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1 Short Characteristics

For many years the nature of knots has fascinated many people, especially mathematicians. Trying
to rigorously understand and describe this phenomenon led to the development of knot theory as a
branch of mathematics, more precisely of topology.

Initiated by Vassiliev’s considerations of the homology of knot spaces, in the last years the theory
of Vassiliev invariants has become an interesting and intensively studied field of knot theory. It was
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2 Chord and Gauß diagrams in the theory of Knots

related by the deep work of Kontsevich and Drinfel’d to an algebraic structure consisting of combi-
natorial objects called chord diagrams (CD). In this way this many-sided new field opens interesting
relations to classical fields of mathematics, such as the homological algebra, the theory of Lie groups,
modular forms, graph theory and topological quantum field theories (TQFT).

Gauß diagrams are a recently introduced refinement of chord diagrams and used to write down for-
mulas for Vassiliev invariants. These formulas are of particular interest for positive knots, a class of
knots related to singularities of algebraic curves, and give a link between the Bennequin type inequal-
ities coming from the proof of the Thom conjecture and properties of the Jones type polynomials of
such knots.

2 The classification problem of knots

Consider a knot, i. e. an oriented embedding of S1 in
� 3 . Let’s assume, that this embedding is C1,

which particularly means tame, i. e. the knot is isotopic to a piecewise linear embedding. This does
not constrain too much the complexity of knots, it only excludes some ugly pathological cases. The
following picture shows the two simplest, but non-trivial knots.

trefoil figure 8 knot

Thinking of a knot as of a real object, say a closed piece of rope, one gets an idea of transforming
one knot into another by a sequence of pulling and twisting its strands, but not cutting the knot
somewhere. One might consider knots as equal, if they are in this sense transformable into each
other. This is mathematically described by the notion of (ambient) isotopy. So, in mathematical
terms, knots are called topologically equal, if they are ambient isotopic, and to topologically classify
a given knot means to determine uniquely its isotopy class.

Trying to classify knots led to the search for knot invariants, which, at least in some particular cases,
can distinguish knots. Some approaches have been made to construct such invariants topologically.
The most famous invariants of this kind are the polynomial invariants like the Alexander/Conway
[Al, Co, Ka3] and HOMFLY [H, LM] polynomials, and also Casson’s invariant [AM]. Unfortunately,
these topological approaches often meet major difficulties, resulting from the analytical methods they
involve.

On this background the main advantage of the theory of Vassiliev invariants appears to be, that it
offers a new view of the topological structure of knots in a combinatorial and therefore more discrete
and directly accessible way and makes it possible to apply simpler algebraic methods for exploring
them.

3 The filtration of the knot space

Consider the linear space V , (freely) generated by all the (isotopy classes of) knot embeddings. There
is a self-suggesting way how to denote them. Every embedding class of a knot is determined by its
projection on a 2-plane in

� 3 , where all the crossings are transversal and equipped with the additional
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information, whether they are over- � � or under- � � crossings. Let V p be the space of singular
knots with exactly p double points (up to isotopy). V p can be identified with a linear subspace
of V by resolving the singularities into the difference of an over- and an undercrossing via the rule��� � � (1)

where all the rest of the knot projections are assumed to be equal (one can show that the result does
not depend on the order in which all the double points are resolved). This yields a filtration of V

V � V 0 � V 1 � V 2 � V 3 �
	�	�	 (2)

There exists a combinatorial description of the graded vector space,

∞

i � 0

�
V i �

V i � 1 � (3)

associated to this filtration, namely

V i �
V i � 1 � L in � chord diagrams of degree i � � 4T relation

FI relation
� (4)

where the chord diagrams (CD’s) are objects like this (an oriented circle with finitely many dashed
chords in it)

(up to isotopy) and are graded by the number of chords. The 4T (4 term) relations have the form

� � � � �
and the FI (framing independence) relation requires, that each CD with an isolated chord (i. e., a
chord not crossed by all the others) is zero.

