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1 Introduction

Many important polynomials like Fibonacci, Lucas, Chebyshev, Legendre polynomials and specializations of Dickson

polynomials satisfy two-term linear recurrence relations, and roots of these polynomials have been of some interest.

See e.g. [Am, Bo, Ma, MZ, WS].

In this paper we will consider a class of polynomials generalizing at least the first three families. (With some effort

our study can be applied also to the other classes, but this is not the focus here.)

Define for a sequence of non-zero integers paiq
8

i�2 polynomials Piptq by P0 � 0, P1 � 1, and

Pi � aitPi�1�Pi�2 . (1)

It is very easy to see that the polynomials Pi arising from p. . . ,ai�2,ai�1,0,ai�1, . . .q are the same as those from

p. . . ,ai�2�ai�1, . . .q, thus the non-zero property of ai is only a technical constraint.

Hoste conjectures for Pi that whenever t P C is a root, and t � z1{2
� z�1{2, then

ℜe z¡�1 . (2)

His conjecture is made in the context of Alexander polynomials, and is considered here only for 2-bridge knots. See

[KP, St] for the translation to this context.

We will talk more about knot theory at a separate place, but for now we can content ourselves with this purely algebraic

statement, whose proof is the main goal of this paper.

Theorem 1.1 Every polynomial Pi satisfies (2).
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This result is motivated by the simplicity of the statement, but its non-trivial (although, as one will see, not necessarily

sophisticated) resolution. Knot theoretically, 2-bridge knots and links constitute the most basic class of alternating

links, and the lack of decision of such a simple statement on this class was somewhat embarrassing. See [KP, St, LMu]

for previous efforts.

In particular we will use the following fact from [KP, St]: if t is a zero of Pi, then |t|   2. This implies ℜe z ¡ �

3
2
,

and the z with �1 ¥ ℜe z ¡�

3
2

(to which we will restrict ourselves) have been described. Similarly, we remind that

the coefficients of Pipz
1{2
� z�1{2

q alternate, thus there are no negative real zeros.

Our approach will be to work numerically and fundamentally rely on the capacity of MATHEMATICA
TM

[Wo]. Es-

sentially we reduce the verification to a sequence of verifications of inequalities of 1-variable functions and at a few

places 1- or 2-dimensional optimization problems (when there is evidence that the function has no singular behaviour).

To support the computation, which is crucial, a MATHEMATICA notebook is available on [St2].

It was already long apparent that the main difficulty in using the recursion (1) lies in subsequences of ai of the form

p1,1, . . . ,1q or p�1, . . . ,�1q. The idea is to treat such subsequences separately using an explicit formula (37). This

leads us first to study, in the next section, the location of a particular family of complex numbers αi.

The technical details of this obvious idea have unfortunately grown vaster than originally assumed. One central

difficulty is to overcome the limiting process z Ñ�1. Dealing with the singular behaviour there is one (if not the)

main reason for the length of the treatise. Thus it is better to go to work quickly. For this same reason, we will move

more knot theoretic discussion to a potential further paper generalizing theorem 1.1 using the work in [St]. See §5.

The following abbreviations will be used throughout: ‘resp.’ will mean ‘respectively’, ‘w.l.o.g.’ will stand for ‘without

loss of generality’, and ‘r.h.s.’ resp. ‘l.h.s.’ for ‘right-hand side’ resp. ‘left-hand side’.

2 Some estimates on arguments and norms

2.1 arguments

We will regard the complex plane C as a real plane R2, with Cartesian coordinates x � ℜe z, and ℑmz, and polar

coordinates r,θ. Thus r � rpzq � |z| and θ� θpzq � argz PR{2πZ. In most cases we will identify R{2πZ with r0,2πq,
but in some situations, in particular when we write |argz| and want it to be small, we will choose argz to be in R{2πZ
so that its absolute value is minimal. Similarly, ?pz,wq will be |argpz{wq|, taken with this convention (for z � 0 or

w � 0 we can set ?pz,wq � 0). We will not use y for ℑmz, which we will write out explicitly; rather y will be used

as in (4). Similarly, we will extensively avoid the use of the complex unit; in the few situations we need it, it will be

written as
?

�1.

For this section z will be a complex number such that the number ẑ��1{z satisfies |ẑ1{2
� ẑ�1{2

| ¤ 2, ℜe ẑ¤�1 and

ẑ ��1. We will further assume up to conjugation that ℑmẑ ¥ 0.

The domain of such z, call it D̂, is bounded above by the half-circle
?

x� x2 and below by the graph of the function

f pxq �

b

�x2
�2x�7�4

?

�2x�3 for x P r1{9,1s (3)

(See the shaded region in the graphics above (93).) This calculation can be found in [KP, St]. For reasons already

suggestive here, but much more clearly apparent later, it will be useful to have at hand the substitution

y �
?

�2x�3 P r1,5{3s . (4)

Further we will write

α � argz P r0,arccosp1{3qs and |z| � k � cosα (5)

with arccosp1{3q � 1.23 and
1

3
¤ k ¤ 1 . (6)
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The right inequality comes from D̂ lying in the half-circle, the left one is a rather crude estimate, which will be

sufficient, though.

Let us further stipulate, in general, our treatise in the following of numerical constants given in decimal expansion,

and without ellipsis at the end. For at most 4 decimals given after the period, this exact number will be meant. An

exception occurs for 1.23 which will be used as an approximation of arccosp1{3q. For more than 4 decimals given after

the period, a constant rounded on the 6th decimal is represented, or on the last decimal if more than 6 decimals are

given.

The goal of this section is to prove some important lemmas on the location of a specific family of numbers

αn � αnpzq �
1� zn

1� zn�1
.

Lemma 2.1
�

�

�

�

arg
1� zn�1

1� zn

�

�

�

�

¤ arcsinp1{3q . (7)

for z P D̂ and n ¥ 1.

Proof. This proof, as well as a core of all following proofs, will use numerical computations with MATHEMATICA
TM

[Wo]. In certain cases (due to access restrictions) we appealed to the free online portal with restricted (but still rather

versatile) functionality. Let us stipulate in general below that all constants given in decimal expansion are rounded on

the last decimal.

First, the value on the right of (7) comes from the case n� 1, which is an easy exercise. MATHEMATICA
TM

can also

solve the corresponding optimization problems

max
zPD̂

tan

�

�

�

�

arg
1� zn�1

1� zn

�

�

�

�

with tan |argw| �
|ℑmw|

|ℜe w|
, for n � 2,3,4. The values are tan |argw| ¤ 0.273396 for n � 2 and 0.227404 for n � 3.

Next, let us for general n exclude z with relatively large α � argz, say, α¡ π{4. For this one can use the form

1� zn�1

1� zn
� 1�

zn
p1� zq

1� zn
,

giving
�

�

�

�

arg
1� zn�1

1� zn

�

�

�

�

¤ arcsin
|z|n|1� z|

|1� zn
|

,

with the denominator allowing for the estimates

|1� zn
| ¥ 1�|z|n

and more accurately

|1� zn
| ¥

b

1�|z|2n

if nargz P rπ{2,3π{2s (which is convenient to use for 2 ¤ n ¤ 4). So assume from now on α   π{4.

For general n, we will look instead on
�

�

�

�

arg
z�n

�1

z�n
� z

�

�

�

�

with the help of some Euclidean geometry. All notations we introduce will remain valid for the entire section. We will

write XY for the line segment between X and Y , and for its length, while XY will stand for the entire line, or for the

ray starting from X in direction Y , if so indicated.
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We consider the points A� 0, B� 1 and C � z in C� R2, and are interested in the angle ?BPC with P� z�n:

?BPC �

�

�

�

�

arg
z�n

�1

z�n
� z

�

�

�

�

It will be important for us that P lies on the boundary of or outside the spiral region

S � tr ¤ pk cosαqp2π�θq{α
, 0 ¤ θ ¤ 2πu (8)

Moreover, for those P close to the positive real axis, we will use that argP � 2π�α,2π� 2α, etc. (Since we allow

small α, we cannot assume anything about argP when it is ! 2π.)

Next, we will have to replace the rather clumsy base pcosαq1{α in the description (8) of S by something more workable.

L’Hospital’s rule yields

lim
αÑ0�

pcosαq1{α � 1 .

This is one serious source of difficulties, as it means that for small α, S collapses closer to the unit disk (and thus P

can get arbitrarily close to 1). Further, one finds

lim
αÑ0�

ppcosαq1{αq1 � �

1

2
,

and

lim
αÑ0�

ppcosαq1{αq2 �
1

4
.

I also obtained some upper estimate on

ppcosαq1{αq3

for α P p0,arccosp1{3qs which together with Taylor’s rest term formula allows one to conclude

pcosαq1{α ¤ 1�
α

2
�

α2

4
. (9)

This estimate is backed up also by the graph plot of MATHEMATICA
TM

and will sometimes by used below.

We need to prove ?BPC ¤ arcsinp1{3q. To do this, we consider the set of P with ?BPC ¥ arcsinp1{3q. It consists of

two disk segments D1,2 passing through B � 1 and C � z, with of radius 3
{2BC �

3
{2|1� z| and centers lying on the

symmetrizer of BC. It will be enough to prove that these disk segments are contained in the spiral S. More precisely,

for intersections in the quadrant tℜe ¡ 0,ℑm   0u we it will be enough to show

pD1YD2qXtθ� 2π�nαu � SXtθ� 2π�nαu .

Consider for a moment

δ :�?BCA

one has
3π

4
¥ δ¥ π{2 , (10)

the right inequality by Thales’ theorem, and the left by checking the inequality

f pxq ¥




1

4
� x� x2

�

1

2
.

That δ ¥ π{2 easily shows that the symmetrizer of BC and hence the centers of Di never lie in the quadrant tℜe  

0,ℑm ¡ 0u.

We will have to treat the two circle segments separately, and thus it is important to first distinguish them. Let D1, the

upper circle, be the one whose center lies on the side of the line BC not containing A � 0. We call the other circle D2

the lower circle.

Case 1. The upper circle. We will be concerned with checking a few things, which will establish this case.
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1. The upper circle does not touch tπ ¤ θ ¤ 2π� 2αu. The case that it touches tθ � 2π�αu will correspond to

n � 1 which we already discussed.

2. We find intervals Iβ of α and corresponding angles β P r0,πs such that for all z with α P Iβ in the given interval

the upper circle is contained in

tθ¤ βu (11)

and show that the largest possible distance of a point on that circle from the origin is below ppk cosαq1{αqβ�2π.

When we manage to cover p0,π{4s Q α with such intervals Iβ, we are done.

B� 1

C � z

A� 0

E1

|1

�

z

|

|

z|

3{2
|

1�
z|

ar
cc

osp
1{3
q

δ

α

α

Part 1.1. We start with property 2. The Cosine theorem in △ABC together with (5) and
?

a2
�b2

¤ a�b gives

B � 1

C � z

A� 0

|1� z||z|

1

α

|1� z| �
a

1� k2 cos2 α�2k cos2 α ¤ sinα�p1� kqcosα

Since the radius of the circle is 3
2
|1� z|, it is enough to prove the first inequality in the chain

|z|�3|1� z|¤
1

k2.55
�

1� α
2
�

α2

4

	2π�β
¤

1

kp2π�βq{α
�

1� α
2
�

α2

4

	2π�β
¤

1

pk cosαqp2π�βq{α
,
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where the second (numeric) estimate uses

2π�β

α
¥

π

α
¥

π

arccosp1{3q
� 2.55¡ 1 .

Thus it is enough to prove

3sinα�p3�2kqcosα ¤

1

k2.55
�

1� α
2
�

α2

4

	2π�β

Comparing partial derivatives in k of both hand-sides and keeping in mind (6) easily shows that it is enough to look at

k � 1:

cosα�3sinα ¤

1
�

1� α
2
�

α2

4

	2π�β
. (12)

We begin with β � π{12. This value is good, because (12) holds for all α, importantly all close to 0. This is straight-

forward but tedious to check (using derivatives e.g.) but is mainly owed to the fact that 2π�π{12¡ 6.

Thus we will be done for all α P Iπ{12, for which we can ascertain that the upper circle in contained in (11) (for

β� π{12).

We will need this argument for general β, so we proceed thus. We will stipulate that for every β we choose, we

consider as legitimate only values of α   β.

Now consider the line L � tθ� β�mπu. One can easily calculate the distance of the center of D1 to L, which is

|z|sinpβ�αq�
3

2
cos

�

�

π

2
� arccosp1{3q�δ�pβ�αq

	

|1� z| .

This is explained by the picture below.

B� 1

C � z

A� 0

E1

3
{2|1� z|

ar
cc

osp
1{3
q

.

δ

tθ� βu

β�α
α

We have

η � 2π�
π

2
�pβ�αq�p2π�δ� arccosp1{3qq � pα�βq�

π

2
�δ� arccosp1{3q .

This expression has a sign which indicates if the center is in the halfplane containing 1 (then it is positive) or the other

halfplane (then it is negative). If the angle

η ��

π

2
� arccosp1{3q�δ�pβ�αq
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is negative, this means that the circular arc A1 which bounds the outer circle segment is closest to L in C � z, which

lies on the desired side of L because we assume α   β. (Keep in mind that not the entire circle is necessary, but only

the part lying on the side of BC not containing 0.)

Thus if η ¤ 0, we are done, and we assume η¡ 0. Then the minimal distance of a point on the arc A1 to L is

|z|sinpβ�αq�
3

2

�

1� cos
�

�

π

2
� arccosp1{3q�δ�pβ�αq

		

|1� z|

and we wish that this expression is positive, which we will test as

|z|sinpβ�αq ¥
3

2

�

1� cos
�

�

π

2
� arccosp1{3q�δ�pβ�αq

		

|1� z| . (13)

Using the easy to see 0   η  π, the r.h.s. can be maximized w.r.t. δ when δ is maximal, so with (10) set δ � 3π
4

.

Next observe that for fixed α, |z| is minimal and |1� z| is maximal when z lies on the boundary part F of D̂ which is

the graph of f pxq from (3). With the substitution (4), we have

f pxq �

py�1q
?

�y2
�2y�7

2

|z| �
a

f pxq2 � x2
� 2� y

|1� z| �
a

f pxq2 �p1� xq2 �

?

2py�1q

(14)

whence also

α � arccos

�

3� y2

2p2� yq




(15)

So (13) can be written now

p2� yqsin

�

β� arccos

�

3� y2

2p2� yq





¥

3

2

�

1� cos

�

π

4
� arccosp1{3q�

�

β� arccos

�

3� y2

2p2� yq







�

?

2py�1q

(16)

For every relevant β is is clear that this inequality will hold when α is small (or equivalently, y is close to 1). So it is

relevant to find the equality value of y, which can be solved for by MATHEMATICA
TM

when β is specified.

We start with β � π
12

. MATHEMATICA
TM

gives y ¤ 1.06718, from which we get α ¤ 0.0695668 using (15). (We

still have to ascertain that 0.0695668   β, and similarly in the next iterations, but it is not a problem.) Thus α in

Iπ{12 � p0,0.0695668s are done.

With α¡ 0.0695668, we test that (12) holds when β� π
6
. Solving for equality in (16) with β� π{6 gives y¤ 1.13855

with α¤ 0.149416 (  π{6), so Iπ{6 � r0.0695668,0.149416s.

