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1 Introduction and historical motivation

The standard definition of a Vassiliev invariant [BL, BN, BN2, BS, Va, Vo] of degree at most d is to be an
invariant vanishing on d +1-singular knots. Vassiliev invariants are a class of knot invariants, which can be
associated in many ways to polynomials. One such analogy is to think of singularity resolutions as a way
to differentiate a knot invariant, and in this setting the Vassiliev invariants are (as polynomials) functions
with a vanishing derivative. An extension of this idea is the approach of braiding sequences and braiding
polynomials. It was initiated in a special case in [Tr] and later developed in [St]. It provides a method
to study Vassiliev invariants via their polynomial behaviour on certain sequences of knots. This approach
works directly on knots and so it is a counterpart to the classical approach of chord diagrams. Another
relation to polynomials was conjectured by Lin and Wang [LW]. It asserts that (the values of) Vassiliev
invariants are polynomially bounded in the crossing number of knots. The first substantial application of
the approach of braiding sequences, in [St7], was to give a new proof of the statement conjectured by Lin
and Wang. (It was proved previously by Bar-Natan [BN3], and also by Stanford [S].) In [St2] later this
proof was extended to Vassiliev invariants of links of arbitrary number of components. Recently, a paper of
Eisermann [Ei2] appeared, which mainly (apart from the application to S1 × S2 it discusses) covers some
initial part of our braiding sequence theory in [St, St7, St2]. This also explains that braiding sequences are
a natural concept.

How to obtain Vassiliev invariants from the link polynomials (or polynomials of cables) was explained in
[BL]. Since this procedure is a priori not exhaustive, it is not straightforward to prove that some Vassiliev
invariant v is actually not obtainable from the link polynomials (or cables). The only way is to find knots
not distinguished by the polynomials (or cables), but by v, as in [K4, St6]. Unfortunately, in particular for
cables, coincidences of polynomials are rare, and this makes the task difficult. It was known from [LL] that
mutants [Co] have equal 2-cable skein (or HOMFLY) P [F&, LM] and Kauffman F [Ka2] polynomials,
and that they are not distinguished by Vassiliev invariants of degree ≤ 10 [Mr]. This led to the question
whether all such invariants are determined by the skein and Kauffman polynomials and their 2-cables.

A different suggestive problem with Vassiliev invariants is to decide for a given invariant whether it is such
or not. Usually, so far either a knot invariant is a Vassiliev invariant, or it can be excluded from being
such by rather elementary means (as far as the Vassiliev invariant part of the argument goes). See e.g.
[De, Tr, Bi, Ei]. However, in [St2] we introduced a certain type of invariants that satisfy similar polynomial
behaviour, but in some weaker sense than Vassiliev invariants. We called such invariants extended Vassiliev
invariants. As an extended Vassiliev invariant behaves polynomially on braiding sequences, it becomes
difficult to recognize it as not of finite degree. The first class of examples of such invariants, given in
[St2], are the derivatives of the Brandt-Lickorish-Millett-Ho polynomial Q [BLM, Ho] evaluated at −2.
Kanenobu had been studying the values Q(k)(−2) before. For knots Q(−2) ≡ 1, and by his result [K] we
have Q′(−2) = V ′′(1), with V the Jones polynomial [J], which is the Vassiliev invariant of degree 2. (A
similar statement holds for links, which we do not discuss here, since in this case the further terms occurring
are products of linking numbers, which are Vassiliev invariants of degree 1.) In [K2], Kanenobu found a
formula (Theorem 1), expressing the Q polynomial of a rational (2-bridge) knot by its Jones polynomial.
A consequence of this formula is that Q(k)(−2) on rational knots equals a polynomial of degree ≤ 2k in
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the derivatives of V (t) at t = 1 (where the n-th derivative is taken to be of degree n). Hence the restriction
of Q(k)(−2) to rational knots is a Vassiliev invariant of degree ≤ 2k.

To examine the finite degree property for Q(k)(−2) on arbitrary knots turns out to be rather difficult. Appar-
ently they are not Vassiliev invariants (see §3.3). However, as also independently observed by Kanenobu,
the previous easy arguments will not suffice to show this. The problem whether Q(k)(−2) are Vassiliev
invariants (and of which degree, in the unlikely event that they are) remains open.

The actual origin for the considerations in [St2] was the search for a way to obtain Vassiliev invariants out
of the Q polynomial. The polynomials V , P and F , and the Alexander/Conway polynomial ∇ [Al, Co] have
been treated in [BL, BN], but apparently Q received little attention. Unfortunately, as the previous remarks
already suggest, beyond degree 2 the question whether (or how) one can obtain Vassiliev invariants from
Q seems rather difficult. Our aim here will be to provide a negative answer up to degree 9. This problem
was investigated independently in a recent paper by Choi, Jeong, and Park [CJP].

This paper has two main parts. In the first part, comprising §3, we explain how to show that Q determines no
low degree Vassiliev invariants, and settle degree up to 7. To that extent the problem is treated with a more
detailed argument and mainly in its own right. Then, in the second part, comprising §4, for degrees 8 and
9 we are led to consider invariants of 2-cable knots and links. Here the application to the problem requires
more of an explanation of our computation. This computation has also other noteworthy implications. In
particular, it provides some evidence that not all Vassiliev knot invariants of degree ≤ 10 are determined by
the HOMFLY and Kauffman polynomial and their 2-cables. It also turns up the (apparently) first examples
of knots not distinguished by 2-cable HOMFLY polynomials, which are not mutants (because distinguished
by 2-cable Kauffman polynomials and by hyperbolic volume), and determines the braid index of prime
knots up to 12 crossings.

We should mention that some of our calculations are related to work of Meng [Me] and Lieberum [Li], and
extend similar previous calculations in degree ≤ 6 due to Kanenobu [K4]. We will make some remarks
that put these, and other, results into our context. For the computations various programs, written in C++
and MATHEMATICATM , were used, as well as some tools included in the program KnotScape [KS].

2 Notations and basic terminology

2.1 General notations

Z, N, N+, Q, R and C denote the integer, natural, positive natural, rational, real and complex numbers,
respectively.

For a set S, the expressions |S| and #S are equivalent and both denote the cardinality of S. In the sequel the
symbol ’⊂’ denotes a not necessarily proper inclusion.

An expression containing an asterisk ‘∗’ subscript is meant to denote the union of all expressions in which
the asterisk is replaced by all values that make sense, including omission. Contrarily, an asterisk as super-
script is meant to denote the dual of a space.

Let [Y ]ta = [Y ]a be the coefficient of ta in a polynomial Y ∈ Z[t±1]. For Y 6= 0, let CY = {a∈ Z : [Y ]a 6= 0}
and

mindegY = min CY , and maxdegY = max CY ,

be the minimal and maximal degree of Y , respectively. Similarly one defines for Y ∈ Z[x1, . . . ,xn] the
coefficient [Y ]X for some monomial X in the xi, and mindegxi

Y etc.

The encoded notation for 1-variable polynomials we use is the one of [St3]: if the absolute term occurs
between the minimal and maximal degrees, then it is bracketed, else the minimal degree is recorded in
braces before the coefficient list. It is the same notation as the one of [Ad, appendix], or the one of [LM,
appendix] for the m-coefficients of P, whichever of both is shorter.
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2.2 Knots and knot diagrams

The crossing number c(L) of a link L is the minimal number of crossings c(D) of all diagrams D of L
(cf. [Ka]). The braid index b(L) of L is the minimal number of strands of a braid, whose closure is L (cf.
[Mo, FW]).

The diagram on the right of figure 1 is called connected sum A#B of the diagrams A and B. If a diagram
D can be represented as the connected sum of diagrams A and B, such that both A and B have at least
one crossing, then D is called composite, else it is called prime. A knot K is prime if, whenever A#B is a
composite diagram of K, one of A and B (but not both) represents an unknotted arc. Otherwise, if K is not
the unknot, K is called composite. K is the connected sum K = K1#K2 of K1 and K2, with K1 represented
by A and K2 by B.

A # B = A B

Figure 1

Prime knots are denoted according to [Ro, appendix] for up to 10 crossings and according to [HT] for ≥ 11
crossings. We number non-alternating knots after alternating ones. So for example 11216 = 11a216 and
11484 = 11n117.

!K is the obverse (mirror image) of K. If K =!K, then K is called achiral. For a knot invariant v, define the
invariant v! by v!(K) = v(!K). v is called symmetric (resp. antisymmetric) if v = v! (resp. v = −v!).

A knot K is called rational (2-bridge) if it has a diagram on which the one (planar) coordinate has exactly
two local minima (or two local maxima) [Sh].

Given a knot diagram D and a closed curve γ intersecting D in exactly four points, γ defines a tangle
decomposition of D.