The map which yields this isomorphism is a simple way how to assign a CD DK to a singular knot K.
Connect in the parameter space of K (which is an oriented S1) pairs of points with the same image
by a chord. Actually, the idea to describe singular knots in this way led to the representation (4), and,
more generally, many of the further algebraic statements are based on this idea. Once introduced
the CD’s, the 4T and FI relations become self-suggesting. Look e. g. at the FI relation. If one
takes a singular knot corresponding to a diagram with an isolated chord and resolves the singularity
corresponding to this chord, one gets exactly an ambient isotopy relation of (singular) knots.

Note, that (4) implies the finite dimensionality of the filtration (2), which considerably simplifies
further algebraic considerations.

Definition 3.1 A Vassiliev invariant of degree m is an element V � V � , s. t.

V
V p � 1 � 0 and V

V p �� 0 	
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It is possible in some sense to consider (1) as a way to “differentiate” a knot, and in this language
Vassiliev invariant corresponds to a polynomial invariant, i. e. a function with a vanishing derivative.

This notion is interesting in connection with many other known knot invariants, such as the Conway
and the HOMFLY polynomials, which have originally come about out by topological considerations,
but which fulfill certain relations closely connected to (1). E. g., the Conway polynomial CK � z � of a
knot K satisfies the (skein) relation

C � � � z � : � C � � � z � � C � � � z � � zC � � � z � � (5)

from which one concludes, that

Lemma 3.2 The coefficient coeffz � kC � z � is a Vassiliev invariant of degree at most k.

By similar arguments the same is true for the HOMFLY polynomial in his reparametrization intro-
duced by Jones [J] FK � N � ez � (and therefore, setting N � 2, for the Jones polynomial [J2] as well) and
the Kauffman polynomial [Ka] in his version called by Kauffman the Dubrovnik polynomial [Ka2].
See [BL].

In this way Vassiliev invariants generalize many known (topological) invariants, and that is another
reason why Vassiliev invariants are so interesting.

Note, that the grading of the CD’s is preserved by 4T , so the linear space A r obtained by taking the
direct sum over all i of the right hand side of (4) is a finite dimensionally graded space. Let Gm denote
the degree-m-piece of A r.

By definition all Vassiliev invariants of degree ! m are sensitive with respect to knot classification
only maximally up to V m � 1. However, one does not know yet, whether all Vassiliev invariants are
capable of a complete topological classification of knots.

Conjecture 3.3 Vassiliev invariants separate knots.

By now conjecture 3.3 has been proved at least for pure braids [BN3, BN4] (see section 6), but for
knots we don’t know much about it. As it stands it sounds very appealing, but unfortunately, we
cannot even yet affirm the following weaker

Question 3.1 (see [BN2, sect. 7.2]) Do Vassiliev invariants distinguish knot orientation?

This is one of the hardest problems in knot theory. Yet, there are no easily definable invariants, as
quantum and skein invariants, which distinguish knot orientation. As pointed out by Birman [Bi], the
fact itself that non-invertible knots exist, although previously conjectured for a long time, has been
proved only in the 60’s by Trotter [Tro]. In my paper [St4] I tried to enlighten the problems with
detecting orientation with Vassiliev invariants in an independent way from Bar-Natan’s computational
arguments (see section 8).

With regard to question 3.1, one can also pose the weaker question of how much information can
be obtained from invariants of bounded degree. For that situation, much more is known. Threre
exist constructions that preserve Vassiliev invariants of bounded degree and make a knot into an
alternating one [Sa] or slice one (up to the Arf invariant) [Ng]. Also, one can obtain any possible
value of a Tristram-Levine signature [St7] and unknotting number [St15].

4 The Algebra A

Let us for a moment forget about the FI relation and consider A as the space, obtained from A r by
not factoring out the FI relation.
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For this space A at least 3 other descriptions are known (for the proof, that they are all isomorphic,
see [BN2]).

