COUNTING ALTERNATING KNOTS BY GENUS
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ABSTRACT. It is shown that the number of alternating knots of given genus g >
1 grows as a polynomial of degree 6g — 4 in the crossing number. The leading
coefficient of the polynomial, which depends on the parity of the crossing
number, is related to planar trivalent graphs with a Bieulerian path. The rate
of growth of the number of such graphs is estimated.

1. INTRODUCTION

In the fundamental paper [14], Menasco and Thistlethwaite proved that two
alternating diagrams of the same knot or link are related by a sequence of flypes, i.e.
are flype-equivalent. This theorem has, among others, applications to enumeration
problems of links. Apart from their knot-theoretic relevance, such problems are
expected to have impact for, and so are of interest to, biologists, physicists and
chemists studying knotting in their work (for example in DNA, or in statistical
mechanics). The present paper deals with such a problem. Specifically, let an g
denote the number of alternating knots of crossing number n and genus g > 1. Our
effort will be to determine the behaviour of a, 4 for g fixed and n — co. Writing
an, Xp by for limy, o an /b, = 1, our main result is stated as follows:

Theorem 1.1. If g > 1, as n — oo through the even/odd integers, we have
(1) An,g =n C’g,e/onﬁg_4 +0(n%7%),

with non-zero constants Cy.. and Cy , (independent on n for fixed parity of n), and

20

. . 2
400 < hgrggéf (69)! Cy.e/0 < limsup ¢/(69)! Cye/0 < 56 N 1438.38.
g—00

(In the following, a statement involving ‘Cy ./, is to be understood as a pair of
statements, one involving ‘Cy .’ with n restricted to even integers, and one involving
‘Cq,o’ with n restricted to odd integers.)

The main tool applied in the study of the numbers a, 4 are certain group theo-
retic objects called Wicks forms.

A Wicks form is a canonical form of a product of commutators in a free group
G [25]. The algebraic genus of a Wicks form w is the least positive integer g, such
that w is a product of g, commutators in G. The topological genus of an oriented
Wicks form w = wy ... wq;_1we; is defined as the topological genus of the oriented
compact connected surface obtained by labeling and orienting the edges of a 2l—gon
in the oriented plane by the letter of w and by identifying the edges labeled by a
letter and its inverse. The algebraic and the topological genus coincide (cf. [10],

[7])-
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Wicks forms have been considered in [7], [25] to study products of commutators
and products of squares in free groups. In [1] the exact formula for their number
was computed, and it was proved that there is a bijection between Wicks forms of
genus g and 1—vertex triangulations of genus g orientable surfaces. L. Mosher [15]
has constructed a complex whose fundamental group is the mapping class group of
an orientable genus g surface. 1—vertex triangulations appear as the vertices of this
complex. Brenner and Lyndon considered such triangulations from a combinatorial
point of view motivated by the study of non-parabolic subgroups in the modular

group [6].

Wicks forms are also closely related to the structure of the class of alternating
knots of given genus studied by the first author [21]. He showed that if a, 4 denotes
the number of alternating knots of crossing number n and genus g, then a4 for g
fixed and n — oo grows polynomially in n. He also gave an estimate for the degree
of this polynomial. In [22] the relation between alternating knot diagrams, Wicks
forms, and the Gauf§ diagrams of [19] was established, and it was shown that the
notions of genus for all of these objects coincide. Then the theory of Wicks forms
[25, 1] was used to improve the estimate on the degree of the polynomial (in n)
enumerating a, 4 to 6g — 4 in genus g > 1.

In the present paper we deepen the relationship between Wicks forms and the
genus of alternating knots. We will show that the above estimate 69 — 4 is exact
for g > 1, thus determining the asymptotical behaviour of a, 4 as n — oo up to
constants, depending on the parity of n, which we denote as Cy ./, (for even/odd

The main effort then will focus on identifying the constants C /,, i-e. the lead-
ing coefficient of the polynomial (for a given parity of n). We obtain a description
of this coefficient in terms of the number of a special type of Wicks forms we call
planar mazimal Wicks forms. These are the forms whose graph is planar, trivalent
(cubic), and 3-connected. As a Bieulerian path in the graph of such a form induces
in each vertex a cyclic orientation, we arrive at another, quite unrelated, occur-
rence of at least a subclass of the 3-valent graphs well-known as Feynman diagrams
[5], and then appearing in the theory of Vassiliev invariants [2, 3]. Then we use
the work of [1] and [24] to estimate the number of such graphs, and hence Cy ./,
asymptotically for g — oo. More precisely, we show that the coefficients C, , and
Cy,e are both non-zero for genus g > 1 and differ only at most by a linear term in g,
so that the qualitative difference between even and odd crossing number for large
g is minimal. We will also explain the reason for the degeneracy of the case g =1
(where a difference between even and odd crossing number occurs) encountered in
[21].

Since the alternating diagrams obtained from planar maximal Wicks forms are
special alternating, an unexpected consequence of our investigation is that gener-
ically an alternating knot of any genus (higher than one) is a special alternating
knot.

In a subsequent paper, the first author will extend the main result of this paper
also to the number of positive knots of given genus and given crossing number. This
requires an additional sharp estimate of this crossing number.



COUNTING ALTERNATING KNOTS BY GENUS 3

2. PRELIMINARIES AND STATEMENT OF RESULTS

In order to state our results and introduce our tools, we start with some classical
definitions and recall important properties of alternating knots and links.

Definition 2.1. A crossing p in a knot diagram D is called reducible (or nugatory)
if D can be represented in the form

(o)

D is called reducible if it has a reducible crossing, else it is called reduced.

Definition 2.2. Denote by ¢(D) the crossing number of a knot diagram D. The
crossing number ¢(K) of a knot K is the minimal crossing number ¢(D) of all
diagrams D of K.

Theorem 2.3. ([12,17, 23]) An alternating knot with a reduced alternating diagram
of n crossings has crossing number n.