With α¡ 0.149416 we find that (12) holds when β� π
3

giving y ¤ 1.28962 and α � 0.345344.

In the next iteration one can use β � 3π{5 yielding y � 1.52302 and α ¤ 0.776676. Finally β � 2π{3 pushes α ¥

0.908¡ π{4. (Some caution is needed that (12) starts failing when β� 2π{3 for α� 1.2 if one takes the full range (5)

of α.)

Part 1.2. To show property 1, we consider the line L � tθ � 2π�2αu. The property of the arc A1 to lie on the side of

L containing B� 1 can be written

|z|sin3α ¥

3

2
p1� cosηq|1� z| , (17)

where

η ��δ� arccosp1{3q�3α�
3π

2
(18)

Rewrite (17)

psin3αq|z| ¥
3

2

�

1� sin
�

δ�3α� arccosp1{3q
�




|1� z| (19)
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Again let 0   α   π{4. Thus π{2   δ� 3α� arccosp1{3q   2π. Thus with (10) the maximal sine in (17) is the one

between sinpπ
2
� arccosp1{3q�3αq and sinp 3π

4
� arccosp1{3q�3αq.

We will have to discuss two cases.

Case 1.2.1. arccosp1{3q�3α  7π
8

. Then the maximal sine is sinpπ
2
� arccosp1{3q�3αq, so (19) can be simplified to

|z|sin3α¥
3

2
p1� cosp3α� arccosp1{3qqq|1� z|

which with (14) can again be tested in the form

p2� yqsin

�

3arccos

�

3� y2

2p2� yq





¥ (20)

3

2

�

1� cos

�

3arccos

�

3� y2

2p2� yq





�

1

3
� sin

�

3arccos

�

3� y2

2p2� yq





�

?

8

3




�

?

2py�1q

The test of equality using MATHEMATICA
TM

yields this to be true for y ¤ 1.55391, giving α � 0.85515¡ π
4

, so we

are done.

Case 1.2.2. arccosp1{3q�3α¡ 7π
8

. Then the maximal sine is sinp 3π
4
� arccosp1{3q�3αq. Then (20) becomes

p2� yqsin

�

3arccos

�

3� y2

2p2� yq





¥

3

2

�

1� cos

�

3arccos

�

3� y2

2p2� yq





�

1{
?

2�2

3
� sin

�

3arccos

�

3� y2

2p2� yq





�

1{
?

2�2

3




�

?

2py�1q

MATHEMATICA
TM

tests it to be true for y¤ 1.48. This settles α ¤ 0.678.

Now assume α ¡ 0.678. Then 3α ¡ π{2. Moreover,

3π

2
� arccosp1{3q�3α 

π

2
,

thus in (18) we have η  0, which means that the center E1 of the arc A1 lies outside the halfplane of AC (A� 0, C� z)

containing B � 1. But the ray tθ � 2π� 2αu lies in that halfplane and makes an angle π ¡ 3α ¡ π{2 with AC (due

to our general assumption α   π{4). Then one can see that the closest point of tπ ¤ θ ¤ 2π�2αu to E1 is the origin

A� 0. But one also easily sees that AE1 ¡CE1, and this finishes this case.

C

A� 0

E1

1
.

tθ

�

2π

�

2α

u
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Case 2. The lower circle D2, with center E2.

B � 1

C � z

A� 0

E2

3
{2|1� z|

|1

�

z
|

ar
cs

in
p

1{3
q

.η

3α

2

α

If ℑmpE2q ¡ 0, then E2 lies in the angle segment between the rays 0B and OC. It is easy to see that the largest polar

coordinate radius is attained in the two endpoints of the arc A2, showing it to be 1, clearly within S. Thus we are done

in this case.

We assume now thus that ℑmpE2q   0, and thus 2π¡ θpE2q ¡ π.

Every circle in R2 not containing the origin has two polar radius functions r � f1,2pθq (we will used them explicitly

later; see (26)). For D2 it is only relevant to consider the larger of the two (which we refer to below as the polar radius).

Note that when ℑmpE2q   0, the polar radius of D2 will decrease for θ ¡ 0 increasing until θ � θpE2q� π and as

long as the polar coordinate is defined. Since the polar radius is 1 for θ � 0, A2 will stay within the spiral S for

0  θ¤ θpE2q�π. When θ¡ θpE2q�π, the radius of E2 will start increasing, while the radius of S will decrease, and

thus only the maximal θ is needed to test. To see that the radius of E2 is below the radius of S for θ � 2π�nα, it will

be enough to test this for the smallest relevant values of n.

We show that if ℑmpE2q   0, then θpE2q ¡ 2π�3α{2. Then the polar coordinate radius r on D2 will be maximal on

θ ¡ π when θ � 2π�α. Thus after we checked that the statement holds for n � 1, we see it holds for all n. Similarly

we can replace 3α{2 by 5α{2, 7α{2 and appeal to the previous explicit checks for n � 2,3.

We go on thus now by continuously assuming θpE2q ¡ π and trying to show θpE2q ¡ 2π�3α{2.

We have to examine when signed distance of E2 to tθ� 2π�3α{2u is negative, where negativity means that E2 lies in

the half-plane of t θ � mπ�3α{2, m P Z u not containing 1. Note: when 3α{2 ¡ π{2, the distance may be negative,

but π�3α{2  θpE2q   π{2. Thus we test only a necessary condition, not a sufficient one. This is no problem, though,

as the extra case was anyway already dealt with. (This scenario is excluded here also because α  π{2, but the remark

will be a little more relevant when we later replace 3α{2 by nα�α{2 for n ¡ 1.)

The signed distance is positive iff

sin
5α

2
|z| ¥ �

3

2
cos

�

5α

2
� arcsinp1{3q�δ




|1� z| (21)
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This inequality is explained by the below picture.

B� 1

C � z

A � 0

E2

ar
cs

in
p

1{3
q

.

.

δ

η

3α

2

α

We find

η� δ�
�

π

2
�

5α

2

	

� arccosp1{3q ,

thus

cosη ��cos

�

δ�
5α

2
� arcsinp1{3q




.

We consider only the strongest inequality under varying δ with (10). It can be resolved thus

sin
5α

2
|z| ¥

3

2
|1� z| for

5α

2
� arcsinp1{3q P

�π

4
,

π

2

�

sin
5α

2
|z| ¥

3

2
sin

�

5α

2
� arcsinp1{3q




|1� z| for
5α

2
� arcsinp1{3q ¡

π

2

sin
5α

2
|z| ¥ �

3

2
cos

�

5α

2
� arcsinp1{3q�

3π

4




|1� z| for
5α

2
� arcsinp1{3q  

π

4

Again we look only on z with ℑmz� f pℜe zq with (14). The tests are found successful for y¤ 1.2 (by plotting graphs,

the online portal could not locate the zero), giving α ¤ 0.224075.

The exclusion for α ¡ π{4 yields also that we need to consider y ¤ 1.5266. (Keeping the exact solution even for a

quadratic is bothersome here.)

Replacing 5α{2 by 7α{2 in (21) (and appealing to the initial calculation for n � 2) for y P r1.2,1.5266s shows the

inequalities to be satisfied, except for y P r1.31,1.51s. Finally replacing 7α{2 by 9α{2 (and using the check for n� 3)

settles the inequalities also for these y.

This finishes the proof of Lemma 2.1. l

As an afterthought to this lemma, we will remark a way to estimate the quotient of two

αn :�
1� zn

1� zn�1
. (22)

Lemma 2.2 With α � argz, and n ¥ 2,
�

�

�

�

arg
αn�1

αn

�

�

�

�

¤ 2arcsinp1{3q .

�

�

�

�

arg
αn�1

αn

�

�

�

�

¤ α� arcsinp1{3q
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Proof. The first inequality is obvious, and for the other one, it is enough to assume that argαn�1 and argαn have

opposite sign.

This means that X � z1�n and W � z�n lie on opposite sides of BC (with B � 1 and C � z). Let us first argue for the

obviously looking fact that A, B, C line on the same side of XW .

If the line segment AB is intersected by XW then n must be so that 2π�nα ¡ π, 2π�pn�1qα   π, but from α   π
and |X |, |W| ¡ 1, one easily sees that XW intersects the negative horizontal axis. Thus AB is not intersected by XW ,

and A, B lie on the same side of XW .

Next, assume XW separates A, C. Then XW intersects AC and contains a point of norm   |z|   cosα   1. Let X 1

and W 1 be the intersections of XW with the unit circle. Let β � ?X 1AW 1. Since the closest point of X 1W 1 to A � 0

has distance cospβ{2q, we must have cospβ{2q   cosα, whence β¡ α, and because S in (8) contains the unit disk and

X ,W are on the boundary of or outside S, we have ?XAW ¥ β¡ α, which is a contradiction to X , W being powers of

z. Thus A, C line on the same side of XW .

We excluded this obvious absurdity to ascertain the picture is correct:

C � z

B� 1A� 0

X � z1�n

W � z�n

ξ

ζ

γ

δ

Be aware that BC and XW may intersect also on the other side of AC; the argument that follows modifies just by a

sign change.

Let ξ � ?BXC and ζ � ?BWC. Then ξ� ζ � γ� δ for γ � ?XCW and δ � ?XBW (where angles are taken to

be positive). Direct calculation shows for γ that
z� z1�n

z� z�n
�

z

αn�1
and for δ that

1� z1�n

1� z�n
�

z

αn

. Thus |γ� δ| ¤

maxpγ,δq ¤ arcsinp1{3q�α (with α � argz). l

2.2 norms

Next we will turn to norms; we use (22). Numerical calculation has suggested that |αn| ¥ 0.853324 (without clear

evidence what is this constant), and we will make effort to prove some approximation of this, again having to go very

close.
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Lemma 2.3 |αn| ¥ 0.85.

Proof. We fix b � 0.85. This not only to keep open adapting the argument to other (even a bit better) b, but even

rather to save a notational mess.

We must prove that the spiral tr ¤ |z|θ{αu is disjoint from the region

"

w P C :

�

�

�

�

1� zw

1�w

�

�

�

�

¤ b

*

which we will rewrite a bit as
"

w P C :

�

�

�

�

1{z�w

1�w

�

�

�

�

¤ b|1{z|

*

The shape of this region depends on b|1{z|: if b{|z|   1, it is a circle exterior, if it is b{|z| � 1 it is a half-plane, and if

it is b{|z| ¡ 1 it is a circle interior.

We will consider only the first case here, since it is most relevant. We will thus assume

b{|z|   1

which (with (5) and k ¤ 1) is equivalent to

b   cosα (23)

We have thus to test whether the circle A � Az with center C �Cz intersects the spiral tr � pk cosαqθ{αu (with (5)).

The formula for the center is

Cz � 1�p1{z�1q �
1

1�b2
|1{z|2

(24)

and the radius is

ρz �

�

�

�

�

1

z
�1

�

�

�

�

�

b| 1
z
|

1�b2
|1{z|2

(25)

The first thing to note is that these circles may not stay below the x axis but will always intersect the x axis above 1

(because the radius is  |Cz�1|). Thus we need to be concerned with intersections below the x-axis (i.e., with negative

imaginary part).

Note that the polar radius coordinate rzpθq of the circle Az will decrease for increasing θ ¡ θpCzq� arcsinpρz{|Cz|q

with C �Cz until θ reaches θpCq and then start increasing, thus it is enough to compare the radius coordinate of the

circle with the radius coordinate of the spiral pk cosαqθ{α for θ P rθpCq� arcsinpρ{|C|q,θpCqs.

Next we like to argue that we need to consider only ℜe 1{z � 1. Fix |z|, and hence, 1{|z|, and let C0 and ρ0 be the

center and radius of the circle for the z0 of given |z0| with ℑm1{z0 � 1 and let α0 � argz0.

If 1{z moves for fixed |z| away from tℜe � 1u (away means so that ℜe p1{zq increases while ℑm1{z stays negative),

then α gets smaller and |z|   1 constant, so |z|1{α gets smaller and the spiral tr ¤ |z|θ{αu shrinks. This means that for

all these spirals r ¤ |z0|
θ{α0 for all θ. We will need this only when θpC0q� arcsinpρ0{|C0|q ¤ θ   2π.

But the circle’s center C �Cz satisfies

|C|2 �

�

�

�

�

1

z

�

�

�

�

2�
1

1�b2
|1{z|2


2

�1�2ℜe

�

1

z
�1




�

1

1�b2
|1{z|2

,

which will increase, while θpCq will decrease, and ρ will also decrease because
�

�

1
z
�1

�

� decreases. This means that

all these circles Az will satisfy in polar coordinates rzpθq ¥ |C0| � ρ0 for θpC0q ¤ θ   2π and rzpθq ¥ rz0
pθq for

θpC0q� arcsinpρ0{|C0|q   θ   θpC0q. (Note that rzpθq will not exist for many z for these given θ, but this does not

cause any problems.)

With this reasoning one can dispose of dealing with the z with ℜe 1{z¡ 1. So assume ℜe 1{z� 1.
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With ℜe 1{z� 1, one can express 1{z in terms of α � argz, and the formulas simplify, and we can write

|Cz| �: Rpα,bq �

d

1�

�

cosαsinα

cos2 α�b2


2

ρz �: rpα,bq �

bsinα

cos2 α�b2

2π�θpCzq �: γpα,bq � arctan
sin αcosα

cos2 α�b2

With θ̃� 2π�θ, the radius formula for the relevant arc of the circle Az becomes

fα,bpθ̃q � Rpα,bqcospθ̃� γpα,bqq�

b

rpα,bq2�Rpα,bq2 sin2
pθ̃� γpα,bqq (26)

This function has to be tested to lie above

gαpθ̃q � ppcosαq1{αq2π�θ̃

for γpα,bq ¤ θ̃ ¤ γpα,bq� arcsin
rpα,bq
Rpα,bq .

Since f ,g are increasing functions, one can test their inequality by testing that the functions Fn,bpαq :� pg�1
α �

fα,bq
�n
pγpα,bqq satisfy

Fn�1,b ¤ Fn,b (27)

wherever defined.

Here we profit from the fact that g can be explicitly inverted, and

g�1
α � fα,bpθ̃q � 2π�α logcosα fα,bpθ̃q . (28)

A check with MATHEMATICA
TM

shows that with b � 0.85, (27) holds for n � 1, while for n � 2, Fn,b is no longer

defined, i.e.,

pg�1
α � fα,bq

�2
pγpα,bqq ¡ γpα,bq� arcsin

rpα,bq

Rpα,bq
. (29)

This finished the proof of the lemma for

cosα ¡ 0.85

(see (23)). Some similar argument will work also for the other α, but we do not get into this here. See lemma 2.9

instead. l

Again we need some improvements and estimates for particular αm.

αm �

1� zm

1� zm�1

Lemma 2.4 1. |αm| ¤
3

2
for m¥ 3.

2. |αm| ¤
6

5
for m¥ 6.

3. |αm| ¤ 1.1718 for m ¥ 7.

Proof. Much of the previous proof can be repeated.

Consider the statement in part 1; the method for the others is the same. The case m� 3 can be checked directly (we did

not bother for a rigorous argument, but the upper bound can be checked numerically up to any reasonable precision,

which will be enough for us). Thus assume m¥ 4.
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Similarly one can check α ¡ 0.2; see lemma 2.9.