1) A � L in " UTD’s (unitrivalent or
Feynman diagrams) # � STU relation

�
where a UTD is something like

(like a chord diagram, but with oriented internal trivalent vertices allowed, which represent
singular triple points) and the STU relation is

� � �
2) A � L in � linearized UTD’s � � STU relation

�
where a linearized UTD is a UTD, with the solid line cut somewhere

�%$ �
and both spaces are graded by half the number of trivalent vertices (internal or on the solid
line) and

3) A � L in � UTG’s ( unitrivalent graphs) � � AS and IHX relation
�

where the UTG’s are objects like this

(UTD’s with the solid line removed) and graded by half the number of vertices (univalent or
trivalent), and the AS (antisymmetry) and the IHX relations are

� � � � � 	
Using the different representations of A one can define multi- and comultiplication, which make A
into a graded commutative and cocommutative Hopf algebra [MiM], including also a sort of Adams
operations ψq, q �'& .
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5 Weight systems

We have defined the Vassiliev invariants in terms of spaces of knot embeddings, but we found an
easier description of these spaces by diagrams. Then is it possible to describe Vassiliev invariants by
combinatorical objects defined entirely with the help of our diagram spaces?

Definition 5.1 A weight system of degree m is an element W � � GmA ��� . Let W m be the linear space
of all weight systems of degree m.

It is easy to assign to a Vassiliev invariant V of deg ! m a weight system W of degree m. Consider
the (graded) map W � given by

Vm : � � V m � � Wm�(�)�*$ � GmA � � � : W m (6)

Wm � V � � diagram of deg m � : � V � one singular knot with m singula-
rities, that represents this diagram � (7)

The kernel of this map is by definition Vm + 1
� � V m + 1 � � , i. e. the space of Vassiliev invariants of

deg ! m � 1, so we have the short exact sequence

0 �%$ Vm + 1 , �-$ Vm
Wm�.$ Wm

�%$ 0 	
Theorem 5.2 (Fundamental Theorem of Vassiliev invariants) This exact sequence splits, i. e. there
is a (graded) map V

Vm : Wm
�%$ Vm

�
such that

Im � IdVm
� V / W �10 Vm + 1 and Wm / Vm

� IdWm
	

In some sense the map V can be considered as “integrating” a weight system. If we want to do this,
we need to consider another crucial object, closely related to this theorem. Namely, it turns out, that
proving that theorem is equivalent to constructing a universal Vassiliev invariant, i. e. a map

V � V 2�-$ A �3�� �
where A �3� is the graded completion of A , such that for every knot K � V m and any Vassiliev invariant
V � Vm there holds � W � V �4� � V 5 � K �4� � V � K � 	
Therefore, universal Vassiliev invariants play a basic role in the theory of Vassiliev invariants. Origi-
nally the existence of universal Vassiliev invariants followed from the deep work of Kontsevich [Ko]
and Drinfel’d [Dr]. Their ideas have been subsequently worked out by Bar-Natan in [BN2] and [BN],
where the Kontsevich integral and the category theoretic approach of Drinfel’d were explained. After
that, universal Vassiliev invariants have been constructed by many people an in different ways, e. g.
[Pi]. Though it is known, that the choice of a universal Vassiliev invariant is not unique, surprisingly
many of the ansatzes seem to generate the same special one.

6 Vassiliev invariants for braids and string links

In the same way as for knots, the idea of constructing Vassiliev invariants can be generalized to
other “knot-like objects”, i. e. certain classes of 1-dimensional embeddings into

� 3 , factorized by an
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appropriate notion of isotopy, such as tangles, (pure) braids and string links. The resulting diagram
spaces AT (for tangles), AB (for braids), AP � A sl (for string links) and A pb � APhor (for pure
braids) are constructed in the same way as for knots and have a similar algebraic structure (here the
multiplication is given by stacking up) and properties as the knot diagram algebra A . Here are some
typical examples for the several embedding classes and for diagrams, corresponding to these classes.

A tangle is an oriented em-
bedding T : 6 0 7 1 8�9%: n ; S1 9: m < = 6 0 7 1 8>9@? 2, such that
T ACB 0 7 1 DE9): n FHG B 0 7 1 D49)? 2.