Definition 2.4. For a diagram D of knot K, we define the genus g(D) as the genus
of the surface obtained by applying the Seifert algorithm to this diagram. It can
be expressed as

¢(D)—-s(D)+1
o(p) = 2DV L
with s(D) being the number of Seifert circles of D.
The importance of this definition relies on the following classical fact:

Theorem 2.5. ([9, 16]) An alternating knot with an alternating diagram of genus
g has genus g.

By the work of Menasco and Thistlethwaite [14], alternating knots are intimately
related to another diagrammatic move called flype.

Definition 2.6. A flype is a move on a diagram shown in figure 1.

FI1GURE 1. A flype near the crossing p

Theorem 2.7. ([14]) Two alternating diagrams of the same knot or link are flype-
equivalent, that is, transformable into each other by a sequence of flypes.

When we want to specify the distinguished crossing p, we say that it is a flype
near the crossing p.

We call the tangle P of figure 1 flypable. We say that the crossing p admits a
flype or that the diagram admits a flype at (or near) p.
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We call the flype non-trivial, if both tangles P and @) have at least two crossings.

We say that the crossing p admits a (non-trivial) flype if the diagram can be
represented as in figure 1 with p being the distinguished crossing (and both tangles
having at least two crossings). A diagram admits a (non-trivial) flype if some
crossing in it admits a (non-trivial) flype.

Since trivial flypes are of no interest we will assume from now on, unless otherwise
noted, that all flypes are non-trivial, without mentioning this explicitly each time.

Let an,, be the number of prime alternating knots K of genus g(K) = g and
crossing number ¢(K) = n. (We conform here to the notation of [22].) The set of
such knots was shown to have special structure by a theorem of the first author.

Theorem 2.8. ([21, theorem 3.1]) Reduced (that is, with no nugatory crossings)
alternating knot diagrams of given genus decompose into finitely many equivalence
classes under flypes and (reversed) applications of antiparallel twists at a crossing

X =00

Henceforth we call the move in (2) a #; move.

It was observed in [21] that in a sequence of flypes and #> moves, all the flypes
can be performed in the beginning. It follows then from [14] that there are only
finitely many alternating knots with #»-irreducible diagrams of given genus g, and
we call all such knots, and their alternating diagrams generators or generating
knots/diagrams of genus g.

A clasp is a tangle made up of two crossings. According to the orientation of
the strands we distinguish between reverse and parallel clasps.

XX XX

reverse clasp parallel clasp

There is an obvious bijective correspondence between the crossings of the 2
diagrams in figure 1 before and after the flype, and under this correspondence we
can speak of what is a specific crossing after the flype. In this sense, we make the
following definition:

Definition 2.9. We call two crossings in a diagram ~-equivalent, if they can be
made to form a reverse clasp after some (sequence of) flypes.

Is is an easy exercise to check that ~ is an equivalence relation.

Definition 2.10. We call an alternating diagram generating, if each ~-equivalence
class of its crossings has 1 or 2 elements. The set of diagrams which can be obtained

by applying flypes and £ moves on a generating diagram D we call generating series
of D.

Thus theorem 2.8 says that alternating diagrams of given genus decompose into
finitely many generating series.

Definition 2.11. Let ¢, be the maximal crossing number of a generating diagram
of genus g, and d, the maximal number of ~-equivalence classes of such a diagram.
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A consequence of theorem 2.8 is

Corollary 2.12. Forany g>1
R
St =
n

(o — 1)%
for some numbers py,d, € N and R, € Qz].

This corollary can be written also in the following form (see corollary 3.2 of
[21]): there are numbers p,,n, € N and polynomials P, 1, ..., Py, € Q[n] with
n,g = Py .nmod p, (n) for n > mny.

Let us write P, = P, , when g is fixed. Using [21] we can say more on P,
(see §3). While the entire P, depend on n mod p,, the degree deg P, and leading
coefficient max cf P, of P, depend only on n mod 2. Let d; , = deg P, +1 for n odd
and dgy . = deg P, + 1 for n even, and dy, = max(dy,,,d,.). The equivalence of this
definition of dy to the one in corollary 2.12 (where d, is taken to be the smallest
possible) follows from standard generating function theory, and to the one given in
definition 2.11 follows from [14] (see [21], or §3 below for a better explanation). In
[21], a rather rough estimate on the d, was given, which was later improved in [22].

Theorem 2.13. ([22]) d, < 6g — 3.

It was asked whether this is the best possible estimate. The first of the next
3 theorems, which summarize the results of this paper, answers partially this and
some other questions of [22]. It is proved in §4.

For two sequences a,, and b, we write a,, ~ by, if lim,_, o |b,/a,| exists, and is
not 0 or co.

Theorem 2.14. The following holds:

(1) dg,o = dg,e =69 —3 for g > 1. That is, an,y ~ nS9=1.
(2) ¢g >109—7.

It will be convenient, from now on, to consider only genus g > 1. The case g =1
is completely described in [21].

Definition 2.15. A special diagram is a diagram all of whose Seifert circles have
either an empty interior or exterior. (Here interior and exterior denote the bounded
and unbounded connected component of the complement of the Seifert circle in R2
and empty means not containing a crossing of the knot diagram.)

After we identify the degrees of the P,, we relate their leading coefficients to
3-valent graphs. Note, that these coefficients can also be written as the limits
o a2n+1,9 T QA2n,g
Cg,o o nh—>ngo (2n + 1)6974 and Cg,e o nILHéO (2n)69*4 ’
We consider planar 3-connected 3-valent graphs (with no multiple edges and
loops). When equipping such a graph with a Bieulerian path (whenever this is

possible), we associate to it a special generating knot and prove that all generating
knots with maximal degree contribution to the P, correspond to such graphs.

As a Bieulerian path endows each vertex of such a graph with a cyclic orientation,
we have yet another appearance of, at least some, 3-valent graphs from the theory
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of Vassiliev invariants [3] in a different context, after Bar-Natan’s remarkable paper
[2].

A consequence of our correspondence is that special alternating knots dominate
among alternating knots of given genus (higher than 1), as the crossing number
increases, as we prove in §4. (The conditions for an alternating knot to have a
special alternating diagram and to be positive are equivalent, see [18].)

