
diagram of at most 12 crossings [Cr, corollary 5.1] with no 7, move applied (see proof of [Cr, theorem 4]). As crossing
changes commute with flypes, deciding about homogeneity reduces to looking for homogeneous diagrams obtained by
flypes and crossing changes from a 7)-irreducible alternating diagram of between 10 and 12 crossings. We can exclude
special alternating series generators, as homogeneous diagrams therein are alternating (and positive). Since the leading
coefficient of A is multiplicative under Murasugi sum, and invariant up to sign under mirroring, the monicness of the
Alexander polynomial is preserved under passing from the homogeneous to the alternating diagram. Therefore, it
suffices to consider only (alternating) generating knots, whose Alexander polynomial is itself monic. There are 37
such knots.

Unfortunately, (non-)homogeneity of a diagram, unlike alternation and positivity, is a condition not necessarily pre-
served by flypes. Thus we must apply flypes on the 37 generators, obtaining 275 (alternating) generating diagrams.

Figure 14: Fragments to exclude, together with their obverses, in a homogeneity test.
Unoriented lines may have both orientations. The first and third fragments above make
the diagram non-homogeneous even after flypes. The second one may or may not do so
(depending on the orientation) but if the diagram is homogeneous, then this property is not
spoiled by reducing the fragment to a clasp (so there is a simpler homogeneous diagram).

We must now consider the diagrams obtained from these 275 by crossing changes, and then test homogeneity. How-
ever, it is useful to make a pre-selection. There are several simple fragments in a diagram, which either render it
non-homogeneous, or reveal a simpler homogeneous diagram. See figure 14. Thus it suffices to consider diagrams
without such fragments. More generally than (excluding) the first fragment, if p ~ g or p ¥ ¢, then p and ¢ must have
equal sign. We also apply theorem 8.2 to discard diagrams with long bridges (we have maxdegQ = 8 for all three
knots). There remain to be considered 1430 diagrams.

Homogeneity test on these 1430 diagrams gives 430 homogeneous ones. It is easy to check that none of them matches
the Alexander polynomial of any of the 3 knots we seek, and so we are done. a
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13.2. The complete classification

The above three knots were a motivation to find the 7} irreducible alternating genus 3 knots at least up to 12 crossings.
However, a complete classification of the 7} irreducible genus three alternating knots is considerably more difficult.

Theorem 3.1 of [St4] shows that at least at ¢3 < 8¢y + 6 = 110 crossings the series will terminate. The situation
becomes then more optimistic, though. If one repeats the discussion at the end of §2 for a 7} irreducible alternating
genus 3 diagram, this leads to expect c3 to be around 23. Then we found in [STV], that it is indeed equal to 23. The
method there used the list of maximal Wicks forms compiled as described in [BV]. This method becomes increasingly
efficient when the crossing number grows beyond 15. After some optimization, I was able to process with it also the
crossing numbers below 23, finally reaching 17 crossings. For fewer crossings, one can select generators directly from
the alternating knot tables. (I also processed 16 crossings by both methods to check that the results are consistent.)

The number of generating knots is shown in table 5. (The list of knots is available electronically on [St].) In particular
dz = 15. These data show that there is a huge number of generators, which render discussions by hand, or with
moderately reasonable electronic calculation, as for § = 2, practically impossible in most cases.

Nonetheless, one can obtain some interesting information already from the data in the table, for example:

Proposition 13.2 The number of alternating genus 3 knots of odd and even crossing number grows in the ratio 42/37.
O

This is certainly not a fact one would expect from considering the genus two case.

13.3. The achiral alternating knots

Achirality is a relatively restrictive condition on a knot, and so I tried, similarly as for genus 2, to consider the
achiral alternating knots of genus three, hoping to reduce significantly the number of cases and to obtain an interesting
collection of knots. As we saw, in order a knot to generate a series with an achiral alternating knot, it must be in
particular of even crossing number, zero signature and even number of ~-equivalence classes of crossings. (In fact,
among these classes there must be equally many of both signs for the same number 1 or 2 of elements.) From the
generators compiled above, 68 passed these tests.

To deal with these 68 cases more conveniently, it is worth mentioning a further simple criterion which can be often
useful. It uses Gaul} sums (see for the definitions [F, FS, St2, PV]).