Let

b � 3{2 and α   0.2 . (30)

First note the case of small exponents m. If mα   β  π{2, then the expression

αm � 1�
zm�1

1� z��� �� zm�2
(31)

easily shows that

|αm| ¤ 1�
1

pm�1qcosβ
,

thus we are done for

mα � β ¤ γ0 :� arccos

�

1

pm�1qpb�1q




.

With m¥ 4 and (30) this restricts us to

mα ¡ arccosp2{3q �: γ0 � 0.84 .

Since b{|z| ¡ b ¡ 1, we have to prove that the spiral part

Σz,γ0
:� tr ¤ |z|θ{α, γ0 ¤ θ¤ 2π� γ0u (32)

is contained in the complement CzAz of the circle Az. The formula for center of Az is the same as (24), and (25)

changes sign

ρz �

�

�

�

�

1

z
�1

�

�

�

�

�

b| 1
z
|

b2
|1{z|2�1

Again one can dispose of ℜe 1{z¡ 1, thus. When |z| � |z1| and |1{z1�1| ¡ |1{z�1|, then we see ρz1�ρz ¡ |Cz1�Cz|.

This means that Az1 � Az, and since θpz1q � α1 ¡ α� θpzq, also Σz1,γ0
� Σz,γ0

. Thus it is clearly enough for AzXΣz,γ0
�

∅ to test Az1XΣz1,γ0
�∅, the exclusion for the largest circle Az. This means that for given |z|, we need to consider the

z0 with largest |1{z0�1|, which happens when ℜe 1{z0 � 1.

We assume thus ℜe 1{z� 1. The following formulas are then rather clear.

|Cz| �: Rpα,bq �

d

1�

�

cosαsin α

cos2 α�b2


2

ρz �: rpα,bq �

bsinα

b2
� cos2 α

θpCzq �: γpα,bq � arctan
sinαcosα

b2
� cos2 α

Since obviously for b{|z| ¡ 1, we have 0 R Az, we must have |Cz| ¡ ρz

This means that we are interested in the polar coordinate function of the circle Az,

fα,bpθq � Rpα,bqcospθ� γpα,bqq�

b

rpα,bq2�Rpα,bq2 sin2
pθ� γpα,bqq

defined for all γpα,bq� arcsin
rpα,bq
Rpα,bq   θ   γpα,bq� arcsin

rpα,bq
Rpα,bq . Note: We regard θ modulo 2π, so that if γpα,bq�

arcsin
rpα,bq
Rpα,bq   0, we consider 2π¡ θ ¡ 2π� γpα,bq� arcsin

rpα,bq
Rpα,bq .

This function is geometrically seen increasing between γ   θ   γ� arcsin
rpα,bq
Rpα,bq , and decreasing otherwise (with θ

modulo 2π when γpα,bq� arcsin
rpα,bq
Rpα,bq   0). Thus it is enough with (32) to test with |z| � cosα that

fα,bpθq ¡ pcosαqpθ�2πq{α
, for γpα,bq ¡ θ ¡ γpα,bq� arcsin

rpα,bq

Rpα,bq
(33)
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and

fα,bpθq ¡ pcosαqθ{α, for θ � γ0 ,

unless the auxiliary extra value is undefined, i.e.,

arcsin
rpα,bq

Rpα,bq
� γpα,bq   γ0 . (34)

Here, it turns out that this inequality (34) is satisfied when (30).

For the interval test (33), we use the iterated function method of the previous proof. We use the test that with the

analogue of (28),

g�1
α � fα,bpθq � �2π�α logcosα fα,bpθq

we have

g�1
α � fα,bpγpα,bqq   �arcsin

rpα,bq

Rpα,bq
� γpα,bq .

The finishes part 1. For parts 2 and 3 the calculation is similar. Only for the rather delicate bound for m ¥ 7 one has

to iterate for n � 2 as in (29):

pg�1
α � fα,bq

�2
pγpα,bqq  min

�

g�1
α � fα,bpγpα,bqq, �arcsin

rpα,bq

Rpα,bq
� γpα,bq




.

By testing explicitly αm for m ¤ 10, one can restrict oneself to mα ¥ γ0 � 0.1245 to have (34) satisfied. l

The following is easy.

Lemma 2.5 2 ¥ |α2| ¥ 3{
?

2 � 1.1547 . . . . For α ¤ 0.174 we have |α2| ¥ 1.8337 . . . .

Proof. We have

α2 � 1� z .

From this the first part is obvious. For the second part, we use the notation of §2. With α ¤ 0.174, and

y � cosα�
a

cos2 α�4cosα�3 (35)

from (15), we check

|α2| ¥

b

f pxq2 �px�1q2 � 2
a

2� y� 2

b

2� cosα�
a

cos2 α�4cosα�3 ¥ 2
?

0.84066 � 1.8337 . . . . l

Lemma 2.6 1.5 ¥ |α3| ¥ 0.94744. For α ¤ 0.174, we have |α3| ¥ 1.4203 . . . .

Proof. MATHEMATICA easily evaluates the first part. For the second part, again we appeal to rudiment and the

calculation in the previous proof using |z| � 2� y from (14). We have α3 � 1� z2

1�z
. Thus with α ¤ 0.174,

|α3| ¥




1�
0.840662

4
�0.84066cosp2 �0.174q � 1.4203 . . . l

The following bounds were easily calculated by computer.

Lemma 2.7 For α ¤ 0.174, we have
4

3
¥ |α4| ¥ 1.168 and

5

4
¥ |α5| ¥ 1.

For α ¤ 0.35, we have 1.2 ¥ |α6| ¥ 1.

For α ¤ 0.3, we have 1.17¥ |α7| ¥ 1. l
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Lemma 2.8 For all z, we have |α4| ¥ 0.91465 and |α5| ¥ 0.896456, |α6| ¥ 0.885285 and |α7| ¥ 0.877903. l

Lemma 2.9 The minimal/maximal values of t|αm| : m¥ 3u for α ¡ 0.174 are shown below.

For t|αm| : m¥ 7u and α ¥ 0.1 the maximal values are thus:

Proof. We explain the calculation. Fix α. Let vpαq � 2� cosα�
?

cos2 α�4cosα�3. Then we can estimate |αm|

for fixed m by a 1-dimensional optimization problem over

pcosmα�
?

�1sinmαq � rvpαqm,cosm αsY pcospm�1qα�
?

�1sinpm�1qαq � rvpαqm�1
,cosm�1 αs

This gives some temporary minimum and maximum values µm ¤ |α1m| ¤ νm for m1

¤ m. Continue increasing m only

as long as

1� cosm α

1� cosm α
¥ µm or

1� cosm α

1� cosm α
¤ νm .

(This is a very crude bound, but provides that much extra security.) At that point we know that we can stop and take

µm,νm.

The gist is that when α is bounded away from 0, not only is the number of iterations per α uniformly bounded, but

αm behave uniformly smoothly. For having an estimate for all α, one could solve a certain number of 2-dimensional

problems (or formally one could estimate some partial derivative). But given all singular behavior in αm disappears,

there is no reason to distrust numerics, even although it is somewhat time consuming. MATHEMATICA took about

1 day to assemble enough data for this plot and computed 2116 values, which we used to interpolate the function for

subsequent work. l
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3 The conjecture near �1

We will now treat only complex numbers z with |z1{2
� z�1{2

|   2 and ℜe z ¤ �1. To facilitate further reading,

we compile a list of symbols which will be used consistently this way from now on (though not necessarily used so

previously, and with the noted exception).

z: A complex number with ℜe z¤ 1 and |z1{2
� z�1{2

|   2. We will assume ℑmz¡ 0. As an exception, in §4.1, z will

be �1{z of such a number, as in §2.

α: |argp�zq|. Clearly 0   α, and we also know that α¤ arccosp1{3q.

l: A factor we try to estimate a following value of ∆pzq from the previous value. We have the freedom to choose l to

depend on z, but in practice we choose it to depend only on α.

k: Up to a factor, |∆pzq|

αm: The expression
1�p�

1
{zq

m

1�p�

1
{zq

m�1
. For m� 1 we stipulate α1 �8, which we will use only in the sense that |1{α1| � 0.

a: the number 0.85, serving as a lower bound for |αm|. In some situations, we will replace a in formulas by better

lower bounds for special m and z.

Lemma 3.1 For v,w P C, when |v| ¡ |w|, then |argpv�wq� argpvq| ¤ arcsinp|w|{|v|q. l

Lemma 3.2 For v,w P C, when |v| ¡ |w|, and |argpwq| ¡ |argpvq|, then |argpv�wq| ¤ |argpvq|� |argpwq|{2.

Proof. Look at the exterior angle of the triangle with vertices 0, v and v�w, and use, say, the Sine law. l

We consider now ∆n � Pnpz
1{2

� z�1{2
q with Pn as in (1) and ∆̃n � zn{2∆n. Further, let us write more precisely

∆n � ∆pa2, . . . ,anq; and ∆̃n � ∆̃pa2, . . . ,anq.

Then

∆̃n � anpz�1q∆̃n�1� z∆̃n�2 . (36)

The following recursion formula is easy to prove by induction and will be important. Let

∆
rns :� ∆p. . . ,al�1,al ,1,1, . . . ,1

looomooon

n�2

q ,

and ∆̃
rns :� zpl�nq{2�1∆

rns. Then

∆
rns �

zn{2

z1{2
� z�1{2

�

p1�p�1
{zq

n
q∆

r1s�p1�p�1
{zq

n�1
q

∆
r0s
?

z

�

(37)

Similarly for

∆
r�ns :� ∆p. . . ,al�1,al ,�1,�1, . . . ,�1

looooooomooooooon

n�2

q ,

we have

∆
r�ns � �

zn{2

z1{2
� z�1{2

�

pp�1qn�p1{zq
n
q∆

r�1s�pp�1qn�1
�p

1
{zq

n�1
q

∆
r�0s
?

z

�

. (38)

We will now study

∆̂n �
∆̃n

∆̃n�1

�

?

z
∆n

∆n�1
.

Let

αn :�
1�p�1

{zq
n

1�p�1
{zq

n�1
(39)
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and compare with (22) . The change from z to �1
{z makes the results in §2 applicable for the z we consider here. Also,

α of §2 is equal to |argp�zq| here.

Note that (with the obvious definition of ∆̂
rns), (37) implies

∆̂
rns � z

αn∆̃
r1s� ∆̃

r0s

∆̃
r1s� ∆̃

r0s{αn�1

� zαn

∆̂
r1s�1{αn

∆̂
r1s�1{αn�1

. (40)

We will be done by proving |∆̂n| ¥ l for some constant l ¡ 0.

The choice of l will be a central problem, as will be the design of a condition that one can put through induction over

n. We will generally assume
1

2
¤ l  

a

cosα
�

0.85

cosα
. (41)

Furthermore, we can let l depend on z, but we will let it depend on α only. Let

v � |z�1| ¥ 2 .

With α� |argp�zq|, and

α1 � arccos
�

2� cosα�
a

cos2 α�4cosα�3
	

, (42)

we need the expression

δ � arcsin
sin
�

2arcsinp1{3q� arctan
�

cosα1 sinα1

1�cos2 α1

	

�2α1
	

cosα1



4p4� tan2 α1ql2
�

1
cos2 α1

�4 � l
cosα1

�

?

4� tan2 α1 cos
�

2arcsinp1{3q� arctan
�

cosα1 sinα1

1�cos2 α1

	

�2α1
	

(43)

�arctan
tanα1

2

¤ 2arcsinp1{3q�2α .

The stated inequality will be proved below.

We claim now the following property.

Theorem 3.1 Let 0   α � |argp�zq|   0.1091. Then there is an l such that for all n ¥ 1, the following inequalities

hold.

|∆̂n| ¥ l and |argp�∆̂nq| ¤ 2arcsinp1{3q�2|argp�zq| if an � 1 (44)

|argp�∆̂nq� argp1� zq| ¤ arcsinp
|z|

lv
q if an � 1 (45)

|∆̂n| ¥ l and |argp∆̂nq| ¤ 2arcsinp1{3q�2|argp�zq| if an ��1 (46)

|argp∆̂nq� argp1� zq| ¤ arcsinp
|z|

lv
q if an ��1 (47)

|∆̂n| ¥ 2v�
|z|

l
and |argp�∆̂nq| ¤ δ if an ¡ 1 (48)

|argp�∆̂nq� argp1� zq| ¤ arcsinp
|z|

2lv
q if an ¡ 1 (49)

|∆̂n| ¥ 2v�
|z|

l
and |argp∆̂nq| ¤ δ if an  �1 (50)

|argp∆̂nq� argp1� zq| ¤ arcsinp
|z|

2lv
q if an  �1 (51)

(See below for the meaning of these inequalities when n � 1.)



19

Proof. The induction start is no problem once one stipulates that when w� 0, then |w{0| �8 and taking argpw{0q to

be argpwq. The arguments below go through without serious modifications. Alternatively, one starts with n� 2. In the

case paiq
8

i�2 starts with p1,1, . . . ,1q or p�1, . . . ,�1q, one should let ∆̂
r1s �8 in (40) (obtaining zαn) and use (41).

From now on, we dwell only upon the induction step. First note that with (43), all alternatives imply

|∆̂n| ¥ l and |argp�∆̂nq| ¤ 2arcsinp1{3q�2α , (52)

if we ascertain

2|1� z|�
|z|

l
¥ l . (53)

One can check that for given (fixed) α� |argp�zq|, the value 2|1� z|�
|z|

l
is minimal when |z| is the argument of Γ in

(64), and that

Φpα, lq ¥ l . (54)

We assume now all inequalities (44) – (51), and in particular (52), hold for index ¤ n. Using |∆̂n| ¥ l and (36), one

immediately obtains (45), (47), (49) and (51). Use lemma 3.1. This simple inequality in the lemma will be often used

implicitly below. Similarly (and very extensively) will be done with the Sine and Cosine laws.

Similarly easily one obtains the norm estimates in (48) and (50). For the rest, we need to discuss a few cases for an�1.

Since mirroring only changes signs in ∆, it will be enough, up to mirroring to assume an�1 ¡ 0.

Case 1. an�1 � 1. So ∆̂n�1 � ∆̂
rm�1s for some m¥ 1, and we use the recursion (40). We can assume an�m�1 � 1.

Part 1.1. We discuss first norms. We have to prove

|z| � |αm�1∆̂
r1s�1| ¥ l|∆̂

r1s�1{αm| (55)

with

αm �

1�p�1{zqm

1�p�1{zqm�1

and stipulating

1{α1 � 0 . (56)

Case 1.1.1. an�m�1 � �1. The angle between αm�1∆̂
r1s and 1 is at most |argpαm�1q|� |argp∆̂

r1sq|, which is below

arcsinp1{3q�2arcsinp1{3q�2|argp�zq|, by (44) and (7).

Let ∆� ∆̂
r1s and k � |∆| ¥ l and |αn| ¥ a for all n. Also |z| ¥ 1{cosα.

Let γ�?p∆,1{αmq ¤ 3arcsinp1{3q�2α. Then by lemma 2.2,

?p∆,1{αm�1q ¤minpγ� arcsinp1{3q�α,3arcsinp1{3q�2αq .