Theorem 2.16.
#{ K alternating positive prime,c(K) =n,g(K) =g}
#{ K alternating prime,c(K) =n,g(K) =g}
as n — oo for any fized g > 1.

—1

(Here and below #5S and |S| both denote the cardinality of a finite set S.)

Later we tackle the asymptotic estimation of the number of 3-connected 3-valent
planar graphs of genus g (that is, with 49 — 2 vertices and 6g — 3 edges) with
Bieulerian paths up to cyclic permutation. Let By be this number. We have from
our correspondence a relation to the numbers Cy. = maxcf Py, and Cy, =
maxcf Py ont1:

B
(3) By > (6~ 4)!(Cou + Cpe) > =2

This inequality is explained in §3.

Moreover, we prove that the ratios of C, . and C, , can be double-sidedly esti-
mated by polynomials in g (corollary 5.9). Thus the rate of growth of B, becomes
of interest. We obtain the following estimates on this rate. The proof uses the work
of [24] and [25], and is given in §5.

Theorem 2.17.

.. . 220
400 < hgrggéf {/By < h;gsip /By < 56 = 1438.37585...

We conclude this section with a few more preliminary remarks.

In [19] the concept of Gauf} diagrams was introduced as a tool for generating knot
invariants. Given a knot diagram, one links by a chord on a circle the preimages
of the two passes of each crossing, orienting the chord from the underpass to the
overpass. The resulting object is called a Gauf diagram (GD).

In general any circle with oriented chords is called a Gaufl diagram. Not all
Gauf} diagrams come from knot diagrams; those that do are called realizable Gaufl
diagrams. We ignore in the sequel the sign of the crossings, that is, the direction
of the arrows. Then realizable Gaufl diagrams correspond bijectively to alternating
knot diagrams up to mirroring.

In [22] we remarked that the Gaufl diagram of a generating diagram has no
triple of chords, not intersecting each other, and intersecting the same subset of the

remaining chords.

Definition 2.18. The diagram
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is called connected sum A#B of the diagrams A and B. If a diagram D can be
represented as the connected sum of diagrams A and B, such that both A and B
have at least one crossing, then D is called disconnected (or composite), else it is
called connected (or prime).

By the work of Menasco, diagrammatic primeness and topological primeness
coincide for alternating knots.

Theorem 2.19. ([13]) A prime alternating diagram depicts o prime alternating
knot.

We should remark that the Gauf3 diagrams of prime diagrams are those for which
any two chords a and b can be connected by a sequence of chords ¢y, ..., c, with
a = c¢1, b = ¢y, such that ¢; and ¢;41 intersect. We call such Gaufl diagrams prime.

For the following discussion, it will be most convenient to consider prime alter-
nating knots up to mirroring, but with orientation.

The reason for considering prime diagrams is that, once we prove theorem
2.14.(1), the contribution to an,, from composite diagrams is negligible. Genus
and number of ~-equivalence classes is additive under connected sum, and by the-
orem 2.13 the number of ~-equivalence classes of composite genus g diagrams can
be at most 6g — 6.

We now turn again to flypes and introduce a distinction according to the orien-
tation near the crossing p at which the flype is performed. See figure 2.

e &®

type A type B

FI1GURE 2. A flype of type A and B

An important observation is that each crossing admits at most one of the types
A and B of flypes, and this remains so after applying any sequence on flypes on the
diagram.

We remark that on the Gaufl diagram, a flype of type B looks like

p @ Q p
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3. ENUMERATING ALTERNATING KNOTS OF GIVEN GENUS

The Flyping theorem 2.7 is the central ingredient of the method to take account
of duplications of the same alternating knot occurring among diagrams of given
genus. This has been carried out in [21], but we repeat most of it and describe some
of the parts in more detail, since it is decisive and provides a guideline for what
follows. Our objective will be to identify the leading coefficient of the polynomials
P,.

A first observation is that if two Gaufl diagrams G and H can be transformed
by flypes and cyclic rotations, so can their generating diagrams. Thus, to remove
duplications of the same alternating knot in different generating series is the same
as to remove duplications of the knots represented by the generating diagrams,
thereby reducing the list of such diagrams. Once this is done, duplications of the
same knot can occur only within each generating series separately.

A symmetry of the Gaufl diagram can be described as follows. Assign to the
chords of G numbers 1,...,n. Then a symmetry is a permutation ¢ € S, such
that, when replacing the labels of G from i to o(i) and calling this new labeled
diagram G', G' can be transformed into G' by a sequence of flypes and a cyclic
rotation of the circle.

It is clear that any symmetry descends to a permutation of ~-equivalence classes,
and each such permutation of ~-equivalence classes comes from exactly one symme-
try up to flypes (flypes permute the crossings of a ~-equivalence class arbitrarily).
Thus the symmetry group Sg of a Gaufl diagram G can be considered as a subgroup
of the permutation group of G’s ~-equivalence classes.

If G is a generating diagram, each one of G’s symmetries can be also considered
to permute the ~-equivalence classes of a diagram in the generating series of G
(because they correspond tautologically to ~-equivalence classes of G).

Flypes and cyclic rotations carry over under passing to the generating diagram
(removing pairs of chords from each ~-equivalence class, until one or two are left).
Thus two diagrams of a(n alternating) knot in the same generating series are trans-
formable into each other by the action of a symmetry of the generating diagram.

Conversely, a symmetry of the generating diagram G transforms a diagram D
in G’s generating series into a diagram of the same knot, unless in the symmetry
of G type A flypes have been performed at crossings to which ¢ moves have been
applied in passing from G to D.

This can be accounted for by considering instead of G the diagram G, obtained
from G by applying a #> move at each crossing which is the single crossing in its
~-equivalence class in G. (It will follow from (5) that the contribution of diagrams
with a ~-equivalence class of one single crossing is negligible.)

However, if we know (and we will prove that in theorem 4.7; see also remark
4.9) that the G we need to consider do not admit non-trivial flypes and have no
parallel clasps (that is, don’t admit even trivial flypes of type A with one of the
tangles having a single crossing), then this subtlety does not come about, and we
can still work with G (rather than G). We really need to ensure the lack of parallel
clasps, because in the definition of symmetry we worked with marked chords (or
crossings), and a flype at a crossing in a parallel clasp, although not altering the
diagram, does alter the markings, and thus permutes ~-equivalence classes.