D = H G γ

A mutation of D is obtained by removing one of the tangles in some tangle decomposition of D and
replacing it by a rotated version of it by 180◦ along the axis vertical to the projection plane, or horizontal
or vertical in the projection plane. For example:

H

G

(To make the orientations compatible, possibly the orientation of either H or G must be altered.) Then γ is
called the Conway circle for this mutation. If some knots K1,2 have diagrams differing by a mutation, then
K1,2 are called mutants [Co]. We call K an (iterated) mutant of K ′, if there are knots K = K1,K2, . . . ,Kn = K ′

with Ki and Ki+1 being mutants. In the following, we will abuse the word ‘iterated’ when referring to
mutants but assume it implicitly.
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2.3 Link polynomials

As for knot invariants, our notation is also the usual one. ∆ (t) denotes the Alexander [Al], ∇(z) the Conway
[Co], V (t) the Jones [J] (see also [Ka]), P(l,m) the HOMFLY (skein) [LM, F&], F(a,z) the Kauffman
[Ka2], and Q(z) the Brandt-Lickorish-Millett-Ho polynomial [BLM, Ho]. In our convention the skein and
Kauffman polynomials are conjugate (that is, obtained by replacing a by a−1 in F and l by l−1 in P) to
those in [LM] and [Ka2]. The local relations in this convention will be given below. ∆ is normalized so
that ∆ (1) = 1 and ∆ (t−1) = ∆ (t). For V and Q the conventions (also used here) are fairly standard.

The skein (HOMFLY) polynomial P(l,m) is a Laurent polynomial in two variables l and m of oriented
knots and links and can be defined by being 1 on the unknot and the (skein) relation

l−1 P
( )

+ l P
( )

= −mP
( )

. (1)

We call the crossings in the first two fragments resp. positive and negative. The sum of the signs (±1)
of the crossings of a diagram D is called writhe of D and written w(D). The writhe is invariant under
simultaneous reversal of orientation of all components of the diagram, so is in particular well-defined for
unoriented knot diagrams.

The Conway polynomial ∇ [Co], given by ∇(z) = P(
√
−1,

√
−1z), is well-known to be equivalent to the

(1-variable) Alexander polynomial ∆ by a variable substitution: ∆ (t) = ∇(t1/2 − t−1/2). Another well-
known property of ∇ is that for any link L we have [∇L(z)]zi = 0, if i has the same parity as the number
n(L) of components of L, and that zn(L)−1 | ∇L(z). For a knot K we always have [∇K(z)]z0 = 1.

For the Kauffman polynomial F in our convention we have the relation F(D)(a,z) = aw(D) Λ (D)(a,z),
where w(D) is the writhe of D, and Λ (D) is the writhe-unnormalized version of F . Λ is given in our
convention by the properties

Λ
( )

+ Λ
( )

= z
(

Λ
( )

+ Λ
( ) )

,

Λ
( )

= a−1 Λ
( )

; Λ
( )

= a Λ
( )

,

Λ
(©)

= 1 .

Thus the positive (right-hand) trefoil has mindega F = 2.

The Brandt-Lickorish-Millett-Ho polynomial is given by Q(z) = F(1,z), and the Jones polynomial by

V (t) = F(−t3/4, t1/4 + t−1/4) = P(−
√
−1t,

√
−1(t−1/2 − t1/2)) .

(See [Ka2, §III] and [LM].)

Q and ∇ (and hence ∆ ) are symmetric knot invariants, i.e. coincide on K and !K for any knot K. (Q is
symmetric also for links, while ∇ is symmetric or antisymmetric depending on the parity of the number of
components.) V , P and F differ on mirror images under conjugation of a variable:

V !(t) = V (t−1) , (2)
F!(a,z) = F(a−1,z) , (3)
P!(l,m) = P(l−1,m) . (4)

All polynomials X ∈ {F,P,Q,V, ∆ } are multiplicative under connected sum: X(K1#K2) = X(K1)X(K2).

By vol(L) we denote the (finite) volume of the (unique if it exists) hyperbolic structure on the complement
S3 \L of a link L in S3 (that is, a representation S3 \L = H3/Γ , where H3 is the 3-dimensional hyperbolic
space, and Γ is a properly discontinuously acting discrete group of isometries of H 3). We write vol(L) = 0
if S3 \L has no hyperbolic structure.
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3 Vassiliev invariants

3.1 Generalities

Consider the linear space V , (freely) generated by all the (isotopy classes of) knot embeddings. Let V d be
the space of singular knots with exactly d double points (up to isotopy). V d can be identified with a
linear subspace of V by resolving the singularities into the difference of an over- and an undercrossing via
the rule

= − , (5)

where all the rest of the knot projections are assumed to be equal. This yields a filtration of V

V = V 0 ⊃ V 1 ⊃ V 2 ⊃ V 3 ⊃ . . . (6)

There exists a combinatorial description of the graded vector space,

∞�

d=0

(
V d
/

V d+1

)
(7)

associated to this filtration, namely

Ad := V d
/

V d+1 ' L in{ chord diagrams of degree d }
/

4T relation
FI relation

, (8)

where L in denotes linear span, and the chord diagrams (CDs) are objects like this (an oriented circle with
finitely many dashed chords in it up to isotopy)

and are graded by the number of chords. The 4T (4 term) relations have the form

− = − + ,

and the FI (framing independence) relation requires, that each CD with an isolated chord (i. e., a chord
not crossed by any other one) is zero.

The map which yields the isomorphism (8) is a simple way how to assign a CD DK to a singular knot K.
Connect in the parameter space of K (which is an oriented S1) pairs of points with the same image by a
chord. When adding arrows for the crossings of K oriented from the preimage of the undercrossing to the
preimage of the overcrossing, we obtain a (singular) Gauß diagram (see [St5, PV]).

The connected sum of chord diagrams is defined by DK1#DK2 = DK1#K2 (well up to the 4T relation).

We define a knot invariant v to be a Vassiliev invariant of degree ≤ d if, when extended to singular knots
via

v
( )

= v
( )

− v
( )

,

vanishes on (d +1)-singular knots. The degree degv of v is (suggestively) the smallest integer d such that
v is of degree ≤ d. Several properties and constructions of Vassiliev (finite degree) invariants were known



3.2 Deterministic sets for Vassiliev invariants 7

from [BL, BN]. In particular, introducing Vd to be the linear space of Vassiliev invariants of degree ≤ d,
the space Vd/Vd−1 is isomorphic to the dual A∗

d of the linear space Ad of chord diagrams of d chords
modulo the 4T relation. Elements in A∗

d are called weight systems (of degree d). v ∈ Vd gives rise to a
weight system Wv ∈ A∗

d by evaluating it on a d-singular knot representing the chord diagram,

Wv(DK) := v(K) .

The bijectivity of this assignment is dual to the isomorphism (8), and is established using a universal
Vassiliev invariant, such as the Kontsevich-integral Z [Ko]. The application Wv ◦Z of the weight system of
v ∈ Vd on the Kontsevich-integral gives back v modulo lower degree invariants:

v(K) ≡ (Wv ◦Z)(K) = Wv(Z(K)) mod Vd−1 .

If even v = Wv ◦Z, we call v canonical (see [BG]).

Vassiliev invariants are easily seen to form an algebra with usual addition and multiplication, and the
structure of this algebra was known to be the free symmetric (polynomial) graded algebra generated by
primitive Vassiliev invariants. Such invariants v are given by the additional property that v(K1#K2) =
v(K1)+ v(K2) for any knots K1,2.

3.2 Deterministic sets for Vassiliev invariants

Since the space of Vassiliev invariants of given degree is finite-dimensional, there exist finite sets K d of
knots, the values on which determine uniquely a Vassiliev invariant of degree ≤ d. Equivalently, we say

Definition 3.1 A set K d of knots is d-deterministic, if any Vassiliev invariant of degree at most d vanish-
ing on K d vanishes identically. It is called d-primitive deterministic, if this property holds for primitive
Vassiliev invariants of degree at most d.

In practice, it is desirable to choose a d-deterministic set as small as possible. The minimal size is clearly
dimVd, and many such sets of this cardinality exist, but no one knows how to find any of them except by
computation for a few small values of d. Thus we may try to find larger sets which, however, is provable
to be d-deterministic. This problem has been considered (including for links) in several previous papers of
mine (see [St7]), and estimates on the crossing number of knots in one particular d-deterministic set K d
were given. The estimates, however, are not optimal. For our subsequent purposes, we will derive a more
efficient estimate for knots. It is formulated in the following lemma, needed to make the later arguments
more rigorous.

Lemma 3.1 For any d > 0, the set of knots with (prime) diagrams of at most d +1+
d(d−2)

4
crossings

is d-(primitive) deterministic.

Remark 3.1 Note that knots with prime diagrams may well be composite, and so we do not make any
claim as to the primeness of the knots represented by our diagrams.

Proof. We use the result of [CD] that chord diagrams modulo the 4T -relation and composite chord dia-
grams are generated by such with a special chord (that is, a chord intersecting all the others). Note (as in
[CD]) that such a chord diagram is described by a permutation of the endpoints of the non-special chords.