Let p � |1{αm| P r0,1{as (keep in mind (56)) and q � |αm�1| P ra,8q.

|αm�1∆̂
r1s�1| ¥min

q¥a

b

1�q2k2
�2q � k cos minp3arcsinp1{3q�2α,γ� arcsinp1{3q�αq . (57)

Now

when α  0.185 then 3arcsinp1{3q�2α  π
2
, (58)

thus

ak ¥ al ¥ �cosp3arcsinp1{3q�2αq ,

which means that the radicand in (57) is minimized over q ¥ a for q � a. This yields

|αm�1∆̂
r1s�1| ¥

b

1�a2k2
�2a � k cos minp3arcsinp1{3q�2α,γ� arcsinp1{3q�αq .

Similarly

|∆̂
r1s�1{αm| ¤ max

0¤p¤1{a

a

k2
� p2

�2kpcosγ ,
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giving

|∆̂
r1s�1{αm| ¤ max

�




k2
�

1

a2
�2

k

a
cosγ,k

�

.

We need to prove

1�a2k2
�2ak cospγ� arcsinp1{3q�αq ¥ l2

�

k2
�

1

a2
�2

k

a
cospγq




� cos2 α , (59)

and

1�a2k2
�2ak cospγ� arcsinp1{3q�αq ¥ l2k2

� cos2 α , (60)

for 0 ¤ γ¤ 2arcsinp1{3q�α.

The second alternative (60) is easily dealt from (41) and (58). Thus consider the first alternative (59). The linear

coefficient in k, when all terms are put left, is

cosγ

�

cosparcsinp1{3q�αq �2ka�2
k

a
l2 cos2 α




� sinγ �2ka � sinparcsinp1{3q�αq . (61)

We test that with l as in (81)

cosparcsinp1{3q�αq�
l2 cos2 α

a2
¡ 0 .

Then the expression (61) as a function of γ ¥ 0, is decreasing for small γ until a local minimum at

γ� π� arctan

�

�

sinpα� arcsinp1{3qq

cosparcsinp1{3q�αq� l2 cos2 α{a2




.

Now, one tests that with l as in (81)

π� arctan

�

�

sinparcsinp1{3q�αq

cosparcsinp1{3q�αq� l2 cos2 α{a2




¡ 2arcsinp1{3q�α ,

which shows that we need to evaluate (61) for the maximal γ � 2arcsinp1{3q �α. This leads then to testing the

following version of inequality (59),

cosp2arcsinp1{3q�αq2ka

�

cosparcsinp1{3q�αq�
l2 cos2 α

a2




� sinp2arcsinp1{3q�αq �2kasinparcsinp1{3q�αq ¥

k2
�

l2 cos2 α�a2
�

�

�

l2 cos2 α

a2
�1




,

or

k2
�

l2 cos2 α�a2
�

� (62)

2ka

�

�cosp2arcsinp1{3q�αq

�

cosparcsinp1{3q�αq�
l2 cos2 α

a2




� sinp2arcsinp1{3q�αqsinparcsinp1{3q�αq

�

�

�

l2 cos2 α

a2
�1




¤ 0 for all k ¥ l .

We will collect this inequality as the first of a list of inequalities to test with (81).

Case 1.1.2. an�m�1  �1. Similar to previous case but easier because (51) implies (47) and (50) implies (46) (using

(43)).

Case 1.1.3. an�m�1 ¡ 1. Let ∆ � ∆̂
r1s and k � |∆|. We have

k ¥ 2|1� z|�
|z|

l
. (63)
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We will work with l depending on α only; see (81) below. One has now to check when for given α � |argp�zq|, the

norm 2|1� z|�
|z|

l
is minimal. Let κ� |z|. Then the formulas (14) and (15) show that

1

cosα
¤ κ ¤ 2� cosα�

a

cos2 α�4cosα�3 .

The function

Γpκq � 2
a

κ2
�2cosακ�1�κ{l

has a local minimum at κ��cosα� sinα
?

4l2
�1

(keep in mind (41)). Thus we are led to the value

Φpα, lq :� Γ

�

max

�

min

�

2� cosα�
a

cos2 α�4cosα�3,�cosα�
sinα

?

4l2
�1




,

1

cosα


 


. (64)

In our case with (81) one can test that

�cosα�
sinα

?

4l2
�1

¤

1

cosα
, for 0 ¤ α ¤ 1.23 . (65)

Therefore,

Φpα, lq � Γ

�

1

cosα




� 2
a

4� tan2 α�
1

l cosα
. (66)

Thus one can eliminate z in (63) and test for

k ¥ Φpα, lq . (67)

The angle between �∆̂
r1s and 1{αm�1 is at most |argpαm�1q|� |argp�∆̂

r1sq| which is below arcsinp1{3q� δ by (48)

and (7) (keeping in mind the change from z to �1{z):

?p�∆̂
r1s,1{αm�1q ¤ arcsinp1{3q�δ . (68)

Let γ�?p�∆̂
r1s,1{αm�1q. Then by lemma 2.2,

?p�∆̂
r1s,1{αmq ¤ γ� arcsinp1{3q�α ,

and similarly to (68)

?p�∆̂
r1s,1{αmq ¤ arcsinp1{3q�δ .

Then by testing

aΦpα, lq ¥ 1 , (69)

we have

ak ¡ cosγ (70)

and can conclude with k � |∆̂
r1s|

|αm�1∆̂
r1s�1| ¥

b

|αm�1|
2k2

�2|αm�1|k cosγ�1 ¥ a

d

k2
�

�

1

a


2

�2k
1

a
cospγq ,

with the second inequality using (70). Here we must work harder. If |αm�1| ¥ νm�1 ¡ a, then similarly

|αm�1∆̂
r1s�1| ¥ νm�1

d

k2
�

�

1

νm�1


2

�2k
1

νm�1
cospγq .

The reverse estimate for |∆̂
r1s�1{αm| is far more painful.
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Assume ν1m ¥ |αm| ¥ νm and let

Ωpνq �

d

k2
�

�

1

ν


2

�2
k

ν
cosminparcsinp1{3q� γ�α,arcsinp1{3q�δq .

Then

|∆̂
r1s�1{αm| ¤ maxpΩpν1mq,Ωpνmqq . (71)

Thus for (55) with |z| ¥ 1
{cosα we need to ascertain

ν2
m�1

�

k2
�

�

1

νm�1


2

�2k
1

νm�1
cospγq

�

¥ l2
� cos2 α �

�

maxΩpν1mq,Ωpνmq
�2

(72)

for γ¤ arcsinp1{3q�δ.

We will write this inequality parametrically as p72qpνm�1,νm,ν
1

mq.

Case 1.1.3.1. m� 1. We have 1{αm � 0 by convention and 2¥ |αm�1| ¥ 1.1 by lemma 2.5. Thus we need to ascertain

p72qp1.1,8,8q, which using cospγq ¤ 1 simplifies to

1.1k�1¥ lk cosα

or

1.1Φpα, lq�1 ¥ lΦpα, lqcos α (73)

Case 1.1.3.2. m � 2. By lemma 2.5 and lemma 2.6, we need to ascertain p72qp1.4,1.1,2q. Let

a1 � 1.4,b � 1.1,b1 � 2 .

Thus we need to ascertain

a12

�

k2
�

�

1

a1


2

�2k
1

a1
cospγq

�

¥ l2

�

k2
�

�

1

b


2

�2k
1

b
cosminparcsinp1{3q� γ�α,arcsinp1{3q�δq

�

� cos2 α .

(74)

and

a12

�

k2
�

�

1

a1


2

�2k
1

a1
cospγq

�

¥ l2

�

k2
�

�

1

b1


2

�2k
1

b1
cosminparcsinp1{3q� γ�α,arcsinp1{3q�δq

�

� cos2 α .

(75)

One easily sees that it is enough to take γ¤ δ�α and discard the second minimum alternative.

Case 1.1.3.2.1. (74) We maximize first the linear coefficient in k. Regarding this inequality as depending on γ, one has

to examine when

�a1 cosγ�
1

b
l2 cos2 αcospγ�arcsinp1{3q�αq �

�

l2 cos2 α

?

8cosα� sinα

3b
�a1




cosγ�
l2 cos2 α

3b
�pcosα�

?

8sinαqsin γ

is minimal when 0 ¤ γ ¤ δ�α. If

l2 cos2 α

b
  a1 ,

in particular if b,a1 ¥ a because of (41), this expression is easily seen to be decreasing in γ ¥ 0 until

tanγ � Ξ3pα, l,a
1

,bq �
l2 cos2 αpcosα�

?

8sinαq{b

3a1�p
?

8cosα� sinαql2 cos2 α{b



23

This gives the minimal value

�

�

a1 cospminpδ�α,arctanΞ3pα, l,a
1

,bqqq�
1

b
l2 cos2 α

?

8

3
cosmin

�

δ,α� arctanΞ3pα, l,a
1

,bq
�

�

l2 cos2 α

3b
sinmin

�

δ,α� arctanΞ3pα, l,a
1

,bq
�

�

Thus (74) can be rewritten

k2
pl2 cos2 α�a12q� (76)

2k �

�

a1 cospminpδ�α,arctanΞ3pα, l,a
1

,bqqq�

l2 cos2 α

?

8

3b
cosmin

�

δ,α� arctanΞ3pα, l,a
1

,bq
�

�

l2 cos2 α

3b
sinmin

�

δ,α� arctanΞ3pα, l,a
1

,bq
�

�

�

�

l2 cos2 α

b2
�1




¤ 0

for all k ¥Φpα, lq from (66) .

Call this inequality p76qpa1,bq. So we need to test p76qp1.4,1.1q.

Case 1.1.3.2.2. (75) By repetition of the previous calculation, we need to test p76qp1.4,2q.

Case 1.1.3.3. m� 3,4,5,6. We need to ascertain p72qp1,1,1.5q by lemmas 2.6 and 2.7. We need to test p76qp1,1q and

p76qp1,1.5q.

Case 1.1.3.4. m ¡ 6. We need to ascertain p72qpa,a,1.1718q by lemma 2.4.

Thus we need to ascertain

a2

�

k2
�

�

1

a


2

�2k
1

a
cospγq

�

¥ l2

�

k2
�

�

1

a


2

�2k
1

a
cosminparcsinp1{3q� γ�α,arcsinp1{3q�δq

�

� cos2 α ,

(77)

and

a2

�

k2
�

�

1

a


2

�2k
1

a
cospγq

�

¥ l2

�

k2
�

�

1

1.1718


2

�2k
1

1.1718
cosminparcsinp1{3q� γ�α,arcsinp1{3q�δq

�

�cos2 α .

(78)

Case 1.1.3.4.1. (77). We maximize first the linear coefficient. Regarding this inequality as depending on γ, one has to

examine when

�a2 cosγ� l2 cos2 αcospγ�arcsinp1{3q�αq �

�

l2 cos2 α

?

8cosα� sinα

3
�a2




cosγ�
l2 cos2 α

3
�pcosα�

?

8sinαqsin γ

is minimal when 0 ¤ γ ¤ δ�α. This expression is decreasing until

tanγ � Ξpα, lq �
l2 cos2 αpcosα�

?

8sinαq

3a2
�p

?

8cosα� sinαql2 cos2 α

This gives the minimal value

�

�

a2 cosminpδ�α,arctanΞpα, lqq�

l2 cos2 α

?

8

3
cosminpδ,α� arctanΞpα, lqq�

l2 cos2 α

3
sinminpδ,α� arctanΞpα, lqq

�
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Thus (77) can be rewritten

k2
pl2 cos2 α�a2

q� (79)

k �
2

a
�

�

a2 cospminpδ�α,arctanΞpα, lqqq�

l2 cos2 α

?

8

3
cosminpδ,α� arctanΞpα, lqq�

l2 cos2 α

3
sinminpδ,α� arctanΞpα, lqq

�

�

�

l2 cos2 α

a2
�1




¤ 0

for all k ¥Φpα, lq from (66) .

Case 1.1.3.4.2. (78). We maximize first the linear coefficient. Regarding this inequality as depending on γ, one has to

examine when

�acosγ�
1

1.1718
l2 cos2 αcospγ�arcsinp1{3q�αq �

�

l2 cos2 α
p

?

8cosα� sinαq

3 �1.1718
�a




cosγ�
l2 cos2 α

3 �1.1718
�pcosα�

?

8sinαqsin γ

is minimal when 0 ¤ γ ¤ δ�α. This expression is decreasing until

tanγ� Ξ2pα, lq �
l2 cos2 αpcosα�

?

8sin αq

3a �1.1718�p
?

8cosα� sinαql2 cos2 α

This gives the minimal value

�

�

acospminpδ�α,arctanΞ2pα, lqqq�
1

1.1718
l2 cos2 α

?

8

3
cosminpδ,α� arctanΞ2pα, lqq�

l2 cos2 α

3 �1.1718
sinminpδ,α� arctanΞ2pα, lqq

�

Thus (78) can be rewritten

k2
pl2 cos2 α�a2

q� (80)

2k �

�

acospminpδ�α,arctanΞ2pα, lqqq�

l2 cos2 α

?

8

3 �1.1718
cosminpδ,α� arctanΞ2pα, lqq�

l2 cos2 α

3 �1.1718
sinminpδ,α� arctanΞ2pα, lqq

�

�

�

l2 cos2 α

1.17182
�1




¤ 0

for all k ¥Φpα, lq from (66) .

Maximizing a quadratic expression in k over an interval is no problem, and MATHEMATICA shows that with a� 0.85

one can choose

l � 0.595�α{15 (81)

to satisfy the inequalities in all cases simultaneously when α   0.1091. The inequality (80) (or (76)pa,1.1718q) in

case 1.1.3.4.2 is by far the hardest to get stand, and leads to this severe restraint for α. This is the reason we had to dig

so deep in §2.

Part 1.2. Next, we need to care about angles. Let again ∆� ∆̂
r1s.

Case 1.2.1. If an�m�1   0, then we have some difficulty.
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We assume |∆| ¥ l and argp∆q ¤ 2arcsinp1{3q�2|argp�zq| and like to show

�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

� ?p∆�1{αm�1,∆�1{αmq ¤ arcsinp1{3q� |argp�zq| .

This argument is longer and moved out to lemma 3.3. With (40) we have

�

�arg�∆̂n�1

�

�

¤ 2arcsinp1{3q�2|argp�zq| ,

as we wanted in (44).

Case 1.2.2. an�m�1 ¡ 1. Again using (40), it is enough to see

�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

¤ arcsinp1{3q� |argp�zq| .

Now

|∆| ¥ 2|1� z|�
|z|

l
, ?p1{αm�1,1{αmq ¤ arcsinp1{3q� |argp�zq| and

�

�

�

�

1

αmr�1s

�

�

�

�

¤

1

a
,

with the agreement that ‘mr�1s’ means ‘both for m and m�1’.