COUNTING ALTERNATING KNOTS BY GENUS 9

Thus, to enumerate the alternating knots of n crossings in the generating series
of a diagram G by ag,, (which are the same as equivalence classes of Gaufl diagrams
in this series modulo symmetries), we apply Burnside’s lemma [11, lemma 14.3 on
p. 1058]. Let ag,s,n be the number of n crossing diagrams in the (fixed) generating
series of G fixed by some symmetry s € Sg. Then

1
(4) ag,n = m Z ag,s,n -

G sESq
Let G have dg ~-equivalence classes. Then ag s, counts compositions of n of dg
numbers, some of which are equal, unless s = Id. This is polynomial in n of degree

dg — 1 — #identifications = #cycles of s — 1.

Thus the maximal contribution is exactly this for s = Id, which is

n+dg—1 1 da—1 da—2
= O(nds
( dg — 1 ) o~ TomE
and
1
5 — dg—1 o) dg—2 .
(5) agn oo~ 1)!n +0(n )
Consequently, we have shown (modulo the proof of theorem 4.7)
1 1
(6) Cyo = Z :
(dg’o - 1)! G generating, |SG|
¢(G) odd,
dg =dg,0

We will show in the next section that the G occurring in the sum are exactly
those coming (in a way defined there) from planar 3-valent 3-connected graphs with
a Bieulerian path.

As a cyclic rotation of the Gauf3 diagram, under the identification of the Gaufl
diagram with a 3-valent graphs with Bieulerian path, corresponds to a cyclic per-
mutation of the sequence of edge passes described by the path, we will thus consider
graphs with Bieulerian path up to such cyclic permutations of the path.

Another important knot diagrammatic step will be to get disposed of the flypes,
showing that for the planar 3-valent graphs with Bieulerian path the knot diagrams
do not admit flypes, and thus the reduction of generating diagrams is necessary only
by cyclic rotations.

The case of considering only cyclic rotations as symmetries has been studied, as
for such graphs G it is known that |Sg| € {1,2,3,6} [4]. Thus we obtain from (6)
and its analogue for ¢(@) even the relation (3). Therefore, the basic problem is to
estimate the number of such graphs B,. This is done in §5.

4. IDENTIFYING MAXIMAL GENERATING DIAGRAMS

Let G be a connected 3-valent graph. Fix some arbitrary orientation (direction)
of the edges in G. A Bieulerian path in G is a closed path that traverses each edge
of G exactly twice, only once in each direction, and does not traverse any edge
followed immediately by its inverse (itself in the opposite direction).

To a Bieulerian path one can associate a word in some alphabet (called Wicks
form and considered in more detail later), obtained by labeling each edge by a



10 A. STOIMENOW, A. VDOVINA

letter, and putting this letter (resp. its inverse) when the edge is traversed in (resp.
oppositely to) its orientation.

In [22] we described the bijection between a graph with Bieulerian path G and
a GauB} diagram G'.

To obtain G' from G one just writes the letters of its word (Wicks form) w along
a circle and links by a chord each letter and its inverse. To obtain G from G,
we consider the circle of G' as a 2n-gon (each side corresponding to a basepoint
of a chord) and identify sides corresponding to the basepoints of the same chord,
obtaining G lying on a surface S. (The circle G’ bounds a disk that yields S under
the identifications.) To indicate the origin of G and S, we write G = G(w) and
S = S(w). The dual of G forms a 1-vertex triangulation of S.

We call a graph with a Bieulerian path realizable if and only if its associated
Gaufl diagram is realizable (as a knot diagram). In this case each Seifert circle of
the knot diagram corresponds to a vertex of the graph, and each crossing of the
knot diagram attached to a pair of Seifert circles corresponds to an edge joining
the vertices of these Seifert circles. In this sense we call the number of crossings
attached a Seifert circle its valence (the valence of its corresponding vertex in the
graph).

Then in [22] we defined the genus of Gaufy diagrams and of graphs in different
ways and showed that they coincide. Also the genus of a knot diagram (which is
equal for alternating diagrams to the genus of the knot [9, 16]) was showed to be
equal to the genus of its Gauf} diagram.

We do not repeat these definitions, but recall that in the case of a trivalent
graph,
d 2 ti
genus of graph = 3+ #6e ges _ 2+ # Zer ices
If the graph is additionally planar, then

f. -1
genus of graph = %,

where the infinite face is counted.

It is easy to see that composite knot diagrams give composite Gaufl diagrams,
which in turn correspond to graphs with a cut vertex. Since genus is additive under
the join of graphs

Sl

as mentioned, a composite genus g knot diagram can have at most 6g — 6 ~-
equivalence classes. Thus the contribution of such diagrams is negligible, once we
have shown that there are diagrams with more ~-equivalence classes (see the proof
of theorem 2.14).

Definition 4.1. A primitive Conway tangle [8] is a tangle of the form
(AR AS

We call two crossings a and b in a diagram D neighbored, if they belong to
a reversely oriented primitive Conway tangle in D, that is, there are crossings
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C1y.--,Cp With @ = ¢; and b = ¢,, such that ¢; and ¢; 41 form a reverse clasp in D.
(Equivalently, a and b correspond in the graph to edges which can be connected by
a path passing only through vertices of valence 2.)

This is a similar definition to ~-equivalence, but with no flypes allowed. Thus
the number of ~-equivalence classes of a diagram is not more than the number of
neighbored equivalence classes of the same diagram, or of any flyped version of it.

The following was proved in [22] in a slightly implicit way, so we will recapture
the proof in more detail.

Lemma 4.2. A knot diagram of genus g has at most 6g — 3 neighbored equivalence
classes (and hence at most 6g — 3 ~-equivalence classes).

Moreover, knot diagrams of genus g having exactly 6g — 3 neighbored equiva-
lence classes come ezactly from graphs with Bieulerian path, all whose vertices have
valence 2 or 3.