Here is a singular tangle dia-
gram.

A string link is an oriented
embedding S : 6 0 7 1 8I9J: n < =6 0 7 1 8K9J? 2, such that S ACB i DL9: n FHG B i DE9M? 2 for i N 0 7 1.

The diagram of a string link
contains no cyclic full lines,
and all strands are vertical and
point to the top.

Here is a braid. It is a string
link with monotonous 1st com-
ponent.

The diagram of a braid con-
tains no chords ending on one
strand only.

A pure braid is a braid, which
preserves the order of the
strands.

The diagram of a pure braid
can be simplified to a diagram
only with horizontal chords.

Asl is known to have also a formulation as a space of coloured UTG’s, i. e. UTG’s with coloured
univalent vertices [BN4].

In the case of pure braids, it is more convenient to use the STU relation to resolve all trivalent vertices
of dashed lines. Note, that in this case the height function is monotonous, so in distinction from A sl

there are no self-intersections of the strands, and the resulting diagrams can be drawn as made up
only of horizontal chords. This makes it possible, by setting ti j to be the chord connecting strands
i and j, to describe A pb

n in purely algebraic terms, namely as the algebra in n O n + 1 P
2 variables with 2

relations (the isotopy and the 4T relation)

A pb
n

�RQ ti j
� 1 ! i �� j ! n SSSSS

ti j
� t jiT

ti j
� tkl U � 0 VW� i � j � k � l �LV � 4T

ti j
� tik � t jk U � 0 VX� i � j � k �LV � 3 Y

This description allowed Hutchings [Hu] to find a purely algebraic-combinatorial proof of the Fun-
damental Theorem for (pure and ordinary) braids.

The picture for string links is more complicated, but the Kontsevich integral was constructed for
them as well. In a similar way to knots, duals of certain quotients of the diagram algebra correspond
to Vassiliev invariants of string links up to homotopy [BN4] and concordance [HM]. Latter class
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was shown to be equivalent to Milnor’s µ̄ invariants [Mi], which have been previously shown to be
Vassiliev invariants of string links by Bar-Natan [BN4] and Lin [L].

7 Vassiliev invariants and Lie algebras

Reshetikhin and Turaev [RT] introduced a way how to construct a framing-dependent weight system
WZ � R (an element in A � instead of � A r ��� ) given an irreducible representation R of a semi-simple Lie
algebra [ . It is easy to “untwist” such a WZ � R, i. e. to make it into a (framing-independent) weight
system ŴZ � R. Integrating ŴZ � R one obtains special Vassiliev invariants, called Reshetikhin-Turaev or
quantum invariants. It seemed for a while, that these invariants, constructed to the most common Lie
algebras, already exhaust all Vassiliev invariants. Some explicite computations in lower degrees (see
section 8), led Bar-Natan [BN2] to the following

Conjecture 7.1 All Vassiliev invariants are Reshetikhin-Turaev invariants.

However, it was already known, that conjecture 7.1 contradicts the not less plausibly looking conjec-
ture 3.3, because quantum invariants are known not to detect orientation (see question 3.1). Later,
Vogel [Vo] indeed proved that there are Vassiliev invariants which do not come out of the Reshetikhin-
Turaev construction for semi-simple Lie algebras. Recently, he announced [Vo2] a counterexample
to conjecture 7.1 for all (not necessarily semi-simple) Lie algebras.

Nevertheless, Lie algebra invariants form a substantial part of Vassiliev theory. A recent nice applica-
tion of this was the proof by Bar-Natan and Garoufalidis [BG] of a conjecture of Melvin and Morton
[MeM] about a relation between the weight systems coming from the Alexander and (cables of the)
Jones polynomial.

8 Dimension bounds, modular forms and hyperbolic volume

Though we have a nice description of the spaces introduced above, some simple algebraic features
seem hopelessly hard to examine.

As a remarkable example in this regard, Bar-Natan observed [BN5], that a certain degeneracy state-
ment of the sln weights of a UTD is equivalent to the Four Color Theorem, one of the most compli-
catedly proven theorems in mathematical history [AH, SK]!

