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Abstract

We give examples showing that the Fiedler solid torus degree 3 Gauf} sum invariants can be used
to detect mutation of links.
Keywords: mutation, Gaufl sums AMS subject classification: 5TM25

1 Introduction

The notion of a mutant was introduced by Conway [Co]. Mutants have been later intensively studied and
received much attention especially because of the difficulties they provide to distinguish them [P, P2,
LL, LM, MC, MT, MR, MS, CD]. Beside the problem of detecting orientation they are the largest class
of links left indistinguishable by the knot polynomials [H, J, Ka]. Although the knot polynomials and the
related quantum theory are not completely useless for detecting mutation, the applicable methods result
in calculations, which are (almost) infeasible already for the simplest examples, see [MR, MC, MS].

A conceptually new approach to finding invariants was initiated by Fiedler for braids [Fi2] and later
by Viro-Polyak [PV] for invariants of finite degree [BN, BL, Va, Vo]. Recently, Fiedler [Fi] generalized
the approach to invariants of degree 3 for knots in the solid torus [Go] and more generally in orientable
S'- and line bundles over surfaces. These invariants can be used to study two component links KU T in
R3 with an unknotted component T by the fact, that for isotopic links K; UT; ~ K> UT; in R3 it holds
K ~ K; in the solid torus $*\ T} ~ §*\ T».

Now if K| ~ K, are isotopic knots in R3, then K;UT;, i = 1,2 are isotopic links, where 7; is the
meridian of K; (K; may be replaced by some satellite around itself). This rendered it possible to examine
knots in R? by the new invariants in this way. Unfortunately, it turned out [St2], that so the Fiedler
invariants do not give more than the usual degree 3 Vassiliev invariant for knots in R?, explaining
the preceeding series of disappointing experimental results [St], in particular the failure to distinguish
mutants. Further experiments with mutants suggested that the situation might not be better, when we
place the trivial component somewhere else than to be the meridian of the knotted component (or of its
companion). This opened the possibility, that the Fiedler invariants do not detect mutation at all.

Here we present examples of mutations in which the rotated tangle contains parts of both compo-
nents. Computation with the program of [St] showed, that in this case the mutants could be distin-
guished.

It is worth remarking that this method to distinguish mutants will not work with the various solid
torus link polynomial invariants coming from Markov traces on Hecke algebras of type B [HK, La, GL]
as they also satisfy skein relations, and so the same arguments which apply for the HOMFLY polynomial
on mutants (see [Li]) similarly apply for its analogues in the solid torus as well. For the polynomials
of generalized Hecke algebras of [La2] the skein arguments do not apply in full generality, but concrete
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examples of distinguished mutants are not known (at least to me) due to lack of practical computations.
In any case, however, the arguments apply, when the geometric linkning number in the mutated tangle of
the strands belonging to 7" and to K is &2 and the strand of T has no self-crossings, as in our examples
below.

But anyway, there is never an absoulte certainty that computers really do what we tell them or we
really tell them what we want, so we encourage an independent verification of our result.

The spirit of this paper is intended to be similar to this of [MR]. We would, however, like to con-
vince the reader, that the new invariants are simpler than quantum invariants and appear as a promising
alternative.

The concept of these new invariants was outlined in [St]. However, no one of the formulas given
there serves in our case, so, to make the result verifiable, we need to make new definitions. But then,
also to encourage more experiments, we felt it would be better to give a complete list of all invariants.

2 Gaub diagrams and Gauf} sums

We start by briefly recalling the definition of our invariants. See [St] for details.

Consider a knot K : §' < R3 (S! and R® oriented). Decompose R* = R? @ R so that the projection
(henceforth called knot diagram) of K into R? is generic. To this projection we can assign a Gaufs
diagram (GD), a circle with oriented chords, by connecting points in S! mapped to a crossing and
orienting the chord from the preimage of the undercrossing to the preimage of the overcrossing. See
[PV].