Proof. Note that in the Gauf3 diagram neighbored equivalent crossings correspond
to chords we called in [22] parallel. Then note that in fact we needed in the proof
of theorem 3.6 in [22] (second paragraph) only the lack of parallel pairs of chords
to ensure that G has no vertices of valence 1 and 2. Then we showed that G has
at most 6g — 3 edges, and exactly 6g — 3 edges if and only if all its vertices have
valence 2 or 3. a

The lemma means in particular, that if G’ is realizable and its knot diagram D
has 69 — 3 ~-equivalence (or just neighbored equivalence) classes, then all vertices
of G' have valence 2 or 3, and thus the Seifert circles of D have 2 or 3 adjacent
crossings. Hence the knot diagram is special.

In general the condition of being realizable is difficult to test for G', but in the
trivalent case it is surprisingly simple.

Theorem 4.3. A trivalent graph with Bieulerian path is realizable if and only if it
is planar(ly embeddable). In this case the knot diagram is special.

We should remark that a planar graph is in fact a graph equipped with a concrete
planar embedding, while the realizability of the graph does not depend on the planar
embedding. However, we will shortly show that for the cases we need to consider
the planar embedding is unique (see remark 4.8).

For the proof, and later, we will need the following additional structure on a
trivalent graph with Bieulerian path.

Definition 4.4. A Bieulerian path in a trivalent graph induces an orientation on
each 3-valent vertex v given by a cyclic order of the 3 adjacent edges. To define it,
orient the 3 adjacent edges a, b and ¢ towards v. Then if the word of the Bieulerian
path contains the subwords ab~!, bc™! and ca=! (in whatever order), then the
orientation at v is given by (a, b, ¢).
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If the Bieulerian path contains the subwords ac™!, cb=! and ba~! (in whatever
order), then the orientation at v is (¢, b, a).
a

=
Ul

The proof of theorem 4.3 we give now establishes a natural correspondence be-
tween a plane 3-valent graph with Bieulerian path and a special knot diagram.

Proof of theorem 4.3. Let G be a 3-valent graph with Bieulerian path. The path
induces the orientation of vertices. If two ends of the edge have the same orientation,
put on the edge an additional vertex of degree two. We have a graph G’ with vertices
of degree two and three. Every edge x of G, which was divided in two parts, will
be replaced in the Bieulerian path by z1z2. We can change the orientations of the
edges of G' such that in the Bieulerian path the orientations of edges alternate.
Now we have an oriented graph such that for every vertex all edges incident to it
either all are incoming or all are outgoing.

If all edges incident to a vertex all are outgoing (incoming) we say, that the
vertex is of the first (second) type.

In the middle of any edge of G' we put a small cross, it will be a future crossing
of the knot diagram. Now we draw a circle with the center in each vertex, such
that the circles with centers in the ends of the same edge are tangent at the small
cross. We equip each circle with the orientation induced by the orientation of the
vertex. These circles will be the Seifert circles for our knot diagram.

Now we form the knot diagram from the Seifert circles by an algorithm, which
is inverse to the Seifert algorithm. Overcrossings and undercrossings are defined as
follows: if the knot strand goes from a vertex of the first type to a vertex of the
second type, we have an overcrossing; if the strand goes from a vertex of the second
type to a vertex of the first type, we have an undercrossing.

Note, that even after inserting vertices of valence 2, the graph has no edge
connecting different vertices of valence 2, and thus the resulting knot diagram has
not more than two neighbored crossings in each neighbored equivalence class. O

Not all vertex orientations come from Bieulerian paths. However, those that do,
come in a unique way.

Lemma 4.5. Any vertex orientation coming from a Bieulerian path determines
the Bieulerian path uniquely (& vice versa).

Proof. This is rather obvious, since the the Bieulerian path is determined uniquely
by its local pieces around each vertex. O

Proof of theorem 2.14. We give an example of a planar 3-valent graph of genus g
and 6g — 3 ~-equivalence classes and even and odd crossing number of the corre-
sponding diagram. In the case of odd crossing number we have 10g — 7 crossings.
(This graph has 69 — 3 ~-equivalence classes since it is 3-connected and 3-valent.)

We give the examples in the form of Bieulerian path, parametrized by t = 2(g—2).
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The case of odd crossing number (Figure 3) is
1 -1, -1 -1 —1 —1
ab tcd T1xy Y123 24Yy Ty ... Tyi oYi1
-1 —1,p—1 3—1. —1p —1 -1
2oy 122tY; ef T gh™ia” fe  waxy; 4
Tot—2 ... 1’2%{1klilbiilhnilngtlzzt_l e

1, —~ljp—=1g,-1, -1 -1 1
2y z1C7 kTN d2y T2y T T3T, Yory ...

-1 -1 —1, -1
22¢—2Yp _1T2t—1Top Yt NG .

(Note that this is one single word, split because of its length, and the dots, also at
the end of a line, indicate only a finite number of letters to be inserted suggestively
according to the figure.)

The case of even crossing number (Figure 4) is

a ' of Uk ey g tasay P

-1 —1, —13.-1__—1
Top oTot—1Top €9~ hi™ ae

—1 ~1 ~1
YtRoy 22t—1Y; _1T2t—2 ... Ty

1. 1 13- 1pp—1:3-1
Yazq 23y Tawy dc - fb ik

-1 -1 -1
MYy T2tTop 1Yt—1294 2 - - -
z;;y;lxwglylzglzld_lkl_lc
-1, -1, —1 -1 —1
21 2223 2425 ...22t7222t_122tm g.
O

Remark 4.6. The lower bound 10g — 7 is almost optimal at least for special
alternating generators. If we take a planar cubic graph of genus g, and put two
crossings on each of its 6g — 3 edges (that is, add a vertex of valence two on
each edge), then we obtain by the above described construction an alternating link
diagram with as many components as regions we have, namely 2g + 1. Since the
change of 2 crossings to 1 along each edge changes the number of components by
+1, we need at least 2g such replacements to obtain a knot diagram. Thus the
maximal number of crossings we can have is

2(6g—3) — 29 = 10g—6.

If we have a tz-irreducible special diagram with a Seifert circle of valence > 4,
then one can see that one can always perform a Reidemeister II move on an appro-
priate pair of non-neighbored edges in this Seifert circle so as to obtain a special
diagram of the same genus and two crossings more, which is still ;-irreducible
(although not always any pair of such edges will do).

Not for all planar 3-valent graphs of genus g with Bieulerian path the corre-
sponding diagram has 6g — 3 ~-equivalence classes. Such graphs are described in
the following theorem.

Theorem 4.7. Let G be a planar 3-valent graph (with Bieulerian path) and D
its knot diagram (as constructed in the proof of theorem 4.3). Then the following
conditions are equivalent:

(1) G is 8-connected (i.e., removing any pair of edges does not disconnect it),
(2) D has 6g — 3 ~-equivalence classes,
(3) D admits no (non-trivial) flypes.
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FIGURE 3.

Remark 4.8. By a theorem of Whitney each 3-valent 3-connected graph has, if
any, a unique planar embedding up to moves in S? (see [2]). Thus for the cases
that are of interest to us we do not need to care about ambiguities of the planar
embedding, and can consider the graph also abstractly.

Proof. We prove by a ring conclusion the equivalence of the negations of the 3
conditions stated.

=2 = 1. If 2. does not hold, then D has < 6g — 3 ~-equivalence classes, but
6g — 3 neighbored equivalence classes. Thus there are 2 crossings a and b in D
which can be made neighbored only after flypes (as crossings which can be made
neighbored after trivial flypes are already neighbored, these flypes must be non-
trivial). Since neighbored crossings cannot admit a type A flype (and the type of
flype a crossing admits is not changed under flypes), these flypes must be of type
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el NI ™
J
o |
deft) df
X N
W™, ) : \
42 3(5 % T
FIGURE 4.

B. Thus we have the following picture:

As each of the T; contains at least 2 crossings, they both must contain Seifert circles
of valence 3 (otherwise one of them would be a reversely oriented primitive Conway
tangle, and a and b would be neighbored), and passing to the graph, this graph is
disconnected by the removing of the edges corresponding to a and b.

-1 = —3. Assume that G is not 3-connected (it is 2-connected, as an edge
disconnecting it would give a nugatory crossing in D). Then D looks like in (7)
with both T; containing Seifert circles of valence 3 (coming from a 3-valent vertex
in each of the two disconnected components remaining from G after deleting the
edges corresponding to a and b). If some T; contained only one crossing, then there
would be only one Seifert circle S in T; of valence 3, to which a and b are attached.
The third crossing attached to S would be reducible. Therefore, both T; have at
least 2 crossings, and D admits a non-trivial flype.
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-3 = —-2. We can assume that each Seifert circle in D bounds only 2 or 3
crossings. Otherwise by lemma 4.2, D will have < 6g — 3 neighbored equivalence
classes, and so < 69 — 3 ~-equivalence classes, and we would be done.

First, assume that D admits a type B flype at a crossing . Then the picture is
like this:

(the thickened lines should depict parts of the Seifert circles).
The crossing x joins 2 Seifert circles a and b:

a b

.Z'\
One of a and b must have 3 crossings at it, otherwise z will be the middle crossing
in

® XXX

contradicting the fact that D by construction has no neighbored equivalence class
of more than 2 crossings. If both a and b have 3 crossings, we have

with m = a and n = b. Else let without loss of generality b be the Seifert circle
with 2 crossings. Then we have

for m = a and n being a new Seifert circle (so far possibly equal to a).
In both cases we have that m and n bound 3 crossings each (in latter case because
D by construction has no neighbored equivalence class of more than 2 crossings).
The Seifert circle n does not leave T' through its other 2 ends, i.e., does not look
like T
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Otherwise, because of the specialty of D, all crossings attached to n in 7" (if any)
would be on the outside of n, i.e., in the shaded regions

n

Then T’ would have no crossing (and hence T at most one) or would contain
reducible crossings, or D would be composite, in all cases giving a contradiction.
(Therefore, in particular n # a.)

Thus n remains within 77, and T contains the two other crossings attached to

n. T!

Then a flype at x (and y if in case (9)), would join m and n into a Seifert circle of
4 crossings. This flyped version of D has by lemma 4.2 less than 6g — 3 neighbored
equivalence classes, and so D will have < 6g — 3 ~-equivalence classes.

If now D admits a type A flype

in both T3 » the Seifert circles entering and leaving the tangle must look like
T2

because they must respect the orientation at the in- and outputs and must not
Cross.

As both Seifert circles must have > 1 crossing attached to them in each of the
T; (else some of the tangles is empty or the diagram is composite), and a and b
have at most 3 crossings attached to them, each of a and b has exactly one crossing
attached to it in each of the Tj;. If this crossing is the same for both Seifert circles
(i-e., connects them) for both Tj, then the T; are both 1 crossing tangles, and D is
the trefoil diagram (of genus 1, which we don’t consider). Otherwise, in one of the
T; the crossings y at a and z at b are different, and then (because the diagram is

special) T; must look like

If the shaded tangle 7" has no crossing, then for orientation reasons the two cross-
ings at a and b are reducible. If it has one crossing, then we have a fragment
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like (8). Therefore, T" has at least two crossings, and T" (and hence D) admits a
non-trivial type B flype (near y or z), which leads this case back to the previous
one. O

Remark 4.9. It follows from the proof of =3 = —2 that in fact D admits not
even trivial type A flypes with one of the tangles having a single crossing, that is,
D has no parallel clasp (unless it is the trefoil diagram of genus 1 which we don’t
consider).