We have

�

�

�

1
αmr�1s

�

�

�

¤ |∆| by (69). Trigonometry in the triangles with vertices 0,∆,∆� 1{αm and 0,∆,∆� 1{αm�1 and

an easy argument shows that

?p∆�1{αm�1,∆�1{αmq

is maximal when |∆| � 2|1� z| � |z|{l, |αm| � |αm�1| � a, ?p1{αm�1,1{αmq � arcsinp1{3q �α and argp�∆αmq �

�argp�∆αm�1q. This gives

sin
?p∆�1{αm�1,∆�1{αmq

2
¤

sin
arcsinp1{3q�|argp�zq|

2

a




�

2|1� z|�
|z|

l

	2

�

�

1
a

�2
�2 1

a

�

2|1� z|�
|z|

l

	

cos
arcsinp1{3q�|argp�zq|

2

First, we checked when α � |argp�zq| is fixed the minimal value of

2|1� z|� |z|{l

to be in (64). Thus we can set |∆| � k �Φpα, lq. Now to see

?p∆�1{αm�1,∆�1{αmq{2   parcsinp1{3q�αq{2

it is enough, with (69) in mind, to see for α � |argp�zq| that

sin
arcsinp1{3q�α

2

a

b

Φpα, lq2 �
�

1
a

�2
�

2
a
�Φpα, lqcos

arcsinp1{3q�α
2

¤ sin
arcsinp1{3q�α

2

which is true for l in (81) and a� 0.85.

This finishes an�1 � 1. The case an�1 ��1 is analogous.

Case 2. an�1 ¡ 1. We need to derive the estimate (48) of the angle. The norm estimate is quite clear (recall remark

below (54)).

We will use (36) in the form

∆̂n�1 � an�1pz�1q�
z

∆̂n

.

Consider △ABC with η,β,γ angles at A,B,C. Let AB� 2|1� z|, AC � |z|{l and

η � 2arcsinp1{3q� |argp1�1{zq|�2|argp�zq| .
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We have

sin |argp1�1{zq| �
cosαsinα

?

1�3cos2 α
cos |argp1�1{zq| �

1� cos2 α
?

1�3cos2 α

We need an upper bound on β. First, from l ¥ 0.5 (see (41)) we have AC   AB, thus β¤ π{2.

The Sine and Cosine theorems give

sin β �

sinη � |z|
a

4|1� z|2l2
�|z|2�4 � |1� z| � l � |z| � cosη

This estimates

?p∆̃n�1,an�1pz�1q∆̃nq � ?p∆̃n�1,pz�1q∆̃nq � ?p�∆̃n�1,p1� zq∆̃nq ¤ β

and

|argp�∆̂n�1q| � ?p�∆̃n�1, ∆̃nq ¤ β�|argp1� zq| . (82)

Next, for given fixed |z|, it is easy to see that |1� 1{z| (or equivalently, |1� z|) is smallest, and all of |argp�zq|,

|argp1� zq|, |argp1�1{zq| largest when ℜe z1 ��1. Thus consider only this case. Then the formulas in §2 show that

|argp�z1q| �: α1 ¤ arccos
�

2� cosα�
a

cos2 α�4cosα�3
	

,

leading to (42). Now assuming z1 � z, we have

|z| �
1

cosα
|1�z|�

a

4� tan2 α |argp1�zq| � arctan

�

tanα

2




|argp1�1{zq| � arctan

�

cosαsin α

1� cos2 α




.

(83)

Thus

sinβ �

sin
�

2arcsinp1{3q� arctan
�

cosα sinα
1�cos2 α

	

�2α
	

cosα




4p4� tan2 αql2
�

1
cos2 α

�4 � l
cosα �

?

4� tan2 αcos
�

2arcsinp1{3q� arctan
�

cosα sinα
1�cos2 α

	

�2α
	

,

which with (82) and (83) yields the expression (43). The inequality there is to be tested:

arcsin
sin
�

2arcsinp1
{3q� arctan

�

cosα1 sinα1

1�cos2 α1

	

�2α1
	

cosα1



4p4� tan2 α1ql2
�

1
cos2 α1

�4 � l
cosα1 �

?

4� tan2 α1 cos
�

2arcsinp1
{3q� arctan

�

cosα1 sinα1

1�cos2 α1

	

�2α1
	

�arctan
tanα1

2
¤ 2arcsinp1

{3q�2α .

It is true for α ¤ 1.23.

The case an�1  �1 is analogous.

With this the induction is complete. l

Lemma 3.3 Let |∆| ¥ l and argp∆q ¤ 2arcsinp1{3q�2|argp�zq| and α � |argp�zq|   0.11. Then

?p∆�1{αm�1,∆�1{αmq ¤ arcsinp1{3q� |argp�zq| .

Proof.
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Case 1. We assume first none of αm, αm�1 is α2, i.e., m¥ 3. See figure

O

A

C

D

B
x

|∆| � k

1{|αm̂|
¤

1
{a

δ

ar
cs

in

p

1 {

3

q

�

α

δ� arcsinp1{3q�α

η�δ

η�δ

η

π�η� arcsinp1{3q�α

We set OA� |∆|� k. Let AB� 1{|αm| ¤ 1{a, where we assume w.l.o.g. that?p∆,1{αmq ¡?p∆,1{αm�1q. (Otherwise,

exchange αm and αm�1 in the following.) We set next

η �?BAC ¤ |argp∆q|� |argpαmq| ¤ 3arcsinp1{3q�2|argp�zq| . (84)

Let AD� 1{|αm�1| and ?BAD�?p1{αm,1{αm�1q ¤ arcsinp1{3q� |argp�zq|, by lemma 2.2.

Note that if B,D are on different side of AC, then
�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

� ?p∆�1{αm�1,∆�1{αmq ¤?p1{αm�1,1{αmq ¤ arcsinp1{3q� |argp�zq| ,

as we wanted. We thus assume them on the same side of (or on) AC, and w.l.o.g.

arg

�

1

αm∆




,arg

�

1

αm�1∆




¥ 0 . (85)

We are interested in proving a lower bound |1{αm�1| � AD¥ x, so that ?BOD¤ α� arcsinp1{3q.

For this it is enough to assume that AB is maximal, 1{a, and so is?BAD� arcsinp1{3q�α. This assumption is justified

because for α ¤ 0.11 we have η  π
{2 by (58) and (84).

We also set ?BOD� α� arcsinp1{3q and calculate AD � x.

Let

δ̃pη,k,aq � arcsin
sin η

a

a2k2
�1�2ak cosη

,

and we have

δpη,k,aq � ?AOB �

"

δ̃pη,k,aq if cosη¡�ka

π� δ̃pη,k,aq otherwise
(86)

It is geometrically obvious that δ increases with η, until η� π
2
�arcsin

�

1
ka

�

¡

π
2

, which does not occur for α  0.174

by (58) and (84).

It helps that ?OBA�?ODA� η�δ. The Sine law gives

x �
1

a
�

sinpδ� arcsinp1{3q�αq

sinpδq
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The derivative immediately shows this to be increasing in δ (and hence η), and to get maximal value, set η �

3arcsinp1{3q � 2α by (84) . Moreover, δpη,k,aq is also decreasing in k ¥ l (using cosη ¡ 0), so set k � l. Then

we have
1

|αm�1|
� x ¤

1

a
�

sinpδp3arcsinp1{3q�2α, l,aq� arcsinp1{3q�αq

sinpδp3arcsinp1{3q�2α, l,aqq
.

To recall, this is an upper bound for x, for which the angle ?DOB is too large, as we do not desire.

Thus if we use lemma 2.4 and show that

2

3
¥

1

a
�

sinpδp3arcsinp1{3q�2α, l,aq� arcsinp1{3q�αq

sinpδp3arcsinp1{3q�2α, l,aqq
, (87)

we are done.

A MATHEMATICA plot of the r.h.s. for α¤ 0.2 shows that the maximal value for x is for αÑ 0, with the value being

below 2{3.

This motivated lemma 2.4, which finishes this case.

Case 2. m� 1. With α ¤ 0.174 and following (35) in the proof of lemma 2.5, we have

1

|α2|
¤

1

2
a

2� cosα�
?

cos2 α�4cosα�3
.

We have to show (with the convention 1{|αm| � 0)

δ

�

3arcsinp1{3q�2α, l,2

b

2� cosα�
a

cos2 α�4cosα�3




¤ arcsinp1{3q�α .

But this test fails.

We have to estimate |argpα2q| � |argp1�1{zq| better. We have

|argpα2q| �

�

�

�

�

arg

�

1�
1

z




�

�

�

�

¤ |argp�zq|

and by using |1{z|   1 and lemma 3.2, we have even |argpα2q| ¤ |argp�zq|{2. Thus in (84) we can replace the r.h.s.

3arcsinp1{3q�2α by 2arcsinp1{3q�2.5α, and thus we test

δ

�

2arcsinp1{3q�2.5α, l,2

b

2� cosα�
a

cos2 α�4cosα�3




¤ arcsinp1{3q�α ,

and this test succeeds for α ¤ 0.110115.

Case 3. m� 2. With α ¤ 0.174 and lemma 2.6, we have 1{|α3| ¤ 0.7040644 and 1{|α2| ¥ 0.5453 by lemma 2.5.

We need to ascertain (if ?p∆,1{α3q ¤?p∆,1{α2q)

2

3
¥ 0.5453 �

sinpδp3arcsinp1{3q�2α, l, 1
0.5453

q� arcsinp1{3q�αq

sinpδp3arcsinp1{3q�2α, l, 1
0.5453

qq

,

but it is subsumed by (87), and (if ?p∆,1{α2q ¤?p∆,1{α3q)

1

2
¥ 0.7040644 �

sinpδp3arcsinp1{3q�2α, l, 1
0.7040644

q� arcsinp1{3q�αq

sinpδp3arcsinp1{3q�2α, l, 1
0.7040644

qq

,

and then we are done.

This discussion deals with the situation that if arg

�

1

αm�1∆




¤ arg

�

1

αm∆




then argp∆�1{αm�1q   argp∆�1{αmq�

arcsinp1{3q�α, respectively if arg

�

1

αm�1∆




¥ arg

�

1

αm∆




then argp∆�1{αmq   argp∆�1{αm�1q�arcsinp1{3q�α
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(keep in mind (85)).

1

{α
m

�

1

1
{αm

∆

We need to consider also arg

�

1

αm�1∆




¤ arg

�

1

αm∆




and argp∆�1{αm�1q ¡ argp∆�1{αmq�arcsinp1{3q�α (sim-

ilarly with indices m and m�1 exchanged, as drawn below).

1{αm�1
1
{αm

∆

We handle the situation thus. Since η   π{2, we have η� δ   π{2. Then, when arg

�

1

αm�1∆




¤ arg

�

1

αm∆




, the

largest difference argp∆� 1{αm�1q� argp∆� 1{αmq is seen to be achieved when argp1{αm�1q � argp1{αmq, where

the previous argument estimated the angle. This is why we are done. l

4 The conjecture far from �1

4.1 back to αi

In this subsection we use the notation of §2 for z.

Lemma 4.1 If α ¥ 0.1091, then

�

�

�

�

arg
αn

αn�1

�

�

�

�

¤ arcsinp1{3q .

Again, the fact that α is bounded away from 0 will be used in a decisive way. It is the technical difficulty of proving

this lemma for small α that leaves to two separate parts in §3 and §4.
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Proof. As for lemma 2.2, using lemma 2.1, we are done unless argpαnq and argpαn�1q have opposite sign. So assume

this now.

α0

α̃ α

γ

γγ

Y

Y1

|z�1|
d

3�
?

8

6

We will test that when argpαnq and argpαn�1q have opposite sign, then |argpαnr�1sq| ¤ arcsinp1{3q{2, with the agree-

ment that ‘nr�1s’ means ‘both for n and n�1’.

Again we consider two circle arcs ending on B � 1 and C � z. But this time we measure the angle arcsinp1{3q{2, so

the diameter of the circle arcs is
|z�1|

sinparcsinp1{3q{2q
�

|z�1|



3�
?

8

6

.

In particular, since 1 is on these arcs, their points have norm at most

1�
|z�1|




3�
?

8

6

.

We compare these arcs with the spiral
#

r �

�

1

cosα




p2π�θq{α
+

, (88)

which we consider here not only for 0 ¤ θ ¤ 2π but also for θ  0. Let for any w � 0,

θ̃pwq � 2π�θpwq .
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We will use again that
�

1

cosα


1{α

¥

1
�

1� α
2
�

α2

4

	 . (89)

We are interested in the angles ?BX1,2C for two points X1,2 on this spiral lying on opposite sides of the line BC, and

let the angle θ̃pX1q   θ̃pX2q thus θ̃pX1q� argz � θ̃px2q.

Now we would like to test all z with

α0 ¤ α � argz¤ α̃.

(We will later see how to choose α0, α̃ so that the test works.)

An easy thought using (14) and (35) shows that the maximal |1� z| is

Σpα̃q �
?

2
�

cosα̃�1�
a

cos2 α̃�4cosα̃�3
	

.

Let γ�?ABC. Using (10), now γ ¥
π

4
�α¥

π

4
� α̃.

Let Y1 be the first intersection of BC with the spiral. “First” means for smallest θ̃. Note that we did not investigate

whether there is no intersection for small θ̃. However, we know that θ̃ must be a multiple of α, we assumed α ¥ 0.1,

and we can test directly enough small values of n (as done at the end of the proof) to ascertain that θ̃ ¥ π{2. This

saves us from bothering about the possibility of an intersection close to B � 1. (We did check that indeed such an

intersection does not occur, but the details are too painful and distracting here.) We assume thus Y1 has the smallest

θ̃pY1q ¥ π{2.

Consider a parallel to BC through A� 0. Let it intersect the spiral in Y . This shows that

θ̃pX2q ¥ θ̃pY1q ¥ θ̃pY q ¥ π� γ,

and thus that

θ̃pX1q ¥ π� γ�α¥
5π

4
�2α ¥

5π

4
�2α̃ . (90)

Thus if we have

1
�

1�
α0
2
�

α2
0

4

	5π{4�2α̃
¥ 1�

Σpα̃q



3�
?

8

6

,

we would be done. This can be reorganized as

1�

g

f

f

e

4

�

a

3�
?

8
?

6Σpα̃q�
a

3�
?

8

�1{β

�3¤ α0 ¤min

�

�

�

α̃,1�

g

f

f

e

4

�

a

3�
?

8
?

6Σpα̃q�
a

3�
?

8

�1{β

�3

�

Æ




. (91)

for

β�
5π

4
�2α̃ . (92)

This test does not work well.

Case 1. Assume α̃ ¥ 0.2. However, (91) does work well when we replace β in (92) by β � 13π{4� 2α̃. Then, the

right alternative in (91) is α̃, and the left hand-side is defined for all 0.2¤ α̃¤ 1.23 and remains visibly below the left
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hand-side.

α̃α0

Thus by successively replacing α̃ by α0, one can cover r0.2,1.23s by intervals rα0, α̃s. This argument leaves us to deal

only with points X1,2 near the first two intersections of BC with the spiral.

Since γ ¤ π{2�α, one easily sees that then θ̃pX1q ¤ 2π� γ and hence

θ̃pX2q � pn�1qargz ¤ 5π{2 .

γ

γα

Also using the argument for (90),

θ̃pX2q ¥ 5π{4�α

Then we can limit n and have a finite number of 2-parameter tests. For 0.2 ¤ α ¤ 0.3,

12.08 
5π

4 �0.3
�1¤ n�1 ¤

5π

2 �0.2
¤ 39.27 , (93)
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thus

12¤ n ¤ 38 .