Figure 1 shows the knot 6; in its standard projection and the corresponding Gaull diagram.

Figure 1: The knot 6, and its Gauf} diagram.

A Gaufs sum of degree k is a term assigned to a knot diagram, which is of the following form

) function( data, assigned to the crossings ) .

ordered choices of k crossings of the
knot diagram, whose arrows in the GD
form a given subdiagram

Each summand we will call weight and the function weight function. We will denote the summation by
the subdiagram itself, which we will also call configuration.

Now we need to specify the data assigned to the crossings.

Definition 2.1 The winding index of a plane curve C C R* = C around a point p & C is

1 1

C,p)i=— ¢ ——dz.
w(C,p) =5 =%



Pictorially it measures how many times the curve “walks” around p, counting reverse walk nega-
tively.

Definition 2.2 The Whitney index n(C) of a plane curve C is the degree of the map

c 1 1
S — 5.
liell

The Whitney index of a knot diagram is the Whitney index of its underlying plane curve.

Definition 2.3 The writhe w(D) of a knot diagram D is the sum of the writhes of all crossings (see figure
2).

X X
-1 +1

Figure 2: The writhe of a crossing.

Example 2.1 The standard projection of 6, on figure 1 has Whitney index 1 and writhe —2.
Definition 2.4 A smoothing of a crossing is the procedure

r/
/ — ep ’
/\ +
Dy
where D"f denotes the component, where the under-crossing is smoothed to the over-crossing. Note, that
beside the link diagram resulted after this operation, we have the “trace” of p in its complement.

Apart from its writhe w),, for each crossing p we have two more data:

i,f = w(D,f,p).

Here by p we mean the trace of p in the complement of D%, as described above. Set

+ -
14 ZF'

ip ::i;,r+i;, Opi=1i

Now consider a two component link KUT in §3 where T is the trivial knot (unknot). Let K, T, S> be

oriented. Deform KUT in §3 = R? U {0} so that o € T'. This isotopy is unique up to isotopy. Such a link

we can represent choosing an appropriate projection R* — R? as knot with a point in its complement,
on which T projects, assuming the orientation of 7" to be from the sheet of paper to the reader’s eye.

Definition 2.5 The type of a crossing p is w(Dy ,T) mod 2.

All invariants are regular isotopy invariants. A regular isotopy is an ambient isotopy preserving the
writhe w and Whitney index n of K.

We distinguish two cases according to the parity of linking number Ik(K,T) = w(K,T).

For the definition we need the following atomary terms. Here near any arrow in the configuration its
name and the type of the crossing is indicated by ‘0’, ‘1’ or by “*’, if both types are allowed. A chord
denotes an arrow whose orientation does not matter. The default weight function is w,w,w,, which is
not written.
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Figure 3: The knot 6, with its meridian depicted in our favourable way.
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2.1 Even linking number invariants

2.1 Even linking number invariants

For the case w(K,T) =0 (mod 2) we obtained 39 invariants. They are given below.

In1
Inz
Inj
Iny
In5
In6
Iny
Ing
Ing

Inyo

Ingy

Iny,

Iny;
Inyg
In15
In16
In17
Ingg
Inyg
Inyo
Inzl

Ing,
Inys
Inyq
In25
In26

Iny;