Proposition 13.3 Let K be the alternating generator of a series containing an alternating achiral knot K’. Then the
following Gauf} sums vanish on an(y) reduced alternating diagram of K:

@)wp(writhe)7 @@, @wl,wqwr,
q p
p W,
Bt @ G G

Proof. The intersection graph of the GauB diagram (IGGD) of K’ has an automorphism taking each vertex to one with
the opposite sign. But building K out of K’ means reducing the number of elements in a ~-equivalence class in the
IGGD to 1 or 2 according to their parity, and hence the above automorphism carries over to (the IGGD of) K. But the
above Gauf3 sums are clearly invariants of the intersection graph (and not only of the Gaul diagram). They change
sign under mirroring the diagram, and hence the result follows. O

The proof suggests that more is likely.

Conjecture 13.1 If K is the alternating generator of a series containing an alternating achiral knot, then
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13.3  The achiral alternating knots

Table 5: The number of 7, irreducible prime genus 3 alternating knots tabulated by crossing number ¢

and number of ~-equivalence classes (#

~).

» ol |1 | 12| 13 14| 15| 16| 17] 18] 19| 20| 21|22 23 | total
6 4 4
7 5| 8|11 9 36
8 10|21 |22 30| 44 13 146
9 401642 72| 64| 55| 68 7 328
10 20 15| 51| 104 | 159 | 119 | 52 | 45 2 549
11 1| 10| 49| 120 | 194 | 211 | 130 | 20 | 14 749
12 1 S| 32| 112|220 | 229 | 154 | 75 2 1 831
13 1 2| 17| 63170 | 252 | 178 | 48 | 18 749
14 1 4 2] 63| 132|163] 82 467
15 2 30 12| 25| 47|46 | 23 || 158

total 19 | 47 | 91 | 168 | 267 | 377 | 511 | 563 | 598 | 499 | 411 | 240 | 148 | 46 | 23 || 4017
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(i) K is achiral, or
(i) K is an iterated mutant of its obverse, or

(iii) K has self-conjugate HOMFLY and/or Kauffman polynomial.

Clearly (i) and (ii) are stronger than our result. But beware that (iii) is not. Remarkably some of the above simple
Gaul3 sums can sometimes do better in distinguishing an alternating knot from its obverse than the HOMFLY and/or
Kauffman polynomial, as one can see from the examples 1043 and 107;.

It is a good exercise to apply the above criteria by hand in some simple examples. However, for many and/or more
complicated diagrams it is easier and safer to use computer.

Applying proposition 13.3 on the 68 knots only the 30 achiral (without regard of orientation) knots remained. Up to 14
crossing the list is 89, 817, 818, 1043, 1045, 1081, 1088, 10115, 12125, 12273, 12477, 12510, 12960, 121124, 121251, 141202,
145678, 1415366, 1416078, 1416857 and 1417247. There are 6 knots of 16 crossings, two of 18 and one of 20 crossings.

Again one can study their series in more detail, as we did for § = 2. For example, we have

Proposition 13.4 The fibered achiral alternating genus 3 knots are: 89, 817, 813, 1043, 1045, 1031, 10gg, 10115, 12125,
12477 and 121124. O

Since the maximal number of ~-equivalence classes of these 30 knots is 12 (16277679, 16309640 and the two 18 crossing
knots have that many), we have

Proposition 13.5 The number of prime achiral alternating genus three knots of 7 crossings is 0= (n>). a

14. Questions

Question 14.1 Are there any composite (other than the obvious ones) or satellite knots of § =27
The lack of “exotic” composite & = 2 knots is suggested by a conjecture of Cromwell:

Conjecture 14.1 (Cromwell [Cr2]) If D is a diagram of a composite knot K = K|#K, and g(D) = g(K), then D is
composite.

The conjecture is true by Cromwell’s work if D is a diagram of a closed positive braid and by Menasco’s work [Me] if

D is alternating. However, the conjecture in general turns out wrong, as shows the example of figure 15, discovered in
the course of the work previously described here.

We can pose, however, a different problem:
Question 14.2 Does any knot have only finitely many reduced diagrams of minimal (weak) genus?
It is an easy observation (similar to the proof of proposition 10.4) that there are infinitely many slice knots of § = 2.

(See also remark 10.4.) Take 134233. Then switching 2 of the clasps we obtain a knot bounding a ribbon disc with two
singularities, and can change by twists the half-twist crossings:
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Figure 15: A counterexample to a conjecture of Cromwell: a prime genus two diagram of the knot 5,#!5,.

Question 14.3 Can one decide more exactly which weak genus two knots are slice?
Finally, we point out two general problems:
Question 14.4 Is g always additive under connected sum?

In this case the combinatorial nature of g seems to make the problem much more involved than for g (for which there
is an easy cut-and-paste argument, see [Ad]). Note again that the answer would be positive if Cromwell’s conjecture
had been true.

Question 14.5 Is g invariant under mutation?
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