Another illustration: one does not know any way to compute the graded dimension of A . This has
only been done for degrees ! 9 by Bar-Natan, and later by Kneissler in [Kn] up to degree 12 at the
cost of a huge computer effort.

There only exist some special statements about the asymptotical behaviour of there dimensions as
degree $ ∞, mainly due to Chmutov and Duzhin [CD, CD2] and myself [St2]. They, however, are
not sufficient to give a satisfying answer to this question. Only in the case of pure braids it is possible
to reduce this question to some numerical combinatorics (see [BN3]). This shows the fascinating
complexity of these simple looking objects.

Nevertheless, the enumeration problems of [St2] turned out to be interesting in a different context.
Don Zagier [Za] discovered that they give the coefficients of an asymptotic expansion near 1 of a
“derivative” of the Dedekind eta-function, a classical modular form of weight 1 \ 2, thus indicating
the possible existence of a theory of Eichler integrals for modular forms of half-integral weight.
Using the theory of Dirichlet series, Zagier found the exact asymptotical behaviour of the numbers
of [St2], thus establishing the currently best upper bound for the graded dimension of A .

A similar phenomenon occurs in the asymptotic expansion of Witten-Reshetikhin-Turaev-invariants
[Wi, RT2] of certain 3-manifolds, as the Poincaré homology sphere [LZ], and is therefore of great
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number theoretic interest. The existence of such expansions was established by Ohtsuki [Oh], and
they form the 3-manifold counterpart of Vassiliev theory for knots [LMO].

Recently the same type of power series appeared in yet another context related to Vassiliev invariants.
They give limits of evaluations at roots uf unity of (some projective version of) the colored Jones
polynomials, invariants, which can be expressed by the cablings of the Jones polynomial and by the
method of [BL] can be transformed into power series, whose coefficitns are Vassiliev invariants with
weight systems coming via the construction in ] 7 from the n-dimensional irreducible representation
of sl2.

These evaluations have recently caused much excitement, because Murakami and Murakami [MM]
showed that they coincide with Kashaev’s quantum dilogarithm invariants [Ks], for which he con-
jectured that the asyptotic behaviour of their evaluations at e2πi ^ N as N $ ∞ can be used to obtain
the hyperbolic volume (or, if the knot is non-hyperbolic, the Gromov norm [Gr]) of the complement
of the knot. The Kashaev-Murakami-Murakami conjecture has been established for the figure eight
knot, but for more complicated examples or even the general case it will require much number theo-
retic work. It has been noted by Murakami and Murakami, that the conjecture implies that a knot is
trivial if and only if all of its Vassiliev invariants are trivial, that is, a partial case of conjecture 3.3 for
the unknot.

9 Braiding sequences

The combinatorial structure of chord diagrams and unitrivalent diagrams considerably simplified our
understanding of Vassiliev invariants and was the main tool in the proof of a series of results [BG, Vo].
Despite being therefore much celebrated, this approach has some serious defects. Although many
ways exist to prove the Fundamental theorem [BS], they are all rather complicated and at some point
unnatural, and their connections are not yet completely understood. So the integration of the (series
of) weight system(s) to a Vassiliev invariant is far from being routine work.

But even for itself, although simpler and much friendlier to work with, the combinatorial structure of
chord diagrams is far from being easily understandable.

In an attempt to create an alternative to the (defects of the) classical approach and generalizing some
ideas of Dean [De], Trapp [Tr] and Stanford [Sa], in [St4] I introduced the notion of a braiding
sequence. It offered a simple direct understanding of the behaviour of Vassiliev invariants on special
knot classes, something, which was never worked out using the classical approach. Beside some
other facts, it gave relatively simple proofs that the dimension of the space of Vassiliev invariants of
degree ! n on certain knot classes is finite (arborescent knots), and in some cases even exponential
upper bounds in n for this dimension (e. g., rational knots, closed 3 braids), something, which was
not yet achieved by chord diagrams.

