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Braid closure and braid index

knot K S1 ↪−−→ S3

link L S1 ∪ . . . ∪ S1

︸ ︷︷ ︸

n components

↪−−→ S3

K L

Definition 1 The braid group Bn on n strands:

〈

σ1, . . . , σn−1

∣
∣
∣
∣
∣

[σi, σj ] = 1 |i− j| > 1
σjσiσj = σiσjσi |i− j| = 1

〉

σi – Artin standard generators. An element β ∈ Bn is an n-braid.
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σi = . . .

i i + 1

σ−1

i = . . .

i i + 1

α · β =

α

β

Braid closure β̂:

β −→ β = β̂
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is a knot S1 ↪→ S3 or (more generally) link S1 ∪ · · · ∪ S1 ↪→ S3.

Note: # of components of β̂ = # of cycles of associated permutation π(β),

π : Bn → Sn , π(σi) = τi = (i i+ 1) .

We call β a pure braid if π(β) = Id.

Theorem 2 (Alexander ’23) Any link L is the closure of a braid β.

Definition 3 b(L) := min
{

n ∈ N : ∃β ∈ Bn, β̂ = L
}

braid index of L.

We call β a braid representation of L. If n = b(L) then β is called minimal .

Theorem 4 (Markov ’35, Birman ’76) If β̂1 = β̂2, then β1,2 are related by a
sequence of
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1. conjugacies in the braid group β 7−→ αβα−1

2. (de)stabilizations Bn 3 β ←→ βσ±1
n ∈ Bn+1

β
←→

β
or

β

First move ⇒ {β ∈ Bn : β̂ = L } is a union of conjugacy classes. Let

c(n, L) := # of conjugacy classes .

Conjugacy is Bn is well-understood (Garside, . . . ) ⇒ ‘easy’ part.
Second move (difficult part): how does it relate different conjugacy classes?

In this talk we will be mainly concerned with:
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Question 5 Fix a link L and n ≥ b(L). What is c(n, L)? In particular, when
is c(n, L) =∞?

Exponent sum and Jones conjecture

How to distinguish conjugacy classes? Simplest invariant: exponent sum.

Definition 6 H1(Bn) = Bn/[Bn, Bn] ' Z; homomorphism [ . ] given by σi 7→
[σi] := 1. [β] is writhe or exponent sum of β.

For a link L consider

WL := { (n,w) ∈ N× Z : ∃β ∈ Bn : [β] = w , β̂ = L }

and
w(n, L) := # {w : (n,w) ∈WL }

(the number of exponent sums of n-braid representations of L).
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For example, if L
knot =⇒ n+ w odd,

so WL ⊂ right diagram.
n

w

Stabilization shows that when (n,w) ∈ WL, then WL contains the “cone”
C(n,w) of (n,w), made up of all (n+k, w+m), for k > 0, |m| ≤ k with m+k
even:
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n

w

Corollary 7

w(n, L) ≥ n− b(L) + 1 . (1)

Corollary 8 c(n, L) ≥ n− b(L) + 1 .

Exponent sum distinguishes some conjugacy classes when n > b(L).
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Conjecture 9 (Jones ’87)
1. (weaker version) (1) is exact for n = b(L), i.e. WL ∩ ({b(L)} × Z) is one
point =: (b(L), w(L)) (‘Exponent sum of minimal representations is unique’)
2. (stronger version) (1) is exact for all n ≥ b(L), i.e. WL = C(b(L), w(L)).

It is known for certain classes of links. For example, Birman-Menasco proved:

Theorem 10 (Birman-Menasco ’93) Up to 3 strands only one minimal con-
jugacy class, and the conjugacy classes of its stabilizations, have same closure
link.

⇒ at most 3 classes have same closure link.
⇒ Jones conjecture is true when 3 ≥ n ≥ b(L). (I later showed (n >)3 ≥ b(L).)