For 1.23¥ α ¡ 0.3, we test 2 ¤ n ¤ 25. We were able to test in fact n ¤ 99 for α ¤ 0.3 and n ¤ 49 for α ¡ 0.3.

Case 2. Assume 0.1091¤ α̃ ¤ 0.2. In that case we have to test one more intersection of BC and the spiral (88).

We can estimate for the fourth intersection Y4 that θ̃pY4q ¥ 4π, thus θ̃pX1q ¥ 4π�α¥ 4π� α̃. We test then (91) for

β� 4π� α̃, and find it successful (in the sense of case 1).

We are left now with testing the first 3 intersections, and find first an estimate for θ̃pY3q for the third intersection. The

following diagram shows that if θ̃pY3q ¥
7π

2
, then

θ̃pX1q ¤ θ̃pY3q ¤
7π

2
� arcsin

�

�

1�
0.1091

2
�

0.10912

4


7π{2
�

.

A

C

Then (93) modifies to

5π

4 �0.2
�2¤ n ¤

1

0.1091

�

7π

2
� arcsin

�

�

1�
0.1091

2
�

0.10912

4


7π{2
��

¤ 106.22

This justifies us to test further explicitly for 0.1¤ α¤ 0.2 the values n� 100, . . . ,119, in addition to case 1. With this

check we are done. l

4.2 The estimate for large α

Now we repeat theorem 3.1 using lemma 4.1.

With α� |argp�zq|, and (42) we need the expression

δ � arcsin
sin
�

2arcsinp1{3q� arctan
�

cosα1 sinα1

1�cos2 α1

	

�α1
	

cosα1



4p4� tan2 α1ql2
�

1
cos2 α1

�4 � l
cosα1

�

?

4� tan2 α1 cos
�

2arcsinp1{3q� arctan
�

cosα1 sinα1

1�cos2 α1

	

�α1
	

(94)
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�arctan
tanα1

2

¤ 2arcsinp1{3q�α .

The claimed inequality will be proved below.

Theorem 4.1 Let 0.1091¤ α� |argp�zq| ¤ arccosp1{3q � 1.23. Then there is an l � lpαq such that for all n¥ 1, the

following inequalities hold.

|∆̂n| ¥ l and |argp�∆̂nq| ¤ 2arcsinp1{3q� |argp�zq| if an � 1 (95)

|argp�∆̂nq� argp1� zq| ¤ arcsinp
|z|

lv
q if an � 1 (96)

|∆̂n| ¥ l and |argp∆̂nq| ¤ 2arcsinp1{3q� |argp�zq| if an ��1 (97)

|argp∆̂nq� argp1� zq| ¤ arcsinp
|z|

lv
q if an ��1 (98)

|∆̂n| ¥ 2v�
|z|

l
and |argp�∆̂nq| ¤ δ if an ¡ 1 (99)

|argp�∆̂nq� argp1� zq| ¤ arcsinp
|z|

2lv
q if an ¡ 1 (100)

|∆̂n| ¥ 2v�
|z|

l
and |argp∆̂nq| ¤ δ if an  �1 (101)

|argp∆̂nq� argp1� zq| ¤ arcsinp
|z|

2lv
q if an  �1 (102)

(See below for the meaning of these inequalities when n � 1.)

Proof. The induction start is no problem once one stipulates that when w� 0, then |w{0| �8 and taking argpw{0q to

be argpwq. The arguments below go through without serious modifications. Alternatively, one starts with n� 2.

From now on, we dwell only upon the induction step. First note that with (94), all alternatives imply

|∆̂n| ¥ l and |argp�∆̂nq| ¤ 2arcsinp1{3q�α , (103)

after we ascertained (54).

We assume now all inequalities (95) – (102), and in particular (103), hold for index ¤ n. Using |∆̂n| ¥ l and (36), and

lemma 3.1, one immediately obtains (96), (98), (100) and (102), as well as the norm estimates in (99) and (101). For

the rest, we need to discuss a few cases for an�1, and again it is enough to treat an�1 ¡ 0.

Case 1. an�1 � 1. So ∆̂n�1 � ∆̂
rm�1s for some m¥ 1, and we use the recursion (40). We can assume an�m�1 � 1.

Part 1.1. We discuss first norms. We have to prove

|z| � |αm�1∆̂
r1s�1| ¥ l|∆̂

r1s�1{αm| (104)

with

αm �

1�p�1{zqm

1�p�1{zqm�1

and stipulating (56).

Case 1.1.1. an�m�1 � �1. The angle between αm�1∆̂
r1s and 1 is at most |argpαm�1q|� |argp∆̂

r1sq|, which is below

arcsinp1{3q�2arcsinp1{3q� |argp�zq|. Similarly for αm instead of αm�1.

Let ∆� ∆̂
r1s and k � |∆| ¥ l and |αn| ¥ a for all n. Also |z| ¥ 1{cosα.

Let γ�?p∆,1{αmq ¤ 3arcsinp1{3q�α. Then by lemma 4.1,

?p∆,1{αm�1q ¤minpγ� arcsinp1{3q,3arcsinp1{3q�αq .
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Let p � |1{αm| P r0,1{as (keep in mind (56)) and q � |αm�1| P ra,8q.

|αm�1∆̂
r1s�1| ¥min

q¥a

b

1�q2k2
�2q � k cos minp3arcsinp1{3q�α,γ� arcsinp1{3qq . (105)

Now we have to test thus

a � k¥ a � l ¥ �cosp3arcsinp1{3q�αq ¥ �cosminpγ� arcsinp1{3q,3arcsinp1{3q�αq

to ascertain that the radicand in (105) is minimized over q ¥ a for q � a. This yields

|αm�1∆̂
r1s�1| ¥

b

1�a2k2
�2a � k cos minp3arcsinp1{3q�α,γ� arcsinp1{3qq .

Similarly

|∆̂
r1s�1{αm| ¤ max

0¤p¤1{a

a

k2
� p2

�2kpcosγ ,

giving

|∆̂
r1s�1{αm| ¤ max

�




k2
�

1

a2
�2

k

a
cosγ,k

�

.

We need to prove for (104)

1�a2k2
�2ak cospγ� arcsinp1{3qq ¥ l2

�

k2
�

1

a2
�2

k

a
cospγq




� cos2 α , (106)

and

1�a2k2
�2ak cospγ� arcsinp1{3qq ¥ l2k2

� cos2 α (107)

for 0 ¤ γ¤ 2arcsinp1{3q�α.

The second alternative (107) is easier dealt with to test.

Thus consider the first alternative (106). The linear coefficient in k, when all terms are put left, is

cosγ

�

?

8

3
�2ka�2

k

a
l2 cos2 α




� sinγ �
2ka

3
. (108)

We test that with l as in (123)
?

8�
3l2 cos2 α

a2
¡ 0 .

Then the expression (108) as a function of γ, is decreasing for small γ¥ 0 until a local minimum at

γ � π� arctan

�

�

1
?

8�3l2 cos2 α{a2




Now, one tests that with l as in (123)

π� arctan

�

�

1
?

8�3l2 cos2 α{a2




¡ 2arcsinp1{3q�α

which shows that we need to evaluate (108) for the maximal γ � 2arcsinp1{3q �α. This leads then to testing the

following version of inequality (106),

cosp2arcsinp1{3q�αq2ka

�

?

8

3
�

l2 cos2 α

a2




� sinp2arcsinp1{3q�αq �
2ka

3
¥ k2

�

l2 cos2 α�a2
�

�

�

l2 cos2 α

a2
�1




,
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or

k2
�

l2 cos2 α�a2
�

� (109)

2ka

�

�cosp2arcsinp1{3q�αq

�

?

8

3
�

l2 cos2 α

a2




�

sinp2arcsinp1{3q�αq

3

�

�

�

l2 cos2 α

a2
�1




¤ 0 for all k ¥ l .

Again we collect (109) with some inequalities to follow to be tested when we fix (123).

Case 1.1.2. an�m�1  �1. Similar to previous case but easier because (102) implies (98) and (101) implies (97) (with

(53) and (94) checked).

Case 1.1.3. an�m�1 ¡ 1. Let ∆ � ∆̂
r1s and k � |∆|. We have

k ¥ 2|1� z|�
|z|

l
.

In our case with (123) one can again test that

�cosα�
sinα

?

4l2
�1

¤

1

cosα
, for 0 ¤ α ¤ 1.23 , (110)

to eliminate z in the range condition for z and test for (67) .

The angle between �∆̂
r1s and 1{αm�1 is at most |argpαm�1q|� |argp�∆̂

r1sq| which is below arcsinp1{3q� δ by (48)

and (50):

?p�∆̂
r1s,1{αm�1q ¤ arcsinp1{3q�δ . (111)

Let γ�?p�∆̂
r1s,1{αm�1q. Then by lemma 4.1,

?p�∆̂
r1s,1{αmq ¤ γ� arcsinp1{3q ,

and similarly to (111)

?p�∆̂
r1s,1{αmq ¤ arcsinp1{3q�δ .

Then by testing

aΦpα, lq ¥ 1 (112)

we have

ak ¡ cosγ

and can conclude

|αm�1∆̂
r1s�1| ¥ a

d

k2
�

�

1

a


2

�2k
1

a
cospγq .

Here we must work harder. If |αm�1| ¥ νm�1 ¥ a, then

|αm�1∆̂
r1s�1| ¥ νm�1

d

k2
�

�

1

νm�1


2

�2k
1

νm�1
cospγq .

The reverse estimate for |∆̂
r1s�1{αm| is far more painful.

Assume ν1m ¥ |αm| ¥ νm and let

Ωpνq �

d

k2
�

�

1

ν


2

�2
k

ν
cosminparcsinp1{3q� γ,arcsinp1{3q�δq ,
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so that

|∆̂
r1s�1{αm| ¤ maxpΩpν1mq,Ωpνmqq . (113)

Thus we need to ascertain

ν2
m�1

�

k2
�

�

1

νm�1


2

�2k
1

νm�1
cospγq

�

¥ l2
� cos2 α �

�

maxΩpν1mq,Ωpνmq
�2

(114)

for γ¤ arcsinp1{3q�δ.

We will write this inequality parametrically as p114qpνm�1,νm,ν
1

mq.

Case 1.1.3.1. m � 1. There is no difference to §3, and we are done by testing again (73).

Case 1.1.3.2. m � 2. By lemma 2.5 and lemma 2.6, we need to ascertain p114qp0.947,1.1,2q. Let

a1 � 0.947,b� 1.1,b1 � 2 .

Thus we need to ascertain

a12

�

k2
�

�

1

a1


2

�2k
1

a1
cospγq

�

¥ l2

�

k2
�

�

1

b


2

�2k
1

b
cosminparcsinp1{3q� γ,arcsinp1{3q�δq

�

� cos2 α ,

(115)

and

a12

�

k2
�

�

1

a1


2

�2k
1

a1
cospγq

�

¥ l2

�

k2
�

�

1

b1


2

�2k
1

b1
cosminparcsinp1{3q� γ,arcsinp1{3q�δq

�

� cos2 α .

(116)

Again one can discard the second maximum alternative, and restrict to 0 ¤ γ ¤ δ.

Case 1.1.3.2.1. (115) We maximize first the linear coefficient. Regarding this inequality as depending on γ, one has to

examine when

�a1 cosγ�
1

b
l2 cos2 αcospγ� arcsinp1{3qq �

�

l2 cos2 α

?

8

3b
�a1




cosγ�
l2 cos2 α

3b
� sinγ

is minimal when 0 ¤ γ ¤ δ. If

l2 cos2 α

b
  a1 ,

in particular if b,a1 ¥ a (again because of (41)), this expression is easily seen to be decreasing in γ¥ 0 until

tanγ� Ξ3pα, l,a
1

,bq �
l2 cos2 α{b

3a1�
?

8l2 cos2 α{b

This gives the minimal value

�

��

a1�
1

b
l2 cos2 α

?

8

3




cosmin
�

δ,arctanΞ3pα, l,a
1

,bq
�

�

l2 cos2 α

3b
sinmin

�

δ,arctanΞ3pα, l,a
1

,bq
�

�

Thus (115) can be rewritten

k2
pl2 cos2 α�a12q� (117)

2k �

��

a1� l2 cos2 α

?

8

3b




cosmin
�

δ,arctanΞ3pα, l,a
1

,bq
�

�

l2 cos2 α

3b
sin min

�

δ,arctanΞ3pα, l,a
1

,bq
�

�

�

�

l2 cos2 α

b2
�1




¤ 0
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for all k ¥Φpα, lq from (66) .

Call this inequality p117qpa1,bq. So we need to test p117qp0.947,1.1q.

Case 1.1.3.2.2. (116) By repetition of the previous calculation, we need to test p117qp0.947,2q.

Case 1.1.3.3. m � 3,4,5. We need to ascertain p114qp0.885285,0.896456,1.5q.

Case 1.1.3.4. m ¡ 5. We need to ascertain p114qpa,a,1.2q.

Thus we need to ascertain

a2

�

k2
�

�

1

a


2

�2k
1

a
cospγq

�

¥ l2

�

k2
�

�

1

a


2

�2k
1

a
cosminparcsinp1{3q� γ,arcsinp1{3q�δq

�

� cos2 α . (118)

and

a2

�

k2
�

�

1

a


2

�2k
1

a
cospγq

�

¥ l2

�

k2
�

�

5

6


2

�2k
5

6
cosminparcsinp1{3q� γ,arcsinp1{3q�δq

�

� cos2 α . (119)

Case 1.1.3.4.1. (118). We maximize first the linear coefficient. Regarding this inequality as depending on γ, one has

to examine when

�a2 cosγ� l2 cos2 αcospγ� arcsinp1{3qq �

�

l2 cos2 α

?

8

3
�a2




cosγ�
l2 cos2 α

3
sinγ

is minimal when 0 ¤ γ ¤ δ. This expression is decreasing until

tanγ �
l2 cos2 α

3a2
�

?

8l2 cos2 α

This gives the maximal value

�

��

a2
� l2 cos2 α

?

8

3




cosmin

�

δ,arctan

�

l2 cos2 α

3a2
�

?

8l2 cos2 α





�

l2 cos2 α

3
sinmin

�

δ,arctan

�

l2 cos2 α

3a2
�

?

8l2 cos2 α



�

Thus (118) can be rewritten

k2
pl2 cos2 α�a2

q� (120)

k �
2

a
�

��

a2
� l2 cos2 α

?

8

3




cosmin

�

δ,arctan

�

l2 cos2 α

3a2
�

?

8l2 cos2 α





�

l2 cos2 α

3
sinmin

�

δ,arctan

�

l2 cos2 α

3a2
�

?

8l2 cos2 α



�

�

�

l2 cos2 α

a2
�1




¤ 0

for all k ¥ 2|1� z|�
|z|

l
. (121)

Again, one can eliminate z in (121) and test for k in (67).

Case 1.1.3.4.2. (119). We maximize first the linear coefficient. Regarding this inequality as depending on γ, one has

to examine when

�acosγ�
5

6
l2 cos2 αcospγ� arcsinp1{3qq �

�

l2 cos2 α
5
?

8

18
�a




cosγ�
5l2 cos2 α

18
� sinγ
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is minimal when 0 ¤ γ ¤ δ. This expression is decreasing until

tanγ� Ξ2pα, lq �
5l2 cos2 α

18a�5
?