Theorems 4.3 and 4.7 prove

Corollary 4.10. There is a bijective correspondence between genus g diagrams with
69 — 3 ~-equivalence classes and planar 3-connected 3-valent graphs with Bieulerian
paths (considered up to moves in S? on the graph and cyclic permutations of the
path). O

Proof of theorem 2.16. This is now putting together the previous results. Clearly,
we need to consider only genus g generators D of the maximal number of ~-
equivalence classes. By lemma 4.2, this maximal number is 6g — 3, and generators
with that many ~-equivalence classes have graphs with vertices of valence 2 and 3.
By theorem 4.3 the diagrams of such graphs are special, and we know from theorem
2.14 that for any crossing number parity, at least one such example exists. Finally,
from Part 3 of theorem 4.7 we know that diagrams in the series of D have only
symmetries coming from the Bieulerian path, and the order of such a symmetry is
at most 6. |

5. ASYMPTOTICAL ESTIMATES

To study the behaviour of Cy ./, for g — oo, we need to recall the notion of
Wicks forms. We will concentrate only on properties relevant to our context (and
thus do not discuss all of those mentioned in the introduction).

An oriented Wicks form is a cyclic word w = wiws ... ws (a cyclic word is the
orbit of a linear word under cyclic permutations) in some alphabet alﬂ, a2i1, ... of

letters ap,as, ... and their inverses a;t,a5*, ..., such that

(i) if af appears in w (for € € {£1}) then a; © appears exactly once in w,
(ii) the word w contains no cyclic factor (subword of cyclically consecutive
letters in w) of the form a;a; " or a; 'a; (no cancellation),

(iii) if a$af is a cyclic factor of w then a;‘sa; € is not a cyclic factor of w (sub-

stitutions of the form agag- — z, aj_‘;ai_ ¢ — z~! are impossible).

An oriented Wicks form w = wiws ... in an alphabet A is isomorphic to w' =
wiwl ... in an alphabet A’ if there exists a bijection ¢ : A — A’ with p(a™!) =
©(a)~! such that w' and p(w) = @(w)e(ws) ... define the same cyclic word.

The genus g;(w) of an oriented Wicks form w = wy ...wq 1wy is defined as
the topological genus of the oriented compact connected surface S(w) obtained as
described in §4.

The automorphism group Aut(w) of an oriented Wicks form w = wyw, . . . wy; of
length 2[ is the group of all cyclic permutations g of the linear word wyws . .. woy
such that w and p(w) are isomorphic linear words (i.e. p(w) is obtained from w
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by permuting the letters of the alphabet). The group Aut(w) is a subgroup of the
cyclic group Z /217 acting by cyclic permutations on linear words representing w.

The automorphism group Aut(w) of an oriented Wicks form w can of course
also be described in terms of permutations on the oriented edge set of G = G(w)
induced by orientation-preserving homeomorphisms of S = S(w) leaving G invari-
ant. In particular an oriented maximal Wicks form and the associated dual 1-vertex
triangulation have isomorphic automorphism groups. Thus Aut(w) is the same as
Sg in (6).

Let G be a cubic (3-valent) connected graph on 4g — 2 vertices and the word
U is one of its Bieulerian paths. Note that a Bieulerian path can be presented as
a word, which is called an oriented Wicks form of genus g. We will consider only
Wicks forms, which came from Bieulerian paths of 3-connected planar cubic graphs
on 4g — 2 vertices and we will call them planar Wicks forms. (These forms are also
maximal in the sense of [1], but we will drop this term to simplify language, since
all Wicks forms we deal with are in fact maximal.) Note that these are graphs
without multiple edges in genus g > 1.

Let us call a planar Wicks form & based if one interval (basepoint) between a
pair of (cyclically) consecutive letters is distinguished. Let the genus of @ be that
of w, where w is obtained from & by forgetting the basepoint. Based planar Wicks
forms are considered equivalent only up to bijections of their letters.

We define the mass my = |W9| to be the cardinality of the (finite) set W9 of
based planar Wicks forms of given genus g.

Any planar Wicks form w of genus g can give rise (by adding a basepoint) to
at most 6g — 3 different based planar Wicks forms. Thus it suffices to consider the
rate of growth of m,. Our first goal is to prove that asymptotically as g — oo,

(10) lim inf —4*L > 400.
g—o0 My

Let Hs be a subgraph which consists of three edges a, b, ¢ leaving one common
vertex. Let us choose three different points of the graph G, which are not vertices
and identify them with 1-valent vertices of the subgraph Hj.

Definition 5.1. A vertex V (with oriented edges a, b, ¢ pointing toward V) in a
planar Wicks form w is positive if

w=ab '...bct...ca”t... or w=ac'...cb” ... ba"". ..
and V is negative if
w=abt...ca”t...be7r ... or w=act...ba"t...ab7t...

If w is a based planar Wicks form obtained by adding a basepoint to w, then a vertex
V is called positive (or negative) in w0 if and only if it is positive (or negative) in w.

Let V be a negative vertex of a planar Wicks form of genus g > 1. Since we noted
that the graph has no multiple edges, the vertex V has three distinct neighbors.
We have then

w = $1Gb71y2U121Cailz'zUzyleilZzu:;
(some identifications among z;, y; and z; may occur, see [25] for all the details)
and the word w is obtained by a so-called y—construction from the word w' =
2oyl 2i3. The subwords u; of w are obtained from the subwords @; of w' by
replacing x, y, 2 by 2122, y1Y2, 2122 respectively.
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By y—construction we obtain a Bieulerian path w on a plane cubic graph H
with 4g + 2 vertices from a Bieulerian path w’' on a plane cubic graph G with
4g — 2 vertices. Here H is obtained from G by adding the vertex V with three
edges a, b, ¢ incident to it. We attach the edges a, b, ¢ to (not necessarily distinct)
edges z, y, z of G. Since the label of each edge z, y, z appears exactly twice in
w (i-e., we can interchange it with its inverse), we have eight possibilities to do
the y—construction by adding the negative vertex V in a given face of G with
three specified edges z, y, z in its boundary. Alternatively speaking, these eight
possibilities are given by the orientations of the three vertices adjacent to V in H.

For based Wicks forms the same construction applies, and the basepoint is in-
herited naturally.

Definition 5.2. We call the application which associates to a planar Wicks form
w of genus g > 2 with a chosen negative vertex V the planar Wicks form w' of
genus g — 1 defined as above the reduction of w with respect to the negative vertex
V. This notion extends naturally to based planar Wicks forms.

Lemma 5.3. An oriented Wicks form (or based planar Wicks form) of genus g
has exactly 29 negative and 2g — 2 positive vertices.

Proof. See [1, proposition 2.1]. O

Proof of theorem 2.17. Let g > 1. We compare W9t! and W9 by estimating the
number of possible y—constructions that lead from the one set to the other and
backward.

Forgetting for a moment the basepoint, each element of W91 can be obtained
by applying y—construction to an element in W9. The Lemma 5.3 shows that we
can construct 2(g+1) planar Wicks forms in W9 by applying reduction with respect
to a negative vertex to a given element in W91, When taking basepoints back into
account, though, not any such reduction is admissible, because the basepoint must
not separate the letters removed or identified. So, the number of such reductions
is at most (2g + 2)my1.

Let us estimate the number of “augmentations”. Since the resulting and the
initial graphs are both planar, we can apply the y—construction only inside of each
face of the embedding of the planar graph G into the plane. Also, to be sure, that
the resulting graph will be 3-connected, we will apply ~y-construction only to two
or three different edges. (That is, not all of z, y and z in the above description are
equal.) In this case for an element of genus g a 7y-construction gives eight elements
of genus g + 1: we can choose the orientations of the three adjacent vertices to
the new negative one. There are 2g + 1 faces, denote the number of edges of one
face by n;. Then, starting with a given element in W9, there are not less than
8 ((H) + 2('%)) possibilities for y—construction, with 3771 n; = 129 — 6.
In the sum of the n; every edge of the graph is counted twice. (The method to
estimate the number of possibilities for y—construction is similar to one in the proof
of Theorem 1.1 in [1].)

Consider a function f(n;) = (%) + 2("%), where 372" n; = 129 — 6. We need

to know when the function F(g) = 8 Z;"i + (%) +2(7%)) is minimal. The following
inequalities are true for the function f(n;):

1) f(ni+2) + f(ng) > 2f(ni + 1)
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2) if n; <nj —1, then f(n;) + f(n;) > f(n; — 1) + f(ni +1).

So, our function F(g) is minimal for g > 6 if and only if 2¢g — 11 of n; are equal
to 6 and twelve of n; are equal to 5.

Since f(5) = 30 and f(6) = 50, we have that the lower bound for the number of
“augmentations” is 8(100g — 190)m,.

Finally, we obtain for g > 6

8(100g — 190)m,
29 + 2 '
This shows (10), and hence the stated lower bound.

To obtain the upper bound, we use the work of Tutte [24]. (In the following an
equation reference of the type (z.y) always refers to that paper.)

Mgy1 =2

Let T, be the number of plane (that is, concretely planarly embedded) 3-valent
3-connected graphs G of genus g, that is, with 2941 regions. By Whitney’s theorem
the planar embedding of each G is unique up to change of the infinite region, and
the number of such choices is linearly bounded in g, and thus we can fix a favorable
choice of the infinite region without loss of generality. By an easy argument, any
planar 3-valent graph has a region R whose boundary OR has at most 5 vertices,
so fix the infinite region to be a k-gon with k£ < 5. Then G turns into what is called
in [24] a triangulation of OR. (The 3-connectedness implies the condition stated
below (1.2).)

It follows then from (5.11)-(5.13) that the number of triangulations for k = 3,4,5
differ only by a polynomial in n. Here n is the number given in (1.4), and it is,
up to a constant, equal to 1/3 of the number of vertices of G, and thus (up to a
constant) to 2g. Then (8.1) gives

o (256\° 216
lim Tg = (2—7> = ?

The remaining factor 2* comes from the possible cyclic orientations of the 4g — 2
vertices of G and Lemma 4.5. d

Remark 5.4. Obviously, the interval between lower and upper bound remains wide
open. On the lower side, many more sequences of the transformations of [25] than
we could handle lead to 3-connected planar graphs. On the upper side, it is clear
that many choices of cyclic orientations of vertices will not give connected paths.
However, we do not know how to (substantially) benefit from these circumstances
to narrow the gap.

The next lemma, is needed to establish the correspondence between the even and
odd crossing number case.
Lemma 5.5. The orientation of a positive vertex can be reversed without altering

the orientation of the other vertices.

Proof. Let v be a positive vertex, such that edges a,b,c are leaving v. By the
definition of the positive vertex

w=ab ' Uibc Usca™U;s or w=ac 'Wich ' Woba™1W;.
Reversing of the orientation will give

w = acilUgcbflUlbaflUg or w= ab*1W2bC*1W10a71W3,
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which does not change the orientation of other vertices. |

Definition 5.6. Call a 3-valent planar graph G with Bieulerian path even resp.
odd, if its associated knot diagram has even resp. odd number of crossings. This is
equivalent to saying that the number of edges of G connecting oppositely oriented
vertices is even resp. odd.

Corollary 5.7. There is a bijection between even and odd 3-valent planar graphs
of genus g > 1 with Bieulerian paths and distinguished positive vertez. O

Remark 5.8. Of course, for genus 1 there are no positive vertices and the corollary
does not hold. This explains the degeneracy of this case. (We have from [21]
that di, = 2 # 3 = di,0, and there are no special even crossing number genus 1
alternating diagrams.)

Corollary 5.9.

1 o
< 2992 < 6(29 —2).
69 —2) = Oy, ~ 0202

Proof. Use the previous corollary, (6) and |Sg| < 6. d
From this corollary and (3) we obtain

liminf ¢/(6g9 — 4)!Cy,, = liminf {/B,,

g—0o0 g—0o0

and the analogous statement for ‘lim sup’ and/or ‘Cy .. Thus we have

Corollary 5.10.

220
400 < liminf {/(6g — 4)!Cy,, < limsup {/(6g — 4)!Cy,, < —& ~ 1438.37585.. .,
g—00 g—00 3
with the same inequality for Cy .. O

Accumulating the previous results, we obtain our main theorem.

Proof of theorem 1.1. Theorem 2.14, with the explanation of §3, and Theorem 4.7
establish (1) with Cy, as in (6) (and Cy . similarly given), where a,, <, b, + O(cp)
means a, <, b, and a, — b, = O(c,). The estimates on Cy . Jo Were given in
Corollary 5.10. d
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