One main tool to prove Jones conjecture: Morton-Williams-Franks inequality .
(We will not discuss it further in detail here.) It shows:

Corollary 11 For every link L and any n ≥ b(L), we have w(n, L) <∞.
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So the exponent sum is (not surprisingly) too weak to distinguish infinitely
many conjugacy classes of n-braid representations.

Constructing infinitely many non-conjugate braids

The first result is due to Morton:

Theorem 12 (Morton ’78) There is an infinite sequence of conjugacy classes

of 4-braids β with closure β̂ =© (unknot).

More recently: (2, k)-torus links (Fukunaga ’04). Then knots (Shinjo):

Theorem 13 (Shinjo ’05) K knot, n ≥ 4, ∃ n−1-strand braid β with closure

β̂ = K ⇒ ∃ infinitely many non-conjugate β′ of n strands with β̂′ = K.

Proof. Conjugate β and stabilize

β′ = αβα−1σn . (2)
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Consider axis addition link of β′:

β′

Conjugate braids have the same axis addition link. If one can distinguish axis
addition links by some link invariant, then braids are not conjugate. Use (the
second lowest term of) the Conway polynomial ∇ (and choose α well). �

First step of extension:

Theorem 14 (S. ’06) In theorem 13, K does not need to be a knot, but β
should be a non-pure braid. Then c(n,K) =∞.
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Proof. Mainly refining Shinjo’s argument. �

How about pure braids? Shinjo’s argument fails.

Definition 15 If β ∈ Bn is pure, one can define the i-th strand for 1 ≤ i ≤ n
on the conjugacy class of β. A subbraid of β is obtained by taking the i-th
strands for i ∈ I and I ⊂ {1, . . . , n}.

Fact: The center of Bn (elements that commute with all Bn) is infinite cyclic
and generated by (σ1 . . . σn−1)

n.

Theorem 16 (S. ’06) If β ∈ Bn−1 with L = β̂ and n ≥ 4 is pure and β0 is
not central for some 3-strand subbraid β0 of β, then c(n, L) =∞.

Proof. We use the Burau representation.

The Burau representation ψ of B3 is a homomorphism into algebra of 2 × 2
matrices over Z[t, t−1]:

ψ(σ1) =

[
−t 0
−1 1

]

, ψ(σ2) =

[
1 −t
0 −t

]

.
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The Burau trace trψ is a conjugacy invariant. Some linear algebra: construc-
tion (2) works unless ψ(β0) is a scalar matrix (all off-diagonal entries 0, all
diagonal entries same). The Burau representation is faithful in the case of B3

⇒ β0 is central. �

Application of Lie group theory

Theorem 17 (S. ’08) If β ∈ Bn−1 with β̂ = L is not central, n ≥ 4, then
c(n, L) =∞.

Proof. Entirely different (global) approach. Now we let α in (2) vary over all
of Bn−1 instead of constructing them explicitly.

We use the n-strand Burau representation ψn : Bn → GL(n− 1,Z[t, t−1]).

Theorem 18 (Squier ’84) When t ∈ C and |t| = 1, then ψn preserves a
Hermitian form on Cn−1. This form is definite for t ≈ 1, so Im ψn ⊂ U(n−1).
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Theorem 19 (Freedman-Larsen-Wang ’02, Marin ’07, S.-Yoshino ’06) For
‘proper’ t ≈ 1, Im ψn is dense in U(n− 1).

(Use Dynkin’s classification of maximal subgroups of the classical Lie groups.)

trψn(β′) gives a linear condition on ψn−1(αβα
−1), which is not a trace.

Proposition 20 A non-trace linear condition is not satisfied on any non-
central conjugacy class in SU(n).

. . . ⇒ done unless ψn−1(β) is central ?=⇒ β is central ??

But : the Burau representation is not faithful in the case n ≥ 5 (Bigelow,
Long-Paton, Moody; for n = 4 open)!