Inzg
Inyg

Il

Il

Ase —As7 — Ag7 + Ago,

Ass —Asg — Aso + A2 — Ags + Asgo,

Asy —As3 —Agsz + Asge,

As1 —Asqs—Aer +A70 — Aga + Ass,

A —Ays—Agr +A70 —A79 + Ago,

A3 —Ai6—Ago+Asi,

—Ag+A1n—As9g+ A —A75 +Azs,

—Ao+A11 — A6+ A77,

—A1+As+A7+Ag+A1a—A17+2-Ax1 + Az +Ars +Azg +Asy

+Asg + Asyg + Aez + A70 + A7,

A1 —2-Ag—2-A7—Ag+A10+A3+A17—2-Ax1 — Az —Axs — Ay +Asp

+As7 + Ags + A73,

A1 —2-A¢—2-A7—Ag+A10+A16+A17—2- Az — Axz — Axs — Az + As3
+As7+Ags + A7z,

—A1+Ac+AT+Ag+ A5 —Ap7+2- Ay + A+ Axs + Ay +Asy

+Asg +Asg +Agz +Ae7 +A71,

—As + Ao + Ago,

—As +Ago + Ags,

—Ag+ A2+ Ass —Asg —Asg + Ag2 — Agz + Ags,

—Ajo+ A1 +Ase — As7 — Ags + Ags,

—Ag0 + Asl,

—A7+2-A17+A18— A9 — A — Apg + Ags,

2:-A¢+2-A7+Ag+A19+Ax +Ap3+ A +2-Ars+Ax+ A +2-Asz3+ Agy,
—A1+A13—A19+ A2 —Azg — Agz + Ags,
—2-A1—A3+2-A6+2-A7—2-A17—A1g+2-A19+2-A21 + A +4-Axs+Ass
+A29 —2-As3+2-Ag3+2- Ays,
—4-A1—A3+2-A6+2-A7—2-A17+A13+2-A21 —2-An+3-Axs+4-Axs+ A
+A29 —2-A33+2-Ag3+2-Agg,

4-A1+A3—Ag+Ag+2-A17+ A9 —2-An1+ A —2-Ax3+2-Axs—2-Azs+ Ase
—Ap+2-A3+As,

As—A7+2-Ap7+A1s— A9 — Azl — A+ Asy,
2-A1+A3+2-A6+2-Ag+2-A17+A1g — A3 —2-Axs — Aze + A2 +2- A3z +2 - Ago,
2-As+ Az,

4-A1+A3+2-Ag+2-Ag+2-A17—A1g—2-A+2-Anp— A3 +2-A—2-Axs+ A
—A29+2-A33+2-Ass,

2-As+ Az,

—2-A1—A3+2-Ag+4-A74+2-Ag—2-A17—A13+4 A2 + A3+ 2-Axs+Ax
+3-A29+2-Aze,



Inszg
In31

In3;
In33
Inzy
In35
In36
Inzy
In33
Inzg
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=3-A1—A3=2-A17+An —An+Ap—Au+2-Arys— Asz+ Ass,
—2-A1+A3+2-Ac+4-A7+2-Ag—2-A17+A1g+4-A21 +3- Aoz +2-Axs — Axg
+Az9+2-Azy,

—Az1 + Az — Ay + Az,

A1 +A17 — Ay — Axs + Az,

Ap+Ap7—Ax +Axn —Axz — Axs + Az,

2-A1 —A1g+A19 — Az +Ax — Az +Axg — Azs +Ang,
—2-A1+A13— A9+ Az — A+ A —Axg — Aze + Aoz,

—A17 —A1g+ A9+ A,

2-A1+A3+Ay,

—A1+Az

2.2 (Odd linking number invariants

For the case w(K,T) =1 (mod 2) we obtained 36 invariants. They are given in terms of the expres-

sions

I}’ll
Iny
In3
In4
I}’l5
In(,
In7
Ing
Ing
Inyg
Inqy
Inyo
Inys
Ina
In15

Inyg

Iny7

Asg —As7 —Ago+Ag1 — Ag7 + Ago,
Ass —Asg —Asg+ Agy — Agg + Ago,
Asy —Asz — Agg + Agg — Agz + Ase,

Asy

—Asy — A7+ A70 — Ags + Ags,

—Ae¢7 +A70 — A79 + Ag2,

—Aes +Aeo — Ago + As,

—Ag+ A1 —Asg+Aez — A5+ Azs,

—A10+ A1 —Aeo + Ae1 — A76 +A77,
3-A1+A3-2-A5—6-Ag—4-A7—4-A3+4-Ala+A17+A19—6-Ax1 +4-Axp — Ads
+Aps—2-Aps—5-A9+3-A30—Ag90+8-A51+8-A70+ 8- A7a,
3-A1+A3—6:-A5—2-Ag—4-Ag+4-A13—4-Alu+A17+A19+2-Ay1 —4-Ap— A
+A24—2-Ap5+3-A29—5-A30+As9+8-Asr+ 8- Ao+ 8- A73,
3-A1+A3—6-A5—2-Ag—4-Ag+4-A13—4- A4 +A174+A19+2-Ax—4-Axpy— A3
+A24—2-Axs+3-A9—5-A30+ A9+ 8-As3+8-Ags + 8-A7z,
3-A1+A3—2-As—6-Ag—4-A7—4-A3+4-As+A17+A19—6-Ax1 +4-Axn— An3
+Aps—2-Aps—5-Ag+3-A30—Ag90+8-As54+8-Ag7+8-A7y,

-3
+4

A1 —A3+2-As—2-A¢—4-A7+8-An+4-Aiz+4-Alu—A17— A9 —2-An
“An+ A3 —Axu+2-Axs—3-A+5-A30+A49+8-As5+8-Asx+ 8- Asg,
A1 —A3—2-As+2-Ag—4-Ag+8-A11+4-Az+4-A1s—A17— A9 +6-An
“Ap+Ax—Axn+2-Axs+5-Ax—3-A30—Ag9+8-Asc+ 8- Ag1 + 8- Ags,
A —A3—2-As+2-Ag—4-Ag+8-Alg+4-Aj3+4-As—Ar7 —Ajo+6-Ag
‘Ap+ A3 —Axu+2-Axs+5-A20—3-A30—A49+8-As7+ 8- Ao+ 8- Ags,
A1 —A3+2-As—2-Ag—4-A74+8-Ag+4-A3+4-Alu—A17—A19—2-Ay
+4-

Ap+ Ay —Ans+2-Ars—3-Ax9+5-A30+ A9+ 8-Asg+8-As9+ 8- Ag3,

Al +A3—4-As—A17—A19+2-Ay1 + A3 — A —2-Aps+ Ay —3-A30—4-As3



Ingg
In19

Inyg
Inyy
Iny
Inys
Ingq
In25
In25
Iny7
Inzg
Inyg
Inz
In3;
In32
In33
Inzy
In35
In35
In37
Insg

Inzg
Ingg

—2-Aq7+2-Ags,

—A1+A13— A9+ A2 — Azs — Auz + Ase,

—A1—A3+2-As+2-Ag+A17+A19— A3 — A +2-Ass + Az + A3
+2-Ag3+2-Ays,

—3-A1—A3+2-As+2-Ag+A17+2-A1g—A19—2-Ap+ Az — A +2-Ass
+A20+A30+2 A4z +2-Ays,
—A1+A3—2-Ac+2-A7+A17+2-A1g—A19+2-A21 —2-Ann+ A3 +An
+2-Axs — A —A30+2-Ag,

—A1+A3—2-As+2-A3+A17+2-Aig—A19+3- A3 — Ay +2-Ars — Ao
—A30+2- A4,

3-A1+A3+4-Ag+2-A7+2-Ag+A17+A19+2-Ax1 — A3+ A —2-Ax5+3-Axg
—A30+4 - Ao,

3-A1+A3+4-As+2-A74+2-Ag+A17+A19—2-Ay +4-Axx — Az + A —2-Ass
—A29+3-A30+4- Az,

—A1+A3+4-A¢+2-A7+2-Ag+A17—3-A19+2-A21 +3 A3+ A +2-Ass
—Az9 —A30+4-Asg,

—A1+A3+4-As+2-A74+2-Ag—3-A17+A19+2-Ax +3-Ax3+Axs+2-Ass
—Ax9—A30+4-Az7,

5.A1—3-A34+4-As+2-A742-Ag+A17—3-A1o+2-Ag) —Asy—3-Agg+ 2 Ass
+3-Ax+3-A30+4-Asze,
—5-A1—3-A3+4-A¢+2-A7+2-Ag—3-A17+A19+2-Ax1 — A3 —3-Apu+2-Ass
+3-Az9+3-A30+4-Ass,

3-A1+A3+4-As5+2-A74+2-Ag+A17+A19—2-Ar1 +4-App — A3+ Aps —2-Ass
—Axg+3-A30+4- Az,

3-A1+A3+4-Ag+2-A7+2-Ag3+A17+A19+2-Ax1 — A3+ A —2-Ax5+3-Ano
—A3z0+4-Asz3,

—Az1 +Ax — A+ Ax,

—Axn + A — Az + Az,

2-A1—A1s+A19— A2 +Axn — Az +Aza —Axs + Ass,

—Aas + A7,

2-A1—A1g+A19— Az + A2 — A3+ Azs — Ass + Ase,

—Ay7 — A8 +A19 + Ano,

—Ai3+Aie,

—Ajs+A;ss,

2-A1+ A3+ Ay,

—A1+A;

From these terms all /n; with i < 9 or i > 16 and In; + In;y; fori =9,11,13, 15 are invariants.

3 The examples

Figure 4 shows 2 link mutants of an unknot and a positive trefoil. The mutation “interchanges” the two

components.
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Figure 4: The link mutants with /k = 1.

The same links are transformed into our favourable diagram and shown on figure 5.

Figure 5: The link mutants of figure 4 depicted in our favourable way.

They have the same linking number Ik = w(K,T) = 1 (as should be), and are adjusted K to have the
same n and w. We verified that the degree 3 Vassiliev invariant v¢3 of [St] on K is in both cases 4 (as for
the positive trefoil). The computer calculation took just about 2 minutes and gave the following result:

file: k-mutl file: k-mut2a
1k (K, T)=1 1k (K, T)=1
w=0 w=0
n=3 n=3
invt k invt k

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 0 7 0

8 0 8 0

9 -18 9 -1
10 -34 10 -19
11 -34 11 -19
12 -18 12 -1



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

11

13 =7
14 -5
15 -5
16 =7
17 -2
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

[ e e e
N OO o o

O OO OO OO0 oOooOoNMNMNMDNDNDNDNDDNDDNDNDDNDDNDDNDO
O OO OO OO0 ocoNMMDNMDNMDNDNDNDDNDDNDDDDNDDNDDNO

If the mutants were the same, both diagrams would have to be isotopic and would have the same

invariants. However, In3 + Iny4 is once 20 and another time —12.

Figure 6 shows 2 link mutants of an unknot and a positive trefoil with /k = 0. The mutation “inter-

changes” again the two components.

J
o
:

@/”g
@f‘

Figure 6: The link mutants with /k = 0.

The same links are transformed into our favourable diagram and shown on figure 7, and are adjusted

K to have the same n and w. We verified again that vf3 on K is in both cases 4.

The computer calculation gave the following result:
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Figure 7: The link mutants of figure 6 depicted in our favourable way.

file: k-mut3 file: k-mut4
mod=2 mod=2
w="/ w="/
n=2 n=2
invt k invt k
1k=0 1k=0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 0
8 0 8 0
9 214 9 2
10 -168 10 -4
11 -168 11 -4
12 214 12 2
13 -43 13 5
14 -43 14 5
15 0 15 0
16 0 16 0
17 0 17 0
18 0 18 0
19 624 19 4
20 0 20 0
21 624 21 4
22 624 22 4
23 -188 23 0
24 -432 24 0
25 -188 25 0
26 -216 26 0
27 -188 27 0
28 -216 28 0
29 624 29 4
30 0 30 0
31 624 31 4
32 0 32 0



33
34
35
36
37
38
39

13

33
34
35
36
37
38
39

O O O O O o o
O O O O O o o

Here the difference is even clearer.

Acknowledgement. I would wish to thank to T. Fiedler and S. Lambropoulou for their helpful remarks.
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