Thus it suffices to consider chord diagrams with a special chord or connected sums of such diagrams. To
realize a prime chord diagram with d chords, including a special one, by a singular knot diagram, put d−1
singular crossings on a straight line.

(9)
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First assume d is even. The other strand must pass through these singular crossings is some (arbitrary)

permuted order. Its part above and below the line in (9) consists of
d
2
−1 arcs joining two singular crossings,

and one arc connected to the remaining singular crossing with a “loose end”.

(10)

Clearly any two of these
d
2

arcs can be made to have at most one intersection. Thus the strand can be

made to have at most 2
(

d/2
2

)
self-intersections. There remain the d singular crossings. Call the one of

the special chord the special singular crossing. One additional (non-singular) crossing is needed for the
second (generally self-intersecting) strand in (10) to exit the loop made up of the first strand between the
two passes of the special singular crossing.

In case d is odd, one side of (9) contains
d −1

2
arcs joining two singular crossings, and the other

d−3
2

such
arcs, and two arcs with a loose end. Then one has at most

d +1+

(
(d −1)/2

2

)
+

(
(d −3)/2

2

)
+2 · d−3

2
=

(d −1)2

4
+d ≤ d +1+

d(d −2)

4

crossings.

Now with f (d) := d +1+ d(d−2)
4 , we have

f (d) ≥
k

∑
i=1

f (di) ,

when di ≥ 2 and ∑k
i=1 di = d. This shows the assertion of the lemma for arbitrary Vassiliev invariants.

Now considering primitive Vassiliev invariants, we can restrict ourselves to chord diagrams which are not
connected sums. Thus, we must argue why the (singular) knot diagrams representing prime chord diagrams
with a special chord are prime. Now the special chord remains special not only in the chord diagram, but
also in the whole (singular) Gauß diagram. Also, it is easy to see that each arrow of a non-singular crossing
intersects a chord of a singular crossing. Then the intersection graph of this Gauß diagram is connected,
which (see [St5]) is equivalent to the knot diagram being prime. 2

Corollary 3.1 (see also [K4]) A primitive Vassiliev invariant of degree ≤ 4 is determined by its values on
rational knots.

Proof. Knots with prime ≤ 7 crossing diagrams are all rational. 2

3.3 Vassiliev invariants derived from the polynomials

From [BN, BL] we know that the Conway, Jones and Kauffman polynomials give rise to Vassiliev invari-
ants. We recall that there is a relation between the Conway Vassiliev invariants ∇i = [∇]zi and the Kauffman
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Vassiliev invariants (see [K3])

Fi, j(K) :=
√
−1

i+ j d j

da j

∣∣∣
a=

√
−1

[F(K)]zi . (11)

This is a Vassiliev invariant of degree ≤ i+ j by [BL]. (Since Fi,0 ≡ δi,0 is constantly 1 or 0, we can assume
j > 0.)

We have the identity F1,1 = −2∇2 coming from the uniqueness of the (symmetric) Vassiliev invariant of
degree 2. For higher degree, the evident problem is that the dimension of the space of Vassiliev invariants
grows rapidly. The only further relation to the Conway Vassiliev invariants is (see [K3, p. 422])

F2,1 +F2,2

2
−6F3,1 = ∇2 −7∇2

2 +18∇4 . (12)

With lemma 3.1 in hand, the verification of such identities (at least in not too high degree) is straightfor-
ward.

For i > 4, ∇i cannot be expected to be related to the Fi′, j′ . Indeed, ∇6 is not contained in F , as shown in
[K4] and [St6]. That is, there are two distinct knots K1 and K2 with F(K1) = F(K2) but ∇6(K1) 6= ∇6(K2).
For instance, K1 and K2 can be taken to be the two 11 crossing knots 1130 and !11189 with equal Kauffman
polynomial, but different Conway polynomial, pointed out by Lickorish [L]. As observed by Kanenobu,
for the higher ∇i the same property then follows by taking the connected sum of the K1,2 with trefoils.

The Jones polynomial gives rise to a series of Vassiliev invariants by its values V (n)(1). The skein polyno-
mial P yields Vassiliev invariants in the same way as F : for a link L,

Pi, j(L) :=
√
−1

i+ j d j

dl j

∣∣∣
l=

√
−1

[P(L)]mi , (13)

is a Vassiliev invariant of degree ≤ i + j. However, here rather than j > 0 we must pose j ≥ 0 and i of
the opposite parity to the number of components n(L) of L, and i ≥ 1− n(L). (Remark that for j = 0 we
obtain, up to sign, the ∇i.)

As for Q, the results of Kanenobu, explained in §1, suggest that we consider the values Q(k)(−2) for k ≥ 2.
Sadly here we are less fortunate, and the following is easy to see.

Proposition 3.1 Q′′(−2) is not a (global) Vassiliev knot invariant of degree ≤ 4.

Proof. Assume v = Q′′(−2) is a Vassiliev invariant of degree ≤ 4. Using Q(−2)≡ 1, one can correct v by
a multiple of Q′(−2)2 to a Vassiliev invariant v̄ that is additive under connected sum, and so primitive. By
corollary 3.1, we have that v̄ is determined by its values on rational knots, and Kanenobu’s formula [K2]
shows that on rational knots v̄ can be expressed using V (n)(1). Since this expression is also a Vassiliev
invariant of degree ≤ 4, it would extend to all knots. Since also Q′(−2) can be expressed from V using
[K], we obtain that v is determined by V (on all knots). Then any pair of knots with equal (or conjugate) V
would have equal Q′′(−2). But the pair 51 and 10132 shows that this is not the case. We quote their V and
Q polynomials from [St3] using encoded notation:

V (51) = V (10132) = {2} 1 0 1 −1 1 −1 ,

Q(51) = [5] −2 −6 2 2 , Q(10132) = [5] −18 −14 38 20 −24 −12 4 2 .

We thus obtain a contradiction. 2

The fact that Q′′(−2) is not of degree ≤ 4 was observed by Kanenobu by a similar reasoning. Of course,
this argument can only work in low degree, but a more general argument for arbitrary degree and arbitrary
derivative is not obvious.
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3.4 Braiding sequences

The approach of braiding sequences gives another motivation for the non-triviality of the finite degree
property question on the derivatives of the Brandt-Lickorish-Millett-Ho polynomial evaluated at z = −2.
It also suggests similar phenomena for the evaluations at z = 2.

Definition 3.2 ([St]) For some odd k ∈ Z, a (parallel) k-braiding of a crossing p in a diagram D is a
replacement of (a neighborhood of) p by the braid σk

1. A braiding sequence BD,P (associated to a numbered
set P of crossings in a diagram D; all crossings by default) is a family of diagrams, parametrized by n = |P|
odd numbers x1, . . . ,xn, each one indicating that at the crossing numbered as i an xi-braiding is done.

Figure 2 shows the parallel −3-braiding and the antiparallel one. The theory for antiparallel braidings is
almost equivalent, but if a reader feels more convenient, he may assume that only parallel braidings are
done.

−→ or

Figure 2: Two ways to do a −3-braiding at a crossing.

Definition 3.3 If for a knot invariant v and any braiding sequence BD,P with |P| = n, the map

PD,P : (x1, . . . ,xn) 7→ v(D(x1, . . . ,xn))

is a polynomial, we call v a braiding polynomial invariant. We call PD,P the braiding polynomial of v on
BD,P.

Theorem 3.1 ([St]) A knot invariant v is a Vassiliev invariant of degree degv ≤ d if and only if it is a
braiding polynomial invariant, and all its braiding polynomials have degree degPD,P ≤ d for any BD,P.
Herein degree is counted in all variables altogether, that is, with respect to

deg
n

∏
i=1

xli
i =

n

∑
i=1

li .

Definition 3.4 A knot invariant is an extended Vassiliev invariant of degree ≤ d, if it is a braiding poly-
nomial invariant, and for any BD,P its braiding polynomial has degree degx j

PD,P ≤ d in any single x j ∈
{x1, . . . ,xn} with |P| = n, that is, with respect to

degx j

n

∏
i=1

xli
i = l j .

Example 3.1 The determinant ∆ (−1) = V (−1) is an extended Vassiliev invariant of degree 1, if one re-
stricts oneself to braiding sequences of antiparallel braidings only. The squared determinant ∆ (−1)2 =
Q(2) is an extended Vassiliev invariant of degree 2 (also for parallel braidings).

Theorem 3.2 ([St7]) The invariants Q(k)(−2) are extended Vassiliev invariants of degree ≤ 2k. The in-
variants Q(k)(2) are extended Vassiliev invariants of degree ≤ 2k +2.

This leads to a suggestive, but not very easy to answer, question:
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Question 3.1 Are Q(k)(±2), or polynomial expressions thereof, (ordinary) Vassiliev invariants?

Definition 3.5 A knot invariant v is called polynomially bounded of degree ≤ d if there is a constant C > 0
wuch that |v(K)| ≤C c(K)d for any knot K. (Here c(K) is the crossing number of §2.2.)

The following is the polynomial growth conjecture of [LW], proved in [BN3, S] for knots, and in [St7] for
links.

Theorem 3.3 Vassiliev invariants of degree ≤ d are polynomially bounded of degree ≤ d.

Since the determinant is not a polynomially bounded invariant, it is not a Vassiliev invariant, and thus
extended Vassiliev invariants are a non-trivial notion.

We prove here now the following straightforward but useful criterion

Theorem 3.4 A knot invariant is a Vassiliev invariant (of degree ≤ d) if and only if it is a polynomially
bounded (of degree ≤ d) and a braiding polynomial invariant.

Proof. The ‘only if’ part follows from our previous results. Now assume v is braiding polynomial. We
also assume that |v(K)| < C c(K)d for all K, and wish to conclude that degPD,P ≤ d for all BD,P. Now
assume that for some BD,P we have dD,P := degPD,P > d. Let QD,P = [PD,P]dD,P 6= 0 be the homogeneous
degree-dD,P-part of PD,P. There are odd (say, even positive) numbers k1, . . . ,kn with QD,P(k1, . . . ,kn) 6= 0.
Then consider the diagrams Dp := D(k1 p, . . . ,kn p) for odd p → ∞. (By proper choice of sign of ki one can,
if one likes, achieve that Dp is alternating.) The map p 7→ v(Dp) is a polynomial in p of degree dD,P > d,
and the crossing number of Dp is linearly bounded in p, so that for the knots Kp represented by Dp we have
|v(Kp)| growing faster than c(Kp)

d , a contradiction. 2

Corollary 3.2 The invariants Q(k)(±2), or polynomial expressions thereof, are Vassiliev invariants (of
some degree) if and only if they are polynomially bounded (of that degree). 2

3.5 Vassiliev invariants not obtained from the Q polynomial

3.5.1 An example for degree 3 and 4

The first purpose of our investigation is to show the following statement. It explains the method of compu-
tation that is later extended to higher degrees.

Proposition 3.2 Q does not contain a Vassiliev knot invariant of degree 3 or 4 that is substantial (i.e. not
a linear combination of composite and lower degree ones).

Proof. First we recall that by [St4] it does not make sense to look for a Vassiliev invariant of degree 3 (or
any other odd degree), as Q is a symmetric invariant. (Even non-mutually obverse examples with the same
Brandt-Lickorish-Millett-Ho polynomial and different Vassiliev invariants of degree 3 are easily found,
e.g., 912 and 10156.)

As well-known (see e.g. [BN, KM]), the linear space of primitive Vassiliev invariants of degree 4 (modulo
degree ≤ 3) is 2-dimensional and generated by the projections on it of the degree 4 Vassiliev invariants c4
coming from the Conway/Alexander polynomial and v4 coming from the Jones polynomial.

As Q contains v2 and hence v2
2, we may waive on primitivity and adjust c4 and v4 in which ever way we

like, only taking care, that v4 has no part in degree 3, that is, is symmetric. (Clearly c4 is so, in whichever
way we choose it, as is ∆ .) Thus, consider

c4 :=
1
24

∆ (4)(1) and v4 :=
1

12

(
V (4)(1)+6V (3)(1)

)



12 3 Vassiliev invariants

Q = [5] −6 −20 28 30 −30 −26 8 10 2

1019 1036 11454

V = −1 2 −3 6 [−7] 8 −8 7 −5 3 −1 V = 1 [−2] 4 −6 8 −8 8 −6 4 −3 1 V = 1 −3 5 −7 8 −9 8 −5 4 [−1]

∆ = 2 −7 11 [−11] 11 −7 2 ∆ = −3 13 [−19] 13 −3 ∆ = 1 −5 12 [−15] 12 −5 1

Figure 3: Three knots with the same Q polynomial, showing that it cannot contain any interesting
Vassiliev invariant of degree 4, and their V and ∆ polynomials (all recorded as in [St3]).

(for which v4(!K) = v4(K) is straightforwardly checked).

If an invariant of the kind av4 +bc4 for some a,b ∈ R is contained in Q, and for two knots K1, K2 we have
Q(K1) = Q(K2), then

b(c4(K1)− c4(K2)) + a(v4(K1)− v4(K2)) = 0 . (14)

Thus, to show that it is not the case for any (a,b) 6= (0,0), it suffices to find a triplication of Q, that is,
knots K1, K2 and K3 with Q(K1) = Q(K2) = Q(K3), such that

det

(
c4(K1)− c4(K2) c4(K1)− c4(K3)

v4(K1)− v4(K2) v4(K1)− v4(K3)

)
6= 0 . (15)

Such an example is the triple 1019, 1036 and 11454. (This is one of the two triplications of Q I found
in Hoste-Thistlethwaite’s tables [HT] of ≤ 11 crossing prime knots.) We let the reader verify (15), just
recording their polynomials (see figure 3). 2

Thus, unfortunately, there seems no easy way, e.g., to show via Vassiliev invariants (as it works for V ,
see [St5, corollary 7.1]) that the untwisted Whitehead doubles of a positive or almost positive knot have
non-trivial Q polynomial. This was my original motivation for a large part of the investigations described
in [St2].

3.5.2 Vassiliev invariants up to degree 7

Now we explain how to extend our result. For degree up to 7 we can present a detailed argument and
calculation.

Theorem 3.5 The Q polynomial determines no Vassiliev invariants up to degree 7, except those derived
(as polynomials of degree at most 3) from v2.

Proof. Let v be a Vassiliev invariant of degree ≤ 7 determined by Q. Since v is symmetric, it has even
degree [St4]. The space of symmetric invariants of degree up to 6 is generated by the primitive invariants

v2; v4,1, v4,2; v6,1, v6,2, v6,3, v6,4, v6,5 , (16)



3.5 Vassiliev invariants not obtained from the Q polynomial 13

and the composite invariants
v2

2; v3
2, v2

3, v2v4,1, v2v4,2 . (17)

Here so far vi (resp. vi, j) denotes the (unique resp. j-th in some arbitrary ordering) primitive Vassiliev
invariant of degree i. From now on, call all these (including composite) invariants vi, j (by setting vi,1 := vi
for i = 2,3 and assigning such a term for the invariants of degree i in (17), with j above the range in (16)).
Concrete expressions for vi, j (with one exception, v6,5, and up to symmetric invariants of lower degree) can
be found from the Kauffman polynomial. Set Fi, j as in (11) for i ≥ 0, j > 0. The property (3) implies that
there are numbers ci, j such that

F̃i, j = Fi, j +
j−1

∑
k=1

ci,kFi,k

is a symmetric invariant for i+ j even (and antisymmetric for i+ j odd). In fact, one can restrict the k-sum
over 1 ≤ k < j with j− k odd. For instance, one can choose

F̃d,1 = Fd,1

F̃d,2 = Fd,2 +Fd,1

F̃d,3 = Fd,3 +3Fd,2

F̃d,4 = Fd,4 +6Fd,3 −6Fd,1

F̃d,5 = Fd,5 +10Fd,4 −60Fd,2

F̃d,6 = Fd,6 +15Fd,5 −300Fd,3 +360Fd,1

The F̃i, j are not primitive, but a test on a few knots (see below) shows that most of them are linearly
independent. Thus one can obtain (some) primitive Vassiliev invariants vi, j from the F̃i′, j′ by linear com-
binations (possibly including products). Even more, since the F̃i, j exceed the dimension of the space of
primitive (symmetric) invariants for i+ j ≤ 6, there are linear dependencies.

A first easy observation shows that
F̃0,2 = 4F̃1,1 ,

which is also a multiple of v2 = ∇2, so that we can discard F̃1,1. Then turn to degree ≤ 4. Consider the
few thousand (including composite) knots of up to 13 crossings. (They can be generated from the tables of
[HT].) A test of F̃0,2, F̃2

0,2, F̃0,4, F̃1,3, F̃2,2, F̃3,1 on these knots shows the linear relations

31F̃0,2 +5F̃0,4 −16F̃1,3 +16F̃2,2−4F̃2
0,2 = 0

3F̃0,2 + F̃0,4 −8F̃1,3 +48F̃2,2−192F̃3,1 = 0

Thus one can eliminate F̃2,2 and F̃3,1. Then a test in degree ≤ 6 of

F̃0,2, F̃2
0,2, F̃3

0,2, F̃2
0,3, F̃0,4, F̃1,3, F̃0,2F̃0,4, F̃0,2F̃1,3, F̃0,6, F̃1,5, F̃2,4, F̃3,3, F̃4,2, F̃5,1

shows the relations

−1485F̃0,2−135F̃0,4 +2F̃0,6 +360F̃1,3 −24F̃1,5 +240F̃2,4−1920F̃3,3

+11,520F̃4,2 −46,080F̃5,1 +180F̃2
0,2 = 0

−4464F̃0,2 −3564F̃0,4 −45F̃0,6 +4410F̃1,3 +54F̃1,5 +1296F̃2,4 −14,688F̃3,3

+97,920F̃4,2−403,200F̃5,1 +64F̃2
0,3 +72F̃3

0,2−48F̃0,2F̃0,4 +384F̃0,2F̃1,3 = 0

Thus eliminate F̃5,1 and F̃4,2.

This calculation is justified by lemma 3.1. It also confirms the (previously well-known) fact that F contains
both primitive invariants of degree 4 and 4 of the 5 primitive invariants of degree 6. The missing invariant
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v6,5 = ∇6 is provided (up to some correction by composite invariants) by the coefficient of z6 in the Conway
polynomial ∇(z), as explained in [St6] from the example of Lickorish (and recalled above in §3.3).

Now assume Q(z) = F(1,z) determines v = ∑i=2,4,6 ∑ j ci, jvi, j. First note that if c6,5 6= 0, then F determines
∇6, a contradiction. Thus assume c6,5 = 0, and we deal only with the Vassiliev invariants coming from the
Kauffman polynomial. Then we can w.l.o.g. replace vi, j by F̃i′, j′ (for i′ + j′ = i).

Among prime knots of ≤ 10 crossings [Ro, appendix], Q has 13 duplications. These are the pairs

(944,82), (945,87), (915,10159), (98,10131), (95,10134), (921,10151), (912,10156),

(925,926), (1022,1035), (1014,1031), (1056,1033), (1019,1036), (1043,1072).

The polynomial of (one knot of) each pair is given in table 1.

8 2 [-7] 0 22 2 -20 -4 6 2
8 7 [-7] 4 20 -8 -20 2 8 2
9 5 [ 1] -12 2 28 0 -22 -4 6 2
9 8 [ 1] -8 8 22 -12 -22 2 8 2
9 12 [-3] -6 10 14 -12 -16 4 8 2
9 15 [ 1] 4 -2 -2 -8 -8 6 8 2
9 21 [-3] -2 16 4 -26 -12 12 10 2
9 25 [-7] 0 30 2 -42 -14 18 12 2

10 14 [ 1] -4 -10 20 16 -26 -18 10 10 2
10 19 [ 5] -6 -20 28 30 -30 -26 8 10 2
10 22 [ 1] 0 -4 6 12 -12 -16 4 8 2
10 33 [ 1] -16 0 44 4 -48 -16 18 12 2
10 43 [-7] -4 28 22 -32 -42 0 22 12 2

Table 1: The Q polynomials of the ≤ 10 crossing prime knots occurring in duplications. (Only one
knot in each pair is recorded.)

Each such pair gives rise to a linear relation on the ci, j as (14) in the proof of proposition 3.2 on a and b.
The F̃i, j are given in table 2.

By imposing jointly all these 13 conditions on the ci, j, we find that the only possible linear combinations
∑ci, jvi, j determined by Q must lie in the span of v2, v2

2 and v3
2, as desired. 2

Remark 3.2 As in the proof of proposition 3.2, we could have tried to use a single large group of knots
with equal Q polynomial, but different Vassiliev invariants, to find enough relations between the ci, j. (Note
that a group of n knots can give up to n− 1 independent linear relations.) However, among prime knots
of up to 16 crossings I found no group, whose linear conditions on the ci, j eliminate anything except
polynomials of v2. Note that generically, a considerable part of the coincidences of the Q polynomial arises
from mutations. But mutations preserve Vassiliev invariants up to degree 6 (see [CDL, CDL2, CM, Mr]),
and are useless for our purpose.

4 Vassiliev invariants and 2-cable polynomials

4.1 Calculating invariants

If one likes to extend our result to degrees ≥ 8, more computation is required. We will present here the
outcome that suffices to cover degree 8 and 9. A first task is to find a way to obtain all such Vassiliev in-
variants. Expectedly, this problem has been encountered before. In particular, a related (and still unsolved)
question is
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Table 2: This table gives the values of the F̃i, j (as F(i,j), with F̃0,3 accurate up to sign) on the ≤ 10 crossing prime knots occurring
in Q duplications (see table 1). cr and nr give the crossing number and order number in the tables of [Ro, appendix] (that is,
denote the knot crnr).

cr nr F(0,2) F(0,4) F(0,6) F(1,1) F(1,3) F(1,5) F(2,2) F(2,4) F(3,1) F(3,3) F(4,2) F(5,1) F(0,3)

9 44 0 -192 8640 0 -96 -480 -36 -852 -6 -336 -72 -8 -48
8 2 0 576 -2880 0 288 32160 108 14268 18 1920 136 12 48
9 45 -16 -1872 -54720 -4 -768 -65280 -88 -8184 0 -624 -88 -6 192
8 7 -16 -336 14400 -4 -288 -9120 -88 -2808 -12 -408 -72 -10 96
9 5 -48 -8112 -420480 -12 -3600 -522000 -396 -38940 8 -2424 -592 10 -720
10 134 -48 -5040 455040 -12 -2640 -210000 -396 -40476 -16 -4008 -400 -10 -624
9 8 0 -768 11520 0 -240 -7920 0 -1728 6 -384 -40 2 -96
10 131 0 1536 69120 0 624 80880 144 26448 18 3336 184 6 96
9 12 -8 -1704 -61920 -2 -624 -48240 -60 -7692 2 -1704 -216 0 -144
10 156 -8 -168 7200 -2 -144 -7440 -60 -2316 -10 -48 -40 -16 48
9 15 -16 -2448 -51840 -4 -960 -73920 -100 -8532 2 -1224 -176 0 240
10 159 -16 -912 17280 -4 -480 -33120 -100 -9300 -10 -1104 -128 -16 -144
9 21 -24 -2616 -44640 -6 -1104 -81360 -96 -6624 8 -1128 -188 8 288
10 151 -24 -1080 24480 -6 -624 -25200 -96 -2784 -4 -432 -108 -8 192
9 25 0 -960 -72000 0 -288 -32160 12 -2916 10 -240 -28 2 -48
9 26 0 576 -2880 0 192 8640 12 3996 -2 936 84 -2 -48
10 14 -16 -912 17280 -4 -336 30000 44 21372 20 3648 336 30 -144
10 31 -16 -144 5760 -4 -240 -240 -100 -660 -16 -696 -224 -30 48
10 19 -8 24 -1440 -2 -144 240 -120 -1368 -24 -984 -284 -38 0
10 36 -8 -744 10080 -2 -240 7440 24 9144 12 2112 260 22 -96
10 22 32 288 -11520 8 144 -240 248 5400 58 888 216 48 96
10 35 32 1056 -23040 8 240 240 104 4104 22 672 120 24 -96
10 33 0 0 0 0 -96 1440 -96 -864 -20 -768 -232 -32 0
10 56 0 1536 69120 0 672 97440 192 37824 28 6048 536 32 96
10 43 -16 -336 14400 -4 -240 -240 -40 -1032 -2 -528 -128 -14 0
10 72 -16 -1872 -54720 -4 -720 -48720 -40 2808 10 2136 304 26 -192
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Question 4.1 (Przytycki, problem 1.92 (M)(c) of [Ki]) Do all degree ≤ 10 invariants of knots come from
the HOMFLY and Kauffman polynomial and their 2-cables?

Recall that a 2-cable Kp of a knot K with framing p is constructed as follows. For even p, (a diagram of)
Kp is obtained by applying

−→ (18)

to any crossing of a diagram of K of writhe p/2. For odd p one applies (18) to a diagram of writhe
(p−1)/2, except at one crossing, where one performs

−→ . (19)

Kp is connected (a knot) for odd p and disconnected (a 2-component link) for even p. We write K± for
K±1.

In an attempt to approach Przytycki’s problem, we considered the Vassiliev invariants

Pd := {Pi, j : i+ j ≤ d } , (20)

where Pi, j is defined as in (13), and i, j ≥ 0, with i even. Note that Pd are all invariants of degree ≤ d.
Similarly are

Fd := {Fi, j : i+ j ≤ d } . (21)

To obtain a Vassiliev invariant of degree ≤ d, one can also use products of invariants Pi, j and Fi, j.

The invariants in Pd and Fd were considered by Meng [Me] and Lieberum [Li], using their weight systems.
Our calculation is supported by some results they obtain. However, it also shows phenomena that point
to caution in some tempting conclusions concerning the structure of the algebra generated by Vassiliev
invariants of the HOMFLY and Kauffman polynomials.

One can apply Pd and Fd also to 2-cables Kp of K with various framings. We denote by Pd(Kp) and Fd(Kp)
the resulting invariants. If the framing is even, then the 2-cable is disconnected, and then the restriction to
i modifies to i ≥−1, with i odd for Pi, j.

For
v ∈ (Pd \Pd−1)(K∗)∪ (Fd \Fd−1)(K∗) ,

let d̃egv := d. Note that d̃egv is not a priori evident to be the same as the degree of v as a Vassiliev
invariant (whence the notational distinction), although clearly degv ≤ d̃egv. In some situations though we
have equality, and we clarify why, since the notation and arguments will be of relevance in later explanation.
We formulate a statement only with F, letting the reader understand that most subsequent remarks on one
of P and F also apply on the other in a similar way.

Lemma 4.1 For odd p and i, j ≥ 0 with i+ j even, and i even or i = 1, we have degFi, j(K) = degFi, j(Kp) =
i+ j.

Proof. Let us write for a set M ⊂ P∗(K∗)∪F∗(K∗) of invariants

Md :=

{
k

∏
l=1

vl : vl ∈ M,
k

∑
l=1

d̃eg vl ≤ d

}
,
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deg ≤
dim ≥ 0 1 2 3 4 5 6 7 8 9 10

total 1 1 2 3 6 10 19 33 60 104 184

P/PP! 1 1 2 3 6 9 16 24 40 60 95

P+/P− 1 1 2 3 6 9 16 24 40 60 95

PP+/PP− 1 1 2 3 6 10 19 31 53 85 140

P+P− 1 1 2 3 6 9 17 27 46 72 117

PP+P− 1 1 2 3 6 10 19 31 53 86 142

P+P−P0 1 1 2 3 6 10 19 30 52 82 136

PP+P0/PP−P0 1 1 2 3 6 10 19 31 54 87 145

PP+P−P0 1 1 2 3 6 10 19 31 54 87 145

PP+P−P3 1 1 2 3 6 10 19 31 53 86 142

P−2P−P0P+ 1 1 2 3 6 10 19 30 52 82 136

PP−2P−P0P+ 1 1 2 3 6 10 19 31 54 87 145

PP−P0P+P2P3 1 1 2 3 6 10 19 31 54 87 145

F 1 1 2 3 6 10 18 29 49 78 127

F+/F− 1 1 2 3 6 10 18 29 49 78 127

FPP+P−P0 1 1 2 3 6 10 19 32 57 94 159

FF+F−F0 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F−2 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F−3 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F2 1 1 2 3 6 10 19 33 59 99 168

FF+PP+P−P0 1 1 2 3 6 10 19 33 60 102 176

FF0PP+P−P0 1 1 2 3 6 10 19 33 60 102 176

FF+F−F0PP+P−P0 1 1 2 3 6 10 19 33 60 102 177

Table 3: This table contains dimensions of various spaces of Vassiliev invariants for degree ≤ 10.

The first row gives the total dimension of Vassiliev invariants up to degree deg as calculated by
Bar-Natan [BN] and Kneissler [Kn].

The second section of rows gives lower bounds for the dimension of Vassiliev invariants up to
degree deg obtainable as polynomial expressions from Pdeg of the HOMFLY polynomial P, and its
(application on) 2-cables Pp(K) = P(Kp) of twist p. P± denotes P±1. The product of some of the
P symbols denotes that the invariants of these polynomials have been taken together. The slash
separates between alternative combinations of polynomials that give, as we explain, the same
dimensions (although not necessarily the same linear spaces!).

The last section gives dimensions of invariants derived via Fdeg from the Kauffman polynomial F
and its applications Fp on 2-cables of twist p, with F± = F±1. Some combinations of P∗ and F∗
invariants are also given. They are chosen so as to make evident that the last row’s dimensions
cannot be increased by adding further invariants.
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and consider
F̂(h,N) := F

(√
−1e−(N−1)h/2,

√
−1
(
eh/2− e−h/2)) .

Then we have (extending the notation of coefficients to power series)

Fi, j(K) ≡ Ci, j
[

F̂(h,N)(K)
]

hi+ jN j ≡ Ci, j
[

F̂(h,N)(K ∪O)
]

hi+ jN j+1 mod L in(F∗(K))i+ j−1 , (22)

where Ci, j are non-zero numbers, and K ∪ O is the split union of K with an unknot. The r.h.s. of the
congruence is a canonical Vassiliev invariant of degree i + j by the result of Le-Murakami and Kassel
[LMr, LMr2, LMr3, Ks] (compare Proposition 5 in [Li]). Now [ F̂K∪O(h,N) ]hi+ jN j+1 6≡ 0 is not hard to see.
Let K be the unknot, with F(K ∪O) = (a + a−1)/z− 1. The coefficient of the power series F̂(K ∪O) is
easily found to be non-zero for the given i, j; for i 6= 1 it is, up to a factor, a Bernoulli number. (With other
K and a similar calculation one can settle more i, j.)

Thus indeed degFi, j(K) = i + j. Then the same is true for Fi, j(Kp) if p is odd. To see this, recall that
connected n-cabling of a degree d Vassiliev invariant v applies a dual Adams operation (ψn)∗ of [BN] on
its weight system Wv ∈ Vd/Vd−1 ' A∗

d . That ψn is an automorphism of Ad was stated in Exercise 3.12 of
[BN]. In fact, we know that the eigenvalues of ψn are powers of n with exponents given by the number of
univalent vertices of unitrivalent graphs (see [KSA, MR]). 2

For the calculation of 2-cable polynomials of K it is sufficient (but also, up to algebraic transformations,
necessary) to determine the polynomials of a connected cable of K and !K. To keep the diagrams as simple
as possible, we decided to use the 2-cables with blackboard framing from the diagrams in [HT] and one
negative half-twist. For the skein polynomial, this calculation was possible for all prime knots up to 13
crossings (including mirror images). The Kauffman polynomial is technically more difficult. We obtained
a set S of 898 prime knots up to 12 crossings (including all ≤ 10 crossing knots, except 105), where both
Kauffman polynomials could be determined. We used this set S for all subsequent Vassiliev invariant
calculations.

4.2 Dimensions

Table 3 gives lower bounds for the dimension of Vassiliev invariants of bounded degree that we calcu-
lated for various combinations of Pi, j and Fi, j applied on knots and various 2-cables. With the previous
designation, for example the column d entry of the row PP+P− is

dim L in (P∗(K+)∪P∗(K−)∪P∗(K))d

∣∣∣
K∈S

,

and S is the set of knots explained above. Clearly, many linear dependencies will occur, but in degree ≥ 7,
they are increasingly difficult to prove rigorously. Contrarily, linear independence is easy to prove if S is
large enough. Although some general theory behind table 3 is known, there are many detailed aspects in
the calculations it reflects that were never apparently brought clearly to attention. Thus we will list below
several features of the table that should be clarified, and point out phenomena and previous results it relates
to.

The numbers obtained, given in the table, can be only ensured to represent lower bounds for the dimensions,
since it is difficult to rigorously verify that some Vassiliev invariant is identically zero. From the fact that
we evaluated enough invariants to obtain the full dimension up to degree 8 we can conclude that the set S
we used is d-deterministic, and so our numbers are exact, for d ≤ 8. However, we do not know about degree
9 or 10. Indeed, non-trivial Vassiliev invariants of increasing degree may vanish on many low-crossings
knots (for example the ∇i). All deterministic sets we know in degree d > 8, also the one from §3.2, are
too large to allow efficient calculations. One can find smaller sets using a basis of Vd/Vd−1. (Its primitive
part would be enough.) But such a basis is itself non-trivial to find, and was apparently never explicitly
given (even if likely obtained in the course of the calculations of Bar-Natan [BN] and Kneissler [Kn]).
Even if so done, the resulting reduction is still unlikely to be well manageable. Another way to prove a set
deterministic is to evaluate the remaining Vassiliev invariants, but this does not seem very efficient either.
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At least the comparison of the first and last rows of the table shows that the difference between the numbers
in degree 9 resp. 10 and the actual dimension is at most 2 resp. 7.

Once we obtain only lower bounds, it makes sense to reduce invariants modulo a large prime, which
we chose to be 9091, in order to keep numbers simple. (In particular in 2-cable Kauffman polynomials
the coefficients are large enough to make Fi, j exceed machine-size integers. MATHEMATICATM , which
bypasses this problem, could hot handle well the extent of calculation needed for the upper degrees.)

Some coincidences of rows are easy to explain (even without knowing the absolute accuracy of the numbers
in giving the proper dimensions), or at least known. In particular, mirroring the (set of) invariant(s) induces
an involution on the space Vd/Vd−1. The injectivity of ψ2 was mentioned in the proof of lemma 4.1.
The fact that PP! contributes the same linear span of invariants as P is a consequence of the property (4).
For that same reason, and because (!K)p =!(K−p), it becomes useless to consider the invariants from the
various 2-cable polynomials of !K for K ∈ S.

We obtained also lists of linear independent invariants (omitted here for space reasons), but we have not
tried to identify a basis of the primitive part of Vd/Vd−1 that is obtainable. It is very difficult (see the
following remarks) to determine the exact degree of the Vassiliev invariants and their primitivity status.
One should also be cautioned that the linear relations between such invariants involve up to about-30-digit
coefficients, and are much more complicated than insightful.

4.3 “Hidden” Vassiliev invariants

Assume for a moment that the numbers in the table are accurate (rather than just lower bounds), that
each new set of Pd contributes in comparison to Pd−1 entirely invariants of degree d, and that all (prime)
factors of all composite invariants obtained have been generated for smaller d. Then we find from the
various rows of the table the projected sequences of primitive Vassiliev invariants of degree exactly d
that can be obtained. For example, for the P-row it reads 1,0,1,1,2,2,3,3,4,4,5 and for the F-row
1,0,1,1,2,3,4,5,6,7,8. These sequences appear in Proposition 12 of [Li], and seem the only case studied
closer so far. However, the projected sequences may not always be correct. Consider the rows PP+, where
we obtain 1,0,1,1,2,3,5,6,7,8,9 and PP−P+, where we obtain 1,0,1,1,2,3,5,6,7,9,10. Apparently, ad-
joining P− seems to give a new invariant in degree 9. But it is easy to see that Pd(Kp) gives the same
elements in Vd/Vd−1 for any p of a given parity. Thus Pd(K−) cannot increase the dimension in degree
d. This means that a Vassiliev invariant of degree d may be realizable from some Pd′ with d′ > d, but not
from Pd (of a given set of cables). In particular, the difference between PP−P+ and PP+ in degree d = 9
comes from a Vassiliev invariant v8 in degree < 9. We know that v8 can not be obtained from (P∗)8, since
by the remarks in §4.2 our numbers are accurate for d = 8. It must have degree 7 or 8, as we have al-
ready exhausted all invariants of degrees ≤ 6 with PP+. The additional difference in degree 10 must come
from a new Vassiliev invariant of degree 7 to 9. But these invariants are immediately lost if we work with
the (degree d) weight systems of Pd . This explains why the weight systems obscure sometimes essential
information.

Even if we cannot explicitly observe an instance of this phenomenon, it is in principle even possible that
one can obtain a composite Vassiliev invariant from some Pd(K∗), without being able to obtain some of its
factors.

These (possible) peculiarities explained above caution that

a) the algebra of some set of Vassiliev invariants may not be isomorphic to the algebra of their weight
systems. This can occur if not all invariants are primitive and have linear independent weight systems
(of the appropriate degree). To exclude such possibility, the composite and lower degree Vassiliev
invariants must be proved to be generatable from previous degrees. One situation where this is
needed is Theorem 3 of [Li]. It requires the result used in (22) that any Fi, j(K) can be altered by
elements in L in(F∗(K))i+ j−1 so that it becomes canonical (of degree i + j), and similarly Pi, j(K).
For canonical invariants, linear dependencies of the weight systems extend to linear dependencies of
invariants.
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b) it is difficult to prove that some Vassiliev invariant v is actually not obtainable from HOMFLY (or
some cables of it). For P we can deduce from the proof of lemma 4.1 that if a Vassiliev invariant v of
degree d = degv lies in the algebra generated by P∗(K), then it lies in L in(P∗(K))d . On the opposite
side, for cables of P, there is no a priori limit on d ′ in terms of d, whose Pd′ we must consider, and
possibly not only polynomials, but fractions of polynomials of Pd′ must be examined. There may be
even other (yet unknown) ways to obtain Vassiliev invariants, not using (only) the P∗. Thus the only
approach is to find knots not distinguished by HOMFLY (or its cables) but by v, as in [K4, St6]. A
systematic way to find such examples is unknown.

4.4 Connected and disconnected cables

It is suggestive from the skein relation of P that the Vassiliev invariant v8 in §4.3 can be obtained from
P8(K0). This explains the difference between the PP+P− and PP+P−P0 rows occurring already in degree
8.

In general one can obtain the P-polynomial of a disconnected n-cable as a linear combination of poly-
nomials of connected n-cables whose coefficients have a power in m between 0 and 1− n. This means
that

L in Pd ( all n-cables ) ⊂ L in Pd+n−1 ( connected n-cables ) .

However, in general

L in Pd ( all n-cables ) 6= L in Pd ( connected n-cables ) .

That is, there is a way of obtaining new Vassiliev invariants by disconnectedly cabling invariants of the
same degree, not obtainable by connected cablings. This was noticed by Dasbach [Da]. The eigenvalues
of the Adams operations (mentioned in the proof of lemma 4.1) show, as observed in [MR], that the space
of invariants given by connected n-cablings of an invariant v of degree d stabilizes (modulo lower degree)
for n > d. In contrast, Dasbach’s result roughly means that, by starting from Pd , one will obtain new
invariants of degree d from disconnected n-cables at least up to n ≤ exp(C ·

√
d) for some constant C > 0

(independent on n and d). Thus, even although polynomials of disconnected cables are linear combinations
of polynomials of connected cables, and hence the same is true for their global sets of Vassiliev invariants,
the situation is quite different is one restricts oneself to their invariants of bounded degree.

On the other hand, for any connectivity, the relations between cable polynomials allow us to limit the
number of cables of that connectivity that suffice to generate all possible Vassiliev invariants from all such
cables. In case n = 2 we have

Lemma 4.2 For the polynomials Pp of the 2-cables of framing p (connected for p odd and disconnected
for p even), we have

Pp = −l4Pp−4 − (2l2 −m2l2)Pp−2 .

Proof. Consider the generating series f (l,m,z) = ∑∞
p=0 Pp(l,m)zp (whose convergence is easy to estab-

lish). The skein relation implies Pp+2 = −mlPp+1 − l2Pp, so that

f (l,m,z) =
A(l,m,z)

1+mlz+ l2z2 ,

for some A ∈ Q[l,m,z]. Taking f (l,m,z)± f (l,m,−z), we obtain the denominator

(1+mlz+ l2z2)(1−mlz+ l2z2) = 1+ l4z4 +2l2z2 −m2l2z2 ,

which leads to the stated relation. 2

This means that for connected/disconnected 2-cables, the invariants of Pd are exhausted, if we apply them
on Pp for two consecutive odd resp. even p. By a similar argument for F , three consecutive p of a given
parity suffice. In practice, as the table shows, p =±1,0 already apparently generate all invariants from Pd
and Fd for d ≤ 10 (for both parities of p taken together).
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4.5 Mutations and non-mutations

12341 12627

49 341 0 24
-8 10 5 27 69 99 75 6 -44 -44 -20 -4
-8 10 -60 -315 -755 -1016 -710 -22 467 462 213 42
-8 10 331 1705 3800 4752 3129 33 -2126 -2157 -1040 -206
-8 10 -1011 -5283 -11308 -13286 -8335 -7 5603 5795 2823 537
-8 10 1805 10023 21665 24516 14755 -52 -9503 -9781 -4556 -794
-8 10 -1965 -12201 -27766 -31277 -18030 41 10913 10763 4610 692
-8 10 1325 9768 24362 28057 15528 -11 -8578 -7886 -2968 -355
-8 10 -549 -5129 -14689 -17703 -9448 1 4563 3811 1191 104
-8 10 135 1728 5989 7729 4007 0 -1583 -1179 -285 -16
-8 10 -18 -357 -1602 -2259 -1148 0 338 222 37 1
-8 8 1 41 267 418 210 0 -40 -23 -2
-6 6 -2 -25 -44 -22 0 2 1
-4 0 1 2 1

Figure 4: Two knots with the same 2-cable HOMFLY polynomials (P+ is displayed), which are not
mutants.

Note the difference between the P+P−P0 and the PP+P−P0 rows. This suggests that HOMFLY may have
Vassiliev invariants not contained in its 2-cables. In general almost all knots with different HOMFLY
polynomial will also have different 2-cable HOMFLY polynomial. But the Vassiliev invariant observa-
tion suggests that it may not always be so. So far the only known examples of knots with equal 2-cable
HOMFLY polynomial are mutants [LL]. They also have the same HOMFLY (and Kauffman) polynomial.

However, the calculations performed along compiling the above table led to the discovery of some dupli-
cations of P∗ which are not mutants.

Example 4.1 The knots 121305 and !121872 have the same P, F and 2-cable P. To check the coincidence
of P∗, comparing P± suffices. Still 121305 and !121872 are not mutants. Most easily this is shown using the
result of [Ru], since their hyperbolic volumes differ: vol(121305) ≈ 15.483, while vol(!121872) ≈ 15.619.
Another such group is made of the two mutants 121378, 121423, and the knot !121704. Again P, F and
2-cable P coincide, but while vol(121378) = vol(121423) ≈ 15.094, we have vol(!121704) ≈ 14.983.

Later, after considerable calculation, we found that these pairs of knots have also different 2-cable Kauff-
man polynomials F+, with the difference coming out as a Vassiliev invariant of degree 7. Thus there is a
Vassiliev invariant of degree 7 not contained in the HOMFLY, Kauffman and 2-cable HOMFLY polyno-
mial, but in the 2-cable Kauffman polynomial. (Note that P∗ exhaust all invariants up to degree 6.)

There is one further pair made up of 12341 and 12627 (see figure 4). These knots are achiral, and for them
comparing P+ suffices to see that P∗ coincide. This time they are distinguished using an invariant of degree
8 of the 2-cable Kauffman polynomials. (Note that the lowest degree of an invariant distinguishing 12341
and 12627 must be even, since by [St4] odd degree invariants can be changed by invariants of lower degree
so that they vanish on achiral knots.)
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There has been further work on generalizations of mutations [APR, JR, Tz, HP], but none of this seems to
explain the coincidence of the 2-cable HOMFLY polynomial in these examples.

The observed coincidences of P and F also on non-mutants with the same 2-cable HOMFLY polynomials
extend to prime ≤ 13 crossing knots and suggest

Question 4.2 Does Pp for some p (or at least for all p taken together) determine P and/or F?

Note that this question may relate to more than mere curiosity. In [KS] we observed a (conjectural) relation
between F and the Whitehead double HOMFLY polynomials, and there is also Yamada’s remarkable result
[Y] that F determines the 2-cable Jones polynomial.

Remark 4.1 Using Alexander Shumakovitch’s database, we found that the new Khovanov polynomial Kh
[Kh] coincides on these examples as well, and on all other pairs of prime ≤ 13 crossing knots with equal
P+. Still Kh is known to distinguish some knots with equal P and F (most interestingly 942 and its mirror
image). However, for instance I do not know of an example showing that Kh can distinguish knots with
equal F and Murasugi-signatures.

4.6 Braid index

It is known that one can estimate the braid index of a knot K from its P polynomial [Mo, FW]:

2(b(K)−1) ≥ maxdegl P(K)−mindegl P(K) . (23)

This estimate is called the Morton-Franks-Williams inequality. Since obviously b(Kp) ≤ 2b(K) for any
p ∈ Z, we can estimate b(K) also from the 2-cable P polynomials of K, as done in [MS]. We attempted
to use this method to settle the braid index for prime knots of up to 12 crossings. This requires us to
find braid representations of the strand number given as (lower) bound from the Morton-Franks-Williams
inequality or its application on the 2-cable polynomials. (For a few cases of large bound, one can conclude
the existence of such representations from Ohyama’s inequality [Oh], and for special types of knots from
Murasugi’s results [Mu2].) We were able to calculate 2-cable P polynomials up to 13 crossings, but
were aware of the difficulties of finding braid representations. We know from [HS] of one undecidable
13 crossing knot, and in [St8] we gave a 14 crossing example of failure of the 2-cable Morton-Franks-
Williams inequality. On the contrary, we indeed succeeded in finding the desired braid representations for
≤ 12 crossing knots, thereby showing

Proposition 4.1 The 2-cable Morton-Franks-Williams inequality is sharp for prime knots of up to 12
crossings. 2

To summarize the result of our computation, we assume that the calculation of P is easy, so restrict our-
selves to the exceptions. The following table 4 gives the 98 prime knots of 12 crossings or less for which
the (usual) Morton-Franks-Williams inequality is not sharp, with their braid index. (The unsharpness of
(23) is by 2, except for the knots marked with an asterisk, where it is 4.) Note that all these knots are
non-alternating, although for higher crossing numbers alternating examples are known at least for links
from [Mu].

4.7 Main application

With all possible framings of P and F , we still do not obtain two invariants of degree 9, and expectedly
several invariants of degree 10. Thus it seems that Przytycki’s question 4.1 is to be negatively answered.
However, by the previous remarks, the only way to do so is to find knots not distinguished by the HOMFLY
and Kauffman polynomial and their 2-cables. The only such known examples are mutants [LL], but they
have the same invariants up to degree ≤ 10 [Mr]. (This result in fact motivated Przytycki’s question.) Thus
a systematic approach to answer negatively the question seems lacking.

The calculations up to degree 8 now allow us to prove our main result
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9_42 4 12_1298 5 12_1499 5 12_1695 4 12_1899 5
9_49 4 12_1313* 5 12_1503 5 12_1702 5 12_1922 5
10_132* 4 12_1333 5 12_1506 5 12_1704 4 12_1929 4
10_150 4 12_1373 5 12_1541 4 12_1712 4 12_1933 5
10_156 4 12_1378 4 12_1542 4 12_1723 5 12_1944 5
11_387 5 12_1382 5 12_1548 5 12_1726 4 12_1946 4
11_391 4 12_1385 5 12_1553 5 12_1737 5 12_1982 4
11_400 5 12_1391 4 12_1598 5 12_1787 5 12_1983 4
11_404 4 12_1396 5 12_1600 5 12_1803 5 12_2008 5
11_437 4 12_1400 5 12_1610 5 12_1804 5 12_2015 5
11_446 5 12_1408 4 12_1628 4 12_1811* 5 12_2016 4
11_449 4 12_1418 5 12_1650 4 12_1825 5 12_2017 4
11_453 4 12_1423 4 12_1652 5 12_1833 5 12_2037 3
11_484 5 12_1430 5 12_1653 5 12_1837 4 12_2053 5
11_491 5 12_1473 4 12_1657 4 12_1839 5 12_2075 4
11_503 4 12_1476 4 12_1672 5 12_1845 5 12_2099 4
11_538 5 12_1486 5 12_1679 5 12_1883 5 12_2122 5
11_547 4 12_1487 4 12_1683 5 12_1884 5 12_2129 5
11_548 5 12_1488 5 12_1684 5 12_1898 4 12_2131 5
12_1295 5 12_1489 5 12_1685 5

Table 4: Knots with unsharp Morton-Franks-Williams inequality

Theorem 4.1 The Q polynomial determines no Vassiliev knot invariants of degree ≤ 9 which are not
polynomials of v2.

Proof. By the previous symmetry argument, it suffices to consider degree ≤ 8. Take the 60 duplications
of Q in table 5. We chose them so that the knots are not mutants (which was verified using the hyperbolic
volume). We already observed that the invariants of FF+PP+P−P0 generate all invariants up to degree 8.
By evaluating these families on the 120 knots in these pairs, we can confirm this. Now consider the matrix
obtained by evaluating v(K1)− v(K2) for any Vassiliev invariant v of degree ≤ 8 and knots K1,2 in a pair
(with rows given by a basis of invariants v and columns by pairs of knots). One calculates that this matrix
has rank 55, which corresponds to removing from the dimension 60 of Vassiliev invariants of degree ≤ 8
the powers vi

2 for i = 0, . . . ,4. (Thus 55 pairs would suffice, but the other 5 are used to have some security
in the calculation.) 2

From corollary 3.2 we obtain now

Corollary 4.1 Assume that
X ∈ Q[x1,x2,x3, . . . ,y0,y1,y2, . . .]

is an honest polynomial1. If

X(Q′(−2),Q′′(−2), . . . ,Q(2),Q′(2),Q′′(2), . . .)

is a polynomially bounded invariant of degree ≤ 9, then it is as a knot invariant a polynomial of degree
≤ 4 in Q′(−2). 2

Note we do not know whether X is a polynomial of degree ≤ 4 in x1, since we do not know whether the
Q(k)(±2) are algebraically independent invariants. On the opposite side, one can incorporate, with just a
bit of reformulation and extra argument, also the values V (k)(±1) into X in a statement of the above type.

1Note here not the completion Q[[x1,x2, . . .]] of Q[x1,x2, . . .] is meant, so that, even if infinitely many variables available, each
element has only finitely many monomials, and so also finitely many variables occurring in it.



24 References

7_2 - 12_1659 11_415 - 10_8 12_1728 - 12_1668
8_19 - 12_1727 11_431 - 11_395 12_1298 - 12_1295
9_44 - 8_2 10_36 - 10_19 12_1589 - 12_1326
9_45 - 8_7 11_370 - 10_7 11_140 - 12_1770
10_159 - 9_15 11_473 - 12_1823 11_210 - 12_1735
10_131 - 9_8 11_452 - 10_10 11_110 - 12_1468
10_133 - 12_1670 11_388 - 11_371 11_118 - 11_45
11_512 - 10_140 11_491 - 10_38 11_294 - 11_146
10_151 - 9_21 11_374 - 10_30 11_189 - 11_30
10_156 - 9_12 10_72 - 10_43 11_56 - 12_1608
9_26 - 9_25 11_427 - 10_46 11_216 - 11_196
12_1750 - 12_1682 11_546 - 10_71 11_28 - 12_1792
10_35 - 10_22 12_1893 - 12_1556 11_180 - 12_1302
11_492 - 11_435 12_2070 - 12_1337 11_165 - 12_1824
11_434 - 12_1867 12_1789 - 12_1576 11_225 - 12_1630
10_31 - 10_14 12_2105 - 12_1336 11_279 - 12_1913
11_461 - 10_85 12_1458 - 12_1394 11_330 - 11_24
11_453 - 11_385 12_1901 - 12_1709 12_1150 - 12_492
10_56 - 10_33 12_1903 - 12_1652 12_742 - 12_503
11_484 - 10_20 12_1685 - 12_1600 12_882 - 12_212

Table 5: 60 pairs of knots of ≤ 12 crossings with the same Q polynomial, which are not mutants.
The comparison of Vassiliev invariants of degree ≤ 8 on them allows to prove theorem 4.1.
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