We use the faithful Lawrence-Krammer representation and repeat the whole
proof (incl. theorem 19, etc., which is now more difficult). �
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Extending Shinjo’s construction and exchange moves

The case n = b(L) of minimal conjugacy classes is far more difficult:

• Birman ’69 conjectured c(b(L), L) = 1 for all L. Murasugi-Thomas ’72
disproved this.

• But true for L = unlink (remark in problem 28) and ∃ further example
(Ko-Lee ’98).

• Apparently (no clear reference) true for L = torus link.

• Let
∆2

n = (σ1 · . . . · σn−1)
n

be the full twist on n strands. Tetsuya Ito (in a recent email to Shinjo)
announced :

(a) If β ∈ Bn has the form β = ∆2
nα with α positive (i.e. no σ−1

i ),

then (b(β̂) = n and) c(n, β̂) <∞.
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(b) If β = ∆2n
n α with α positive, then c(n, β̂) = 1.

So some links have c(b(L), L) < ∞. But many links have c(b(L), L) = ∞.
E.g.

Proposition 21 (S. ’06) L composite link L1#L2 with b(L) ≥ 4 such that
the components of L1,2 on which # is performed are knotted. In particular
any composite knot:

# =

Then c(b(L), L) =∞.
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Birman-Menasco ’92 introduced the exchange move. In its most general form,
it looks like:

α

β

−→

α

β

∆2

∆−2

, (3)

where ∆2 = ∆2
n−2 is the full twist on n− 2 strands.

It underlies the switch between conjugacy classes with the same closure link,
in a universal way.

Theorem 22 (Birman-Menasco ’92) The n-braid representations of a given
link decompose into a finite number of classes under the combination of ex-
change moves and conjugacy.

17



Let us say that an n-braid admits an exchange move if it has a word as on
the left of (3).

Corollary 23 If c(n, L) =∞, then L has an n-braid representation admitting
an exchange move.

In a joint project with Reiko Shinjo we are about to prove ‘most’ of the
converse:

Theorem 24 (Shinjo-S. ’10; almost) Let L have an n-braid representation
β admitting an exchange move with π(β)(1) 6= 1 and π(β)(n) 6= n. Then
c(n, L) =∞.

Corollary 25 Let K be a knot, or a link without trivial components, and let
n ≥ b(K). Then c(n,K) = ∞ iff K has an n-braid representation admitting
an exchange move.

=⇒ Proposition 21 for knots
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Example 26 All prime knots K of crossing number c(K) ≤ 10 and b(K) ≥ 4,
except 7 knots for c(K) = 9 and 15 knots for c(K) = 10 have a minimal
representation admitting an exchange move ⇒ c(b(K),K) =∞.

Remark 27 (regarding Theorem 24)

• Note that the exchange move is trivial when the leftmost strand of α
or the rightmost strand of β are isolated. So the condition on π(β) is
needed. (It is the weakest condition in terms of π(β) alone under which
the exachange move can work.)

• Using a construction of Stanford, one can ‘approximate’ these cases of
failure by others which cannot be told apart by any number of Vassiliev
invariants (including coefficients of ∇).

• It appears hardly realizable to extend the Lie group approach to any
useful degree for exchange moves. This is because the choice of α in (2)
is now very restricted (to powers of ∆2).
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Open questions

Theorem 17 is the maximum one can get out of (2). It settles question 5
almost fully for n > b(L). The most interesting missing case is:

Problem 28 Let L be the trivial n−1-component link ©© · · · ©
︸ ︷︷ ︸

n − 1

(unlink),

n ≥ 4. Is a braid representation β′ ∈ Bn of L conjugate to σ±1

1 ? (Remark:
Birman-Menasco ⇒ β ∈ Bn−1 is trivial.)

Problem 29 The case n = b(L) of minimal conjugacy classes is still difficult.
Theorem 24 suggests to seek braids admitting exchange moves, but how can we
identify what links have such (minimal) braids?

Problem 30 We don’t know about β with n > b(L) which are not conjugate
to stabilizations (Markov irreducible): known only for n = 4 and L = unknot
(Morton, Fiedler).
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