Moreover, while the Kontsevich-Drinfel’d approach (used in [CD]) works only over zero (field) char-
acteristic, our arguments with braiding sequences hold for any zero divisor free ring, in particular the
fields & p, p prime.

Definition 9.1 For some odd k �_& , a k-braiding of a crossing p in a diagram D is a replacement of
(a neighborhood of) p by the braid σk

1 (see figure 1). A braiding sequence (associated to a numbered
set P of crossings in a diagram D; all crossings by default) is a family of diagrams, parametrized byVP V odd numbers x1

� 	�	�	 � x `P ` , each one indicating that at crossing number i an xi-braiding is done.

Any Vassiliev invariant v of degree at most k behaves on a braiding sequence as a polynomial of
degree at most k in x1

� 	�	�	 � x `P ` (see [St4] and [Tr]), and this polynomial is called the braiding poly-
nomial of v on this braiding sequence.

In [St9], I use the approach of braiding sequences to prove exponential upper bounds for the number
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�%$ or

Figure 1: Two ways to do a � 3-braiding at a crossing.

of Vassiliev invariants inter alia on knots with bounded braid index and arborescent knots.

10 The approach of Gauß sums, Thom conjecture and positive
knots

Before Vassiliev, the common approach for finding knot invariants, as applied for the polynomials,
is to fix certain initial values and a relation of the values of the invariant on links equal except near
one crossing. Except for the Kauffman polynomial this relation involves triples as depicted in (5) and
such a relation is called skein relation.

An alternative approach was initiated by Fiedler [Fi2] and Polyak-Viro [PV]. They look at an n-tuple
of crossings in a fixed knot projection satisfying certain conditions and sum over such choices terms
associated to each choice. The choices are indicated by the preimages of the crossings on the S1

parametrizing the knot, thus giving chord diagrams, but often with the orientation of the under-/over-
crossing indicated by replacing the chord by an arrow. The objects arising (a solid line with arrows
connecting pairs of points on it) are called Gauß diagrams, and the formulas Gauß sum formulas. If
the summation in such a formula is well chosen, then it is invariant under the Reidemeister moves
and gives a knot invariant. It was proved [PV], see also [St4], that the Polyak-Viro invariants are
Vassiliev invariants.

These invariants can be generalized also to other 3-manifolds, for example the solid torus [FS, Fi]
(or more generally to line bundles over closed surfaces), and give this way a partial solution to the
mutation problem for 2-component links there [St14].

The Polyak-Viro-Fiedler invariants lead to a series of new results on the values of the Jones polyno-
mial [St13] and on positive [St12] and almost positive knots [St11].

Positive knots are knots which admit positive diagrams, that is, diagrams with all crossings looking
like . These knots are of particular interest because of the variety of tools applicable for their
examination.

They form a subclass of the quasi-positive knots, introduced by Rudolph [Ru] to describe the knots
coming from neighborhoods of singularities of complex algebraic curves, and thus are relevant to
singularity theory, see, e. g., [A]. Therefore, on these knots where the genus inequality of Bennequin
[Be, theorem 3], and its subsequent generalizations [Ru2] based on the proof of the Thom conjecture
[KM], are particularly strong.

On the other hand, combinatorial methods related to the theory of link polynomials [J, Ka2, Ka4, H]
lead to proofs of properties of these invariants for positive knots, see e. g., [Cr, CM, N, Zu].

The Gauß diagram formulas give inequality relations between the Vassiliev invariants, expressible by
[BL] by the knot polynomials, and the genus and unknotting number of a positive knot. This way,
e. g., the Kronheimer-Mrowka-Rudolph results can be used to prove the following self-contained
property of the Jones polynomial VK �_& T t � t + 1U of a positive knot K:
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Theorem 10.1 (see [St12, ] 6]) If a knot K is positive, then � 5V 5 5K � 1 �ba 6maxdegVK .

Further properties of the Gauß sum formulas can be used together with considering the genus to
classify all positive diagrams of some positive knots, as done in [St5]. As an example, it was shown
there that the knot !10120 of [Ro, appendix A] (where ‘!’ denotes the mirror image) has just one
positive diagram (the mirror image of the diagram in Rolfsen’s table).

11 A new relation between braiding sequences, weight systems
and hyperbolic volume

Braiding sequences appear in a particular case in the classification of knot diagrams by canonical
genus.

Theorem 11.1 ([St16, theorem 3.1]) (Reduced) knot diagrams of given genus g decompose into
finitely many equivalence classes under t̄ 52 twists

�.$ �
This approach was begun in [St16], and then set forth in [St5], and later in [SV], where some algebraic
tools were discovered to have new applications. Independently, the structure theorem for canonical
genus was discovered by Brittenham [Br], who gave as application an upper bound on the hyperbolic
volume in terms of canonical genus.

Later, using work of [St4], we can state Brittenham’s result as follows. Let n � L � be the number of
components of a(n oriented) link L, and χc � L � the maximal Euler characteristic χ � D � of a diagram D
of L.

Set for χ c 0
vn � χ � sup � vol � L � : n � L � � n � χc � L � � χ � �

and
vχ

� sup � vol � L � : χc � L � � χ � � max
n

vn � χ � (8)

with the maximum taken over all 1 ! n ! 2 � χ with n � χ even. (Note that the upper bound for n
follows from the fact that a canonical Seifert surface of a non-split diagram is connected.)

Define for a 3-connected 3-valent planar graph G the (unoriented) link LG by

�.$ 	
Theorem 11.2 For χ c 0,

vχ
� max

χ O G Pd� χ
vol � LG � � sup � vol � L � : χ � L � � χ � L special alternating � �

with the maximum taken over 3-connected 3-valent planar graphs G, considered up to isotopy in the
sphere.
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There is, on the other hand, some relation between the enumeration problems in [SV], and the slN
weight system polynomial WN of G. Computations have then led to the following remarkable

Conjecture 11.3 (Weight system-Volume-Conjecture)
For every irreducible polynomial Pi � x �e�f& T x U exists a number ci

� cPi
� cPi O x P � � with the following

property: when G is a trivalent, 3-connected planar graph of odd χ, and

WN � G �
2N � N2 � 1 � � k

∏
j � 1

Pi j � N2 � � (9)

then

vol � LG � � cx

3
� k

∑
j � 1

ci j
	 (10)

In subsequent work, we will try to explain what we know, and investigate what we do not know about
this type of relation.

12 Personal projects

There are several challenging projects arising from the present state of research. Here are some on
which I particularly concentrate.g Prove an exponential upper bound for the number of Vassiliev invariants on all knots. In view

of the problems of [St2], it is unlikely that a reasonable proof exists via CD’s. On the other
hand, braiding sequence arguments of [St9] quickly come close to a solution (and succeed in
many special cases), but still fail at some point in the general case.g Understand better the structure of Gauß diagrams and sharpen the inequalities of [St12]. As
simple examples show, except for the low crossing number cases and connected sums thereof
these inequalities are far from being sharp, so significant improvement seems possible.g Find solid torus Gauß sum invariants detecting 2-component link orientation. Note that yet no
purely diagrammatic invariant is known which does so (without involving knot groups). This
is the best we can hope for after we found out in [St4], that solid torus Gauß sum invariants, at
least in reasonably low degree, cannot detect knot orientation.g Explore the relations between hyperbolic volume and various combinatorial structures, in par-
ticular the mystery behind the above Weight system-Volume-Conjecture.

13 Publications on Vassiliev invariants

In the last years a lot of literature appeared on Vassiliev invariants. Two papers are probably best
appropriate as an introduction to this field, Bar-Natan’s [BN2] and especially Birman’s [Bi]. The
relation to the classical knot invariants is discussed in [BL]. For more on the different approaches to
the proof of the Fundamental Theorem, see [BS]. Finally, there recently appeared 2 books by Kassel
[K] and Turaev [T] treating the relation of Vassiliev invariants to quantum topology.

An extensive survey on authors and publications may be found in [BN6] and loc. cit. in [Bi].
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