Introduction to Topology

Alexander Stoimenov

Chapter 1. Set Theory and Logic

1. Fundamental Concepts

set = {objects}
some logical fundamentals of set theory needed.
P={A:A¢ A}, then P¢ P=>PeP=P¢P

Russell’s paradox! but not discussed here.

Basic Notation

a€A element
at A not element
A>3a A contains a
AcB everyac€e AhasaeB
includes=Ac A
if excludes = write A ¢ B (proper inclusion)
B> A B superset of A or B contains A

notation of sets

{objects} {1,2,3}
{objects : property} {x:x even int.}

union/intersection/or/and

AuB union AuB ={x:xeAorzeB}
AnB intersection AnB ={x:xeAand z e B}
={xeA:xeB}



Remark or is not exclusive
“P or Q" means ok if P and Q
if we want to exclude P and Q
say “either P or Q” or “P or Q but not both”

@ empty set
if An B =@ then A, B disjoint
Vr,x ¢ @
Aug=AAng=0

if ... then
If P, then Q P = () means if P = true, then Q = true.
Qif P if P = false, then Q = true or false.

Pifand only if Q P < Q@

Ex. “if 22 <0,then z =237
P(x) = “2?2<0". Since Vz (P = false), “z = 23" (vacuously) true.

contrapositive/converse

P = @ (contrapositive) -Q = - P
Contrapositive is true if and only if the statement is true.
Contrapositive is logically equivalent.

P = @ (converse) (Q = P (not equivalent to P = Q)
P < @ means P= (@ and Q = P

Negation of quantified statements

(negation)
Ve P “=(Vz P)’=%“Jx =P’
3r P “(3z P) =“Yao P’

Set difference

A-B=A~B={xecA:x¢B}
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Figure 1- 1. Venn diagrams

AnB=BnA ANB+B~NA



Figure 1- 2. Venn diagrams

Au(BnC)+(AuB)nC

An(BuC)=(AnB)u(An(C) distributive law
Au(BnC)=(AuB)n(Au(C)

AN (BuC)=(A~B)n(A~C) DeMorgan’s law
AN(BnC)=(A~B)u(A~CO)

Collection of Sets

can form sets out of sets
P(A):={B:Bc A} power set of A
ae A= {a}c A< {a} e P(A)

Arbitrary Unions and Intersections

A family of sets

UA=JA={z:34cA zecA}

AecA
z is in at least one A € A
(A= (1A={z:VAeAd zeA}
AecA
risinall Ae A

Cartesian Products

AxB={(a,b)=axb : acAbeB}

2. Functions

We need a bit more formal definition to make precise domain

C, D sets, A rule of assignment is r c C'x D with

VeeC ({¢} x D) nr has at most one element
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Then define

domain(r) ={ce C: ({c} x D) nr + @}
image(r) ={de D : (C x{d}) nr + @}

Definition f = (r,B) is a function r is rule of assingment, B 2 image(r)
A :=dom(r) = dom(f) domain % 2]
59 range of f B oimage(r) =image(f) image of f X

Remark elsewhere (my other lectures) image = range %] %
analysis range=target & <

f=(r,B):A—> B acBletbeB be so that (a,b) er
(b unique!) f(a) =05 image of a under f
value of f at a

Definition ¢: A - B Agc A, where g=(r,B),rcCxD
g: Ao — B defined by (rn Ay x D, B)
g|Ag restriction of g to Ay

Ex. fiR>R  f(z)=2?
R, =[0,00) g:R, >R g(x)=2?
h:R—>]RT+ h($)=l‘2
k:R, >R, k(z)=2a?
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Figure 1- 3. Function f,g,h,k

(for us) are all diff, g = flg—, k = hlg;
(we keep record of range!)
Definition f: A- B g:B->C
Define composite go f: A - C go f(a)=g(f(a))
rule of assignment rg = {(a,c) e AxC:3be B (a,b) ery (b,c) er,}

Note we define go f only if range(f) = dom(g) (not subset)
!