8l2 cos2 α

This gives the maximal value

�

��

a�
5

6
l2 cos2 α

?

8

3




cosminpδ,arctanΞ2pα, lqq�
5l2 cos2 α

18
sinminpδ,arctanΞ2pα, lqq

�

Thus (119) can be rewritten

k2
pl2 cos2 α�a2

q� (122)

2k �

��

a� l2 cos2 α
5
?

8

18




cosminpδ,arctanΞ2pα, lqq�
5l2 cos2 α

18
sinminpδ,arctanΞ2pα, lqq

�

�

�

25l2 cos2 α

36
�1




¤ 0

for all k ¥Φpα, lq from (66) .

Maximizing a quadratic expression in k over an interval is no problem, and MATHEMATICA shows that with a� 0.85

one can choose
l � p0.61�α{30q{pcosαq11{10�α{60 for α ¥ 0.77

l � p0.61�α{30q{pcosαq13{10�α{60 for α   0.77
(123)

to satisfy all inequalities in the subcases of Part 1.1 simultaneously when α ¤ 1.23. The inequality (122) in case

1.1.3.4.2 is the hardest to satisfy, and is one further reason we had to dig so deep in §2.

Part 1.2. Next, we need to care about angles. Let ∆ � ∆̂
r1s.

Case 1.2.1. Continue assuming an�1 � 1 and ∆̂n�1 � ∆̂
rm�1s. If an�m�1   0, then we have some difficulty. For m¡ 1,

much of this is moved to lemma 4.2.

Using lemma 4.2 for m¡ 2,
�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

¤ arcsinp1{3q .

With (40) we have

�

�arg�∆̂n�1

�

�

¤ |argp�zq|� |argpαm�1q|�

�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

¤ 2arcsinp1{3q� |argp�zq| ,

as we wanted in (95).

For m� 2, we observe that (by comparing (31) after the variable change)

zα3 � z �
1�

�

�

1
z

�3

1�
�

�

1
z

�2
� z �

�

1�

�

�

1
z

�2

1� 1
z

�

� z�
1

z�1
,

which easily shows that

|argp�zα3q| ¤ |argp�zq| .

This is how we can grant ourselves an extra arcsinp1{3q on the right in (126) for m � 2.

We need to treat m� 1 extra here. We have with α2 � 1�1{z and ∆� ∆̂
r1s from (40),

�∆̂
r2s � �zα2

∆̂
r1s�1{α2

∆̂
r1s

� �z

�

α2�
1

∆




� 1� z�
�z

1� z
�

1� z

∆
.
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We like to use lemma 3.2 and check

|1� z| ¡

�

�

�

�

�z

∆

�

�

�

�

,

which (see (124) below) is equivalent to

2

b

2� cosα�
a

cos2 α�4cosα�3¡
1

lpαq
.

Thus using (98) and (102), and lemma 3.2,

|argp�∆̂
r2sq| ¤max

�

|argp1� zq|,
1

2

�

�

�

�

�

arg
�z

1� z

�

�

�

�

� arcsin

�

|z|

l|1� z|




�|argp1� zq|


 


.

Thus to show is

1

2

�

α� arcsin

�

|z|

l|1� z|





�

1

2

�

|argp1� zq|�

�

�

�

�

arg
�z

1� z

�

�

�

�

� arcsin

�

|z|

l|1� z|





¤ |argp�zq|�2arcsinp1{3q .

As long as l in (81) depends only on α � |argp�zq|, for given α, one can see that 1{|α2| � |z|{|1� z| � 1{
�

�1� 1
z

�

� is

maximal when �1{z� x� f pxq
?

�1, with the notation in §2. Then from (35),

�

�

�

�

1�
1

z

�

�

�

�

�

b

f pxq2 �p1� xq2 � 2
a

2� y � 2

b

2� cosα�
a

cos2 α�4cosα�3 (124)

We have to show

α� arcsin

�

1

l|α2|




¤ 2α�4arcsin

�

1

3




,

or

arcsin

�

1

2
a

2� cosα�
?

cos2 α�4cosα�3 lpαq

�

¤ α�4arcsin

�

1

3




.

This test succeeds for α ¥ 0.1.

Case 1.2.2. an�m�1 ¡ 1. Again using (40), it is enough to see

�

�

�

�

arg
∆�1{αm�1

∆�1{αm

�

�

�

�

¤ arcsinp1{3q .

Now

|∆| ¥ 2|1� z|�
|z|

l
, ?p1{αm�1,1{αmq ¤ arcsinp1{3q and

�

�

�

�

1

αmr�1s

�

�

�

�

¤

1

a
.

We have

�

�

�

1
αmr�1s

�

�

�

¤ |∆| by (112). Trigonometry in the triangles with vertices 0,∆,∆�1{αm and 0,∆,∆�1{αm�1 and

an easy argument shows that

?p∆�1{αm�1,∆�1{αmq

is maximal when |∆| � 2|1�z|�|z|{l, |αmr�1s| � a,?p1{αm�1,1{αmq� arcsinp1{3q and argp�∆αmq��argp�∆αm�1q.

This gives

sin
?p∆�1{αm�1,∆�1{αmq

2
¤

sin
arcsinp1{3q

2

a




�

2|1� z|�
|z|

l

	2

�

�

1
a

�2
�2 1

a

�

2|1� z|�
|z|

l

	

cos
arcsinp1{3q

2

First, we check again with (110) that

2|1� z|� |z|{l

decreases with |z| when α is fixed. Thus we can set ℜe z ��1, whence |z| � 1{cosα and |1� z| �
?

4� tan2 α (see

(83)). Now to see

?p∆�1{αm�1,∆�1{αmq{2¤ arcsinp1{3q{2
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it is enough to see for α � |argp�zq|, with Φpα, lq as in (54), and testing (69), that

sin
arcsinp1{3q

2

a

b

Φpα, lq2 �
�

1
a

�2
�

2
a
Φpα, lqcos

arcsinp1{3q

2

¤ sin
arcsinp1{3q

2
,

which is true for l in (123) and a � 0.85.

This finishes an�1 � 1. The case an�1 ��1 is analogous.

Case 2. an�1 ¡ 1. We need to derive the estimate (99) of the angle. The norm estimate is quite clear (recall the remark

below (103)).

We will use (36) in the form

∆̂n�1 � an�1pz�1q�
z

∆̂n

.

Consider △ABC with η,β,γ angles at A,B,C. Let AB� 2|1� z|, AC � |z|{l and

η� 2arcsinp1{3q� |argp1�1{zq|� |argp�zq| .

We have (compare (83))

sin |argp1�1{zq| �
cosαsinα

?

1�3cos2 α
, cos |argp1�1{zq| �

1� cos2 α
?

1�3cos2 α
.

We need an upper bound on β. First, from l ¥ 0.5 we have AC   AB, thus β¤ π{2.

The Sine and Cosine theorems give

sin β �

sinη � |z|
a

4|1� z|2l2
�|z|2�4 � |1� z| � l � |z| � cosη

This estimates

?p∆̃n�1,pz�1q∆̃nq � ?p�∆̃n�1,p1� zq∆̃nq ¤ β

and

|argp�∆̂n�1q| � ?p�∆̃n�1, ∆̃nq ¤ β�|argp1� zq| . (125)

Next, for given fixed |z|, it is easy to see that |1� 1{z| (or equivalently, |1� z|) is smallest, and all of |argp�zq|,

|argp1� zq|, |argp1�1{zq| largest when ℜe z1 ��1. Thus consider only this case. Then the formulas in §2 show that

|argp�z1q| �: α1 ¤ arccos
�

2� cosα�
a

cos2 α�4cosα�3
	

,

leading to (42). Now assuming z1 � z, we have (83). Thus

sinβ �

sin
�

2arcsinp1{3q� arctan
�

cosα sinα
1�cos2 α

	

�α
	

cosα




4p4� tan2 αql2
�

1
cos2 α

�4 � l
cosα �

?

4� tan2 αcos
�

2arcsinp1{3q� arctan
�

cosα sinα
1�cos2 α

	

�α
	

,

which with (125) and (83) yields the expression (94). The inequality there is to be tested:

arcsin
sin
�

2arcsinp1
{3q� arctan

�

cosα1 sinα1

1�cos2 α1

	

�α1
	

cosα1



4p4� tan2 α1ql2
�

1
cos2 α1

�4 � l
cosα1 �

?

4� tan2 α1 cos
�

2arcsinp1
{3q� arctan

�

cosα1 sinα1

1�cos2 α1

	

�α1
	

�arctan
tanα1

2
¤ 2arcsinp1

{3q�α .

It is true for α ¤ 1.23.

The case an�1  �1 is analogous.

With this the induction is complete. l
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Lemma 4.2 Let |∆| ¥ l and argp∆q ¤ 2arcsinp1{3q� |argp�zq| with α � |argp�zq| ¡ 0.1. Then for m¡ 2,

?p∆�1{αm�1,∆�1{αmq ¤ arcsinp1{3q .

For m� 2,

?p∆�1{α3,∆�1{α2q ¤ 2arcsinp1{3q . (126)

Proof. Part 1. Inner ray. To some extent we use the proof of lemma 3.3.

Consider this picture

DO

C

E

¤

1
{a

k

B

A

arcsinp1
{3q

δ� arcsinp1
{3q

δ

η

arcsinp1
{3q

η�δ

η�δ� arcsinp1
{3q

π�η�δ� arcsinp1
{3q

η�δ

Let m̂ P tm,m�1u be so that ?p∆,1{αm̂q ¥?p∆,1{αm̃q for m̃� 2m�1� m̂.

We set D � 0. Now O is ∆ and OC � 1{|αm̂|. We fix ?BCD � arcsinp1{3q and must consider the largest distance

between O and a point in △AOB, which is

max OA,OB . (127)

We must prove that |1{αm̃| is larger than (127), which we rewrite below as (128). Let k � OD� |∆| ¥ l. Here

η � ?EOC ¤ 3arcsinp1{3q�α .

Case 1.1. m¡ 2. Our goal is

maxpOA,OBq ¤
1

Mα,m̃
, (128)

where

Mα,m̃ � maxt|αm| : m¥ m̃, |argp�zq| � αu . (129)

These numbers were determined in lemma 2.9.

Our first goal is to show that OB can be often removed from that alternative.

First, one tests that

cosη ¥ cosp3arcsinp1{3q�αq ¡ �la¥�

k

OC
, (130)
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thus δ   π{2. This will be important.

η

.

C

O k

¤

1
{a

The problem so far depends on three parameters, η, OC and k. We have to remove first the dependence on OC and k.

Case 1.1.1. Assume

η�δ  π{2� arcsinp1{3q{2 . (131)

We have again by Sine law

OA � x� OC �
sinpδ� arcsinp1{3qq

sinδ
(132)

with δ as in (86). (If the expression is negative, we are done.)

Observe that

OB�
OA sinpη�δq

sinpη�δ� arcsinp1{3qq
. (133)

Because of the case assumption, we have OB  OA, and thus can discard OB in (127).

First, fix k, η. We observe again from (132) and calculus that AO is largest when δ is largest. Increasing OC ¤ 1{a

at fixed k, η does not lead out of the case assumption (131) and increases δ and hence by (132) also OA. Thus it is

enough for the rest of the argument to set OC � 1{a. Then (132) becomes

OA� x �
1

a
�

sinpδ� arcsinp1{3qq

sinδ
. (134)

By testing (130), one ascertains that δpη,k,aq is decreasing in increasing k ¥ l for fixed η,a. Thus it is enough to

decrease k until k � l (and this does not lead out of the case assumption).

We observed the expression for OA is increasing in δ. Under the assumption of the case, δ is increasing in η, for fixed

k (now k � lpαq).

Thus put only the maximal

η �min

�

3arcsinp1{3q�α ,

π

2
� arcsin

1

la




. (135)

(Note that η�
π

2
� arcsin

1

la
is where δ is maximal over η for k � l � lpαq fixed, and then η�δ�

π

2
, which is out of

our case. Thus the stated value for η is in fact more generous than we need. It turns out, though, that for a� 0.85, the

first alternative is always smaller.)

We have to evaluate (134) for k � l � lpαq and η in (135) and test ¤ 1{Mα,m̃ to get (128).

This test succeeds for m̃ ¥ 5. For m̃ � 4 we can succeed by setting a4 � 0.896456� mint|α3|, |α5|u by lemmas 2.8

and 2.6. For m̃� 3 we must be more careful, and replace a by

a3pαq �mint|α2|, |α4| : |argp�zq| � αu ,

and let a3 depend on α.

Case 1.1.2. We assume

η�δ¥ π{2� arcsinp1{3q{2 . (136)
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So we have the picture

DO

C

h

k

k

k

k

k

k

k

k

k

i

k

k

k

k

k

k

k

k

k

j

B

A

¤

1
{a

εη

η�δ

(137)

Let Mα �Mα,3 from (129). To remove the dependence on α, we use that since η¤ 3arcsinp1{3q�α,

Mα ¤ M̃η :� maxt Mα : arccosp1{3q ¥ α ¥maxp0.1,η�3arcsinp1{3qq u .

We show that it’s impossible that both OB¡OA and OB¥ 1{M̃η. Assume that it is so. We will show the contradiction

that ?BDC   arcsinp1{3q. The picture

Z

C

B D

X

¥

π
{2� arcsinp1

{3q{2

¤ arcsinp1
{3q{2

δ

¥ π{2

arcsinp1
{3q

shows that when D moves right, then ?BDC decreases. This can be seen thus.

Let X be a point on the ray indicated by the arrow.

Consider the circumcenter Z of △BCD. Assume first?BCD  π{2, so Z lies on the same side of BD as C. From (136)

we have that

?ZDB¤ arcsinp1{3q{2 . (138)

Now, it is easy to see that ?BDO decreases when OA is fixed and OB ¥ OA increases. Moreover, for OB � OA we

have ?BDO� η� arcsinp1{3q{2�π{2 and

η¤ 3arcsinp1{3q�α¤ π{2�2arcsinp1{3q . (139)

Thus ?BDO¤ 3arcsinp1{3q{2. Hence with (138)

?ZDO¤ 2arcsinp1{3q   π{2 .

This conclusion obviously works also (even more easily) when ?BCD¥ π{2, so Z lies on the opposite side of BD to

C (then?ZDO  ?BDO).

And so

?ZDX � π�?ZDO¡ π{2 .
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Thus the ray DX lies outside the circumcircle of △BCD and?BDC decreases locally when D moves right in direction

X . Then ?BDC must also decrease globally when D moves right (and OB ¥ OA remains true under this move; the

condition (136) will also be preserved when D moves right, because C is fixed and B moves on OC so that ?BCD

increases).

Moreover, D is easily seen to move right when OB increases at fixed AO, or both OB and AO increase by the same

amount. This shows that we need to consider only AO� OB� 1{M̃η in the picture (137).

Using the picture

B

A

1{M̃η

arcsinp1
{3q{2

η� arcsinp1
{3q{2

O D

one easily finds

k � OD � �

cosparcsinp1{3q{2q

M̃η cospη� arcsinp1{3q{2q
� �

a

3�
?

8
?

6M̃η cospη� arcsinp1{3q{2q
. (140)

We consider only k ¤ 3OC ¤ 3{a, because otherwise ?BDC  ?ODC   arcsinp1{3q and we are done. This gives

η ¥

π

2
�

arcsinp1{3q

2
� arcsin

�

a
a

3�
?

8

3
?

6M̃η

�

¥

π

2
�

arcsinp1{3q

2
.

(Note that from (136) and assuming δ ¡ arcsinp1{3q, we have cospη� arcsinp1{3q{2q   0.) Thus

M̃η ¤ M̃π{2�arcsinp1{3q{2
,

and

η ¥

π

2
�

arcsinp1{3q

2
� arcsin

�

a
a

3�
?

8

3
?

6M̃π{2�arcsinp1{3q{2

�

.

Let â �
1

OC
¥ a. Thus with (140) we have to examine

?BDC �: ε � arcsin
sin η

a

â2k2
�1�2âk cosη

� arcsin
sinη

b

M̃2
ηk2

�1�2M̃ηk cosη
  arcsinp1{3q , (141)

for (recall (139))

π

2
�

arcsinp1{3q

2
� arcsin

�

a
a

3�
?

8

3
?

6M̃π{2�arcsinp1{3q{2

�

¤ η ¤
π

2
�2arcsinp1{3q .

Again because of (130) we can set â � a in (141).

We calculated ε �?BDC � εpηq explicitly and showed by plot ε   arcsinp1{3q. To simplify the calculation, we used

from lemma 2.9

M̃η ¤ M̃π{2�arcsinp1{3q{2
�Mπ{2�2.5arcsinp1{3q

� 1.18666  1.2 .

Thus not both OB¡OA and OB¥ 1{M̃η. But OB¡OA by (133) and case assumption. Thus OA OB¤ 1{M̃η ¤ 1{Mα

and we are done.
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Case 1.2. m� 2

D
O

C

A

|

1
{α3
| ¥ 2{3

|

1
{α2
| ¤

?

3{2¤ 1{a

¤ 2arcsinp1
{3q?

D
O

A C

|

1
{α2
| ¥ 1{2

|

1
{α3
| ¤ 1{0.94744

¤ 2arcsinp1
{3q?

The left case picture is in fact handled in case 1.1. Consider the right picture.

Our goal is

maxpOA,OBq ¤
1

M̂α
, (142)

where

M̂α � max

"

|α2| �

�

�

�

�

1�
1

z

�

�

�

�

: |argp�zq| � α

*

�

a

1�3cos2 α . (143)

Our first goal is to show that OB can be often removed from that alternative.

First, we tested from (130) with

a2 � min |α3| � 0.94744¡ a (144)

that

cosη ¡ cosp3arcsinp1{3q�αq ¡ �la2 ¡�ka2 ,

thus δ   π{2. This will be important. (As in case 1.1, one can set OC ¤ 1{a2 to OC � 1{a2.)

η

.

C

O k

¤

1
{a2

The problem so far depends on two parameters, η and k. We have to remove somehow the dependence on k.

Case 1.2.1. η�δ  π{2�3arcsinp1{3q{2. We have again

OA � x�
1

a2
�

sinpδ�2arcsinp1{3qq

sinδ
(145)

with δ as in (86). (If the expression is negative, we are done.)

First, fix k. Observe that

OB�
OAsinpη�δ� arcsinp1{3qq

sinpη�δ�2arcsinp1{3qq
. (146)

Because of the case assumption, we have OB  OA, and thus can discard OB.

We observe again that AO is largest when δ is largest. By testing (130), one ascertains that δpη,k,a2q is decreasing in

k ¥ l for fixed η,a2. Thus it is enough to decrease k until k � l (and this does not lead out of the case assumption).

We observed the expression for OA is increasing in δ. Under the assumption of the case, δ is increasing in η, for fixed

k (now k � lpαq).

Thus put only the maximal

η�min

�

3arcsinp1{3q�α ,

π

2
� arcsin

1

la2




. (147)
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We have to evaluate (145) for k � l � lpαq and η in (147) and test ¤ 1{M̂α to get (142).

Case 1.2.2. We assume

η�δ¥ π{2�3arcsinp1{3q{2 . (148)

So we have the picture

DO

C

h

k

k

k

k

k

k

k

k

k

i

k

k

k

k

k

k

k

k

k

j

B

A

¤

1
{a2

εη

η�δ

(149)

Note that with (148) and assuming δ¡ 2arcsinp1{3q we have

η ¡
π

2
�

1

2
arcsinp1{3q, so η�3arcsinp1{3q ¡

π

2
�2.5arcsinp1{3q ¡ 0.1 . (150)

To remove the dependence on α, we again set using η¤ 3arcsinp1{3q�α,

M̂α ¤ M̄η :� maxt M̂α : arccosp1{3q ¥ α ¥ η�3arcsinp1{3q u .

We have from (143)

M̄η �

b

1�3cos2
pη�3arcsinp1{3qq . (151)

We show that it’s impossible that both OB¥OA and OB¥ 1{M̄η. Assume that it is so. We will show the contradiction

that ?BDC   2arcsinp1{3q. The picture

Z

C

B D

X

¥

π
{2�3arcsinp1

{3q{2

¤ 3arcsinp1
{3q{2

δ

¥ π{2

2arcsinp1
{3q

shows that when D moves right, then ?BDC decreases. This can be seen thus.

Let X be a point on the ray indicated by the arrow.

Consider the circumcenter Z of △BCD. Assume first?BCD  π{2, so Z lies on the same side of BD as C. From (148)

we have that ?ZDB¤ 3arcsinp1{3q{2.
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Now, it is easy to see that ?BDO decreases when OA is fixed and OB ¥ OA increases. Moreover, for OB � OA we

have?BDO� η�arcsinp1{3q{2�π{2 and η¤ 3arcsinp1{3q�α¤ π{2�2arcsinp1{3q. Thus?BDO¤ 3arcsinp1{3q{2.

Hence

?ZDO¤ 3arcsinp1{3q   π{2 .

This conclusion obviously works also (even more easily) when ?BCD¥ π{2, so Z lies on the opposite side of BD to

C.

And so

?ZDX � π�?ZDO¡ π{2 .

Thus the ray DX lies outside the circumcircle of △BCD and?BDC decreases locally when D moves right in direction

X . Then ?BDC must also decrease globally when D moves right (and OB ¥ OA remains true under this move; the

condition (148) will also be preserved when D moves right, because C is fixed and B moves on OC so that ?BCD

increases).

Moreover, D is easily seen to move right when OB increases at fixed AO, or both OB and AO increase by the same

amount. This shows that we need to consider only AO� OB� 1{M̄η in the picture (149).

Using the picture

B

A

1{M̄η

arcsinp1
{3q{2

η� arcsinp1
{3q{2

O D

one easily finds

k � OD � �

cosparcsinp1{3q{2q

M̄η cospη� arcsinp1{3q{2q
� �

a

3�
?

8
?

6M̄η cospη� arcsinp1{3q{2q
. (152)

We consider only k ¤
9

2
?

8a2

, because otherwise ?BDC  ?ODC   2arcsinp1{3q and we are done. This gives (again

with cospη� arcsinp1{3q{2q   0 from (150))

η ¥

π

2
�

arcsinp1{3q

2
� arcsin

�

2
?

8a2

a

3�
?

8

9
?

6M̄η

�

¥

π

2
�

arcsinp1{3q

2
, (153)

and again from (151) and the rightmost inequality in (153),

M̄η ¤ M̄π{2�arcsinp1{3q{2
�

b

1�3cos2
pπ{2�2.5arcsinp1{3qq �

b

1�3sin2
p2.5arcsinp1{3qq .

Thus with (152) and (151) we have to examine

ε � arcsin
sinη

b

a2
2k2

�1�2a2k cosη
� arcsin

sin η
b

M̄2
ηk2

�1�2M̄ηk cosη
  2arcsinp1{3q

for (recall (139))

2.106539�
π

2
�

arcsinp1{3q

2
� arcsin

�

�

2
?

8a2

a

3�
?

8

9
?

6

b

1�3sin2
p2.5arcsinp1{3qq

�




¤ η¤
π

2
�2arcsinp1{3q � 2.25047 .
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We calculate ε �?BDC � εpηq explicitly and show by plot ε   2arcsinp1{3q.

Thus not both OB ¥ OA and OB ¥ 1{M̄η. But OB ¥ OA by (146) and case assumption (148). Thus OA ¤ OB ¤

1{M̄η ¤ 1{M̂α and we are done also with m � 2.

Part 2. Outer ray. However, we are not yet done with the proof. Because of the possibility η� δ ¡ π{2, there is a

further option (which does not occur in the proof of lemma 3.3).

D

η arcsinp1
{3q

δ

C

O k

1
{

|αm̂|

We need to consider also argp∆�αm̃q ¡ argp∆�αm̂q� arcsinp1{3q, with the meaning of m̃, m̂ P tm,m� 1u from the

beginning of the proof.

We have to exclude that the upper ray intersects or touches the circle.

We assume thus that

η�δ¡ π{2 . (154)

This occurs when 3arcsinp1{3q�α¡ η ¡ π{2� arcsin
�

1
ka

�

, thus assume in particular that

3arcsinp1{3q�α¥
π

2
� arcsin

�

1

ka




(155)

in particular δ decreases with η when η ¡ π{2� arcsin
�

1
ka

�

. The ray is closest when δ is smallest, thus assume

η � 3arcsinp1{3q�α.

This means we have to test

k � sinpδp3arcsinp1{3q�α,k,3{2q� arcsinp1{3qq ¡
1

a
, (156)

for m̂¥ 3 and

k � sinpδp3arcsinp1{3q�α,k,2q�2arcsinp1{3qq ¡
1

a2
(157)

for m̂ � 2 (with a2 as in (144)). We have to replace for the third argument a of δ upper bounds for |αm̂|, because we

want to show that the angle is too large even for the smallest OC � |1{αm̂|. In the case m� 2 we will handle (157) by

assuming m̂� 2, otherwise (m̂� 3) the treatment of (156) will handle the situation.

We will use the formula (86) for δ. Observe that because of (154), we must have δ  π{2, and thus the first alternative

in (86) will apply.

Case 2.1. m̂¥ 3. Note that we can assume k ¤ 3{a, because for k ¡ 3{a we have (156) even if we set δ � 0.

Thus combining with (155), we can assume

3

a
¥ k ¥

1

a � sin
�

3arcsinp1{3q�α� π
2

� (158)



50 4 The conjecture far from �1

Since we checked (130), we observed that δ decreases with k. We will first test (156) by evaluating the first factor on

the left for the minimal k in (158) and the second factor for the maximal k.

1

a � sinp3arcsinp1{3q�α�π{2q
� sin

�

�arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 81
4a2 �

9
a

cosp3arcsinp1{3q�αq

�




¡

1

a
. (159)

Now cosp3arcsinp1{3q�αq ¥ �1, and



1�
81

4a2
�

9

a
�

9

2a
�1¡ 2 , (160)

thus

arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 81
4a2 �

9
a

cosp3arcsinp1{3q�αq
  arcsinp1{3q� arcsinp1{2q   π{2

and 3arcsinp1{3q�α�π{2¤ 2arcsinp1{3q   π{2, thus in

sinp3arcsinp1{3q�α�π{2q   sin

�

�arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 81
4a2 �

9
a

cosp3arcsinp1{3q�αq

�




we can drop the outer sines, and it is implied by

2arcsinp1{3q�α ¤

π

2
� arcsin

sinp3arcsinp1{3q�αq
b

1� 81
4a2 �

9
a

cosp3arcsinp1{3q�αq
. (161)

MATHEMATICA tests this to be true for (and finishes off) α¤ 1.07, but for α P r1.07,1.23s, one more twist is needed.

Let α P r1.07,1.23s. Then we split (158) into two parts

k P

�

1

a � sinp3arcsinp1{3q�α�π{2q
,

1.6

a

�

and k P

�

1.6

a
,

3

a

�

The first range can be tested thus. First fix (160)

�

3

2
�

1.6

a


2

�1�2 �
3

2
�

1.6

a
�

2
?

8

9
¡ 4 ,

using that because of 2arcsinp1{3q�π{2¥ 3arcsinp1{3q�α¥ π{2, we have

�

2
?

8

9
¤ cosp3arcsinp1{3q�αq ¤ 0 . (162)

Then test in the style of (161)

2arcsinp1{3q�α 
π

2
� arcsin

sinp3arcsinp1{3q�αq
b

1� 9�1.62

4a2 �

3�1.6
a

cosp3arcsinp1{3q�αq
,

and the second by splitting further at 1.6{a,1.609{a,1.635{a,1.69{a,1.81{a,2.1{a,3{a: for each two consecutive

numbers b,c in the sequence 1.6,1.609,1.635,1.69,1.81,2.1,3, we examine

bsin

�

�arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 9c2

4a2 �
3c
a

cosp3arcsinp1{3q�αq

�




¡ 1 ,

and all these tests are successful for α P r1.07,arccosp1{3qs.
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Case 2.2. m̂ � 2. We consider (157). Note that we can assume k ¤ 9

2
?

8a2
, because for larger k we have (157) even if

we set δ� 0.

Thus combining with (155), we can assume

9

2
?

8a2

¥ k ¥
1

a2 � sin
�

3arcsinp1{3q�α� π
2

� (163)

Since we checked (130), we observed that δ decreases with k. We will first test (157) by evaluating the first factor on

the left for the minimal k in (163) and the second factor for the maximal k.

1

a2 � sinp3arcsinp1{3q�α�π{2q
� sin

�

�2arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 81

8a2
2

�

9
?

2a2
cosp3arcsinp1{3q�αq

�




¡

1

a2
. (164)

Now because of (162)

2arcsinp1{3q�arcsin
sinp3arcsinp1{3q�αq

b

1� 81

8a2
2

�

9
?

2a2
cosp3arcsinp1{3q�αq

¤ 2arcsinp1{3q�arcsin

�

�

�

�

1



1� 81

8a2
2

�

9
?

2a2
�

2
?

8
9

�

Æ

Æ




 

π

2

and 3arcsinp1{3q�α�π{2  π{2, thus in

sinp3arcsinp1{3q�α�π{2q   sin

�

�2arcsinp1{3q� arcsin
sinp3arcsinp1{3q�αq

b

1� 81

8a2
2

�

9
?

2a2
cosp3arcsinp1{3q�αq

�




we can drop the outer sines, and it is implied by

arcsinp1{3q�α ¤

π

2
� arcsin

sinp3arcsinp1{3q�αq
b

1� 81

8a2
2

�

9
?

2a2
cosp3arcsinp1{3q�αq

.

But this is now evident even with the rightmost arc sine term dropped.

This finishes also m� 2. l

5 Afterword

It is clear from the proof that the method will apply to such linear recurrent polynomials Pi also for other starting

values P0,1. Of course, as long as P0 � 0, the outcome says nothing new. But for P0 � 0 one can still gain similar

statements if |P1ptq{P0ptq| is large enough for the relevant z (with t � z1{2
� z�1{2). In fact, the Alexander polynomials

of alternating Montesinos links (a generalization of 2-bridge links) satisfy such a recurrence (as exploited in [St]), but

the conditions on P0,1 seem not strong enough to make the induction estimates here start properly. Thus the adaptation

of our method remains a future (and quite challenging) undertaking.
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