Definition f:A - B injective ifVa+b a,beA f(a)# f(b)
(one-to-one) (e fla)=f(b) =>a=0b)
f:A-B surjective if Vbe B JaeA f(a)=0
(onto) (< image(f) =range(f) = B)
f:A->B bijective if f injective & surjective

(1-to-1 correspondence)



If f:A— B bijective, then exists f~!: B - A inverse
be B f71(b) = a with f(a) =b (f bijective - 3la)
f:A->A f(x)=x Ids identity function

lemma f:A- B
if 3g,h: B> A gof=1dy left inverse
foh=1I1dg right inverse
Then f bijective and g =h = f~1

Definition f: A - B Agc A

f(Ag) = {f(a):aeApy} image of Ay under f
= {beB:3acA, f(a) =0}
BycB Y (By)={aecA: f(a) e By} preimage of By under f
Remark If f bijective, then  f~1(By) = (f1)(Bo)
preimage image under inverse map
Remark f(f1(By))cBy “=7if f surjective

FH(f(Ag)) o Ay “="if f injective

3. Relations

@ equivalence relation @ order relation

Definition A relation on a set A is a subset C'c A x A
xCy if (z,y) € C “z is in the relation C to y”
oy
rxtcy (x,y)¢C “risnot in the relation C to y”

@ equivalence relation

Definition C c A x A equivalence relation if
(1) Reflexivity z~cx VzeA
(2) Symmetry Vz,ye A z~cy=y~cz
(3) Transitivity Va,y,z2€ A T ~cy,y~c 2= ~c 2

Ex. (= Ax A trivial equivalences
C={(z,x):xeA}
A=7 x~y<y-xiseven

Definition C c A x A equivalence relation
a€A acal [a] =[a].. ={beA:b~ca}c A

lemma Va,be A [a] = [b] or [a]n[b] =@
Two equivalence classes are equal or disjoint

Definition A set, £ family of sets is partition of A if
a) VA e £ @+ A’ c A nonempty subsets of A
b) VA, A" e & ifA’+ A" = A'n A" =g disjoint
¢) Uneg A'= A



{equivalence relations on A} < {partitions of A}

If ~¢ is equivalence relation of A = & ={equivalence classes} is a partition of A
If £ partition of A, define Va,be A a~¢gbif JA’ € £ a,be A’ is an equivalence relation

@ order relations (more important for us)

Definition C' c A x A (simple) order, linear order if
(1) Comparability Ve,ye Az +y x~cy or y~cx
(2) Nonreflexivity Vx € A z +¢c x
(3) Transitivity Va,y,z€ Ax ~c y,y ~c 2 =T ~¢ 2

Remark (2),(3) = “or” in (1) is either or
(Az,ye A:x ~cyand y ~c )

Ex. =R < usual order relation
=R x~cyer?<y?ora?=y% x<y

unusual order relation

A
A

Ex. (A,C) C order relation Bc A (B,C n (B x B)) restriction
usually use ‘<’ for order relation

Definition =<y x less thany, (A,<) ordered set
r{y<sr<yorxr=y
>y r<y
Y2r<YyY>rory=x
write x <y <z forx <y and y <z

Definition a,be (A,<) a<b
Define (a,b) = {z:a <x < b} open interval
if (a,b) = @ call b immediate successor of a b = succ(a)
a immediate predecessor of b a = pred(b)

Ex. (R,<) no element has immediate succesor and predecessor
because Ya<b (a,b) + @
(Q,<) similar

(Z,<) immediate succesor and predecessor of a € R is a + 1 and a — 1, respectively

Definition (A,<4) ~ (B,<p) same order type if
3f: A — B bijective and a; <4 az < f(a1) <g f(a2)

Ex. R=(-1,1) fl@) = [‘J
[0,1) = {0} U (1,2) f(0)=0 f(x)=a+1  §

Figure 1 - 4: /(1 -2?)



Definition (A,<4),(B,<p) ordered sets
Define <45 on A x B by
(a1,b1) < (ag,b2)if a; <4 as or a; = as and by <g by
It is called dictionary(lexicographical) order relation

Ex. Zx[0,1) with usual order has the order type of R with lexicographical order
f(zye)=z+e¢

[0,1) x Z has very different order type
every element has an immediate predecessor and successor

Bounds, Maxima, Suprema, ...

(A, <) ordered set, Agc A

b=maxAy largest element of Ay if b>x Ve Ay
b=minA, smallest element of Agif b<x Ve Ay

b e A upper bound for Ay if b>z Vre Ay
b e A lower bound for Ay if b<z Vze Ay (does not need to exist!)

Ap bounded above if Ag has upper bound
Ap bounded below if Ag has lower bound
bounded = bounded above + bounded below

Ag has least upper bound b if
b upper bound for Ag and Vx e A x <b: z is not upper bound for Ay

b= min{x : x upper bound for Ay}

b=supAy supremum

Ag has greatest lower bound b if
b lower bound for Ay and Vax € A 2 > b z is not lower bound for A

b = max{x : x lower bound for Ay}

b=inf Ay, infimum

Remark if b =supAj € Ag, then b=maxAg
if b :ianO € Ao, b :minAo

Definition (A,<) has least upper bound(l.u.b.) property
if VApcA Ay+@ Ay bounded above
J supApe A

(A,<) has greatest lower bound(g.l.b.) property
if VAjc A Ay+@ Ay bounded below
] iano e A

Theorem (A,<) has gl.b.p. < Lu.b.p.



Ex. Assume (R, <) has L.u.b.p. (discuss this later!)
then A =(-1,1),< has Lu.b.p.

proof. Agc (-1,1) Ag # @ bounded above in A,
dbe(-1,1) b>x VYae A
be Ay c R = Ay bounded above in R
R has Lu.b.p. = 3 least upper bound b of Ay in R
Ag#@ JaecAy a<b<b
now a,be Ag=(-1,1) =>be(-1,1)= A
b is least upper bound of Ay in A
Similarly all intervals in R have L.u.b.p.

Ex. A= (_170) U (07 ]-)
Ap ={-1/n:n>1} has upper bound but no least upper bound

4. Integers and Real numbers

need a bit more formal approach to real numbers via axioms

Definition f:Ax A - A binary operation on A
fla,a') = afa
define group, Abelian group, field

Definition The real numbers (R, +,-,<) is a set with two binary operations
+ addition, - multiplication
and one ordering relation < such that

(1)-(5) (R,+,) is a field

Mixed algebraic and order property
(6) Vr,y,zeR x>y=>x+2>y+2
>y, z>0=>x-2>y-2

order properties
(7) < has least upper bound property
(8) ifrx<z3Iy:x<yandy<z

-z is the additive inverse z+ (-z) =0
a-b=a+(-b) subtraction

= z~! is multiplicative inverse 1z — =1

r+0 —
T T
a

b+0

=a-b'=b1-a quotient

b

all other common properties of real numbers can be derived from these axioms (1)-(8)

Ex. if z>yz<0=>x-2<y-z
-1<0<1



(1) - (5) field
(6)

(7),(8) } linear continuum (topological term)

ordered field (= char = 0!)

Remark (8) < (1)-(7)
given x # z build y = xTJrZ with 2=1+1=0(!)

Definition z > 0 positive
x < 0 negative

formal definition of integers

AcRinductiveif le Aand Ve e Ax+1c A
A={AeR: A inductive}

(N, =)Z, = () A positive integers (natural numbers N)
AeA

Z=7Z,0{0}u -Z,
—
{-a:aeZ+}

Remark Z, cR, =(0,00) because (0,00) inductive
minZ, = 1.....[1,00) is inductive, so Z, c [1, )

define rational numbers

Q={m/n:m,neZ,n+0}

Theorem 4.1 (Well-ordering property)
AcZ, A+ 2= JminA A > smallest element

{1,--,n} =S,,1 section of positive integers S5 =@

Theorem 4.2 (Strong induction principle)
AcZ, and VneZ, S,c A= S,,;cA
(in particular, n=1 @ =S5, c A= Sy ={1}cA=1¢€A)
then A =7,

Lu.b. axiom (7) = Z, has no upper bound
(Archimedean ordering property)

= I/rz>0-/a=sup{z:x-x<a}

5. Cartesian products

Generalize A x B

Definition A family of sets
indexing function f:J — A f surjective J index set
a e J write f(a) e A as A,
A={As}aes

We don’t need f bijective so some set can be indexed multiply!



UJAs=J A={z: A, >z for at least one e J}

aeJ AeA
NAu=()A={z: A5z forall v e J}
aeJ AeA

Ex. J={1,2} A={A}, A}
ﬂAa=A10A2 UAQZAlUAQ

aed aeJ

Definition meZ, =N X set
m-tuple z of elements in X is x: {1,...,m} > X
x=(x(1),...,2(m)) x(7) € X i-th coordinate of x

A={A,..., A,} family indexed by {1,...,m}

Ay x - x Ay, = {z :m-tuple of X = JA; with z(i) € A,Vi=1,...,m}
i=1

Remark (AxB)xC~Ax(Bx(C)~AxBxC
((a,0),¢) < (a,(b,¢)) < (a,b,¢)

neZ, A"=AxAx---xA={(x1,...,2,):1;€ A}
(A={A} f:{1,....om} > A f(i)=Ai=1,...,m)

Definition (sequence set) X set
x:7Z, - X (infinite) sequence, w-tuple of elements in X

x=(x(1),2(2),...) = (x1,22,...) = (Tp)nen
X« ={x:x sequence in X}

A:{Ai}iel+
A1XA2><"':HAZ‘:HAZ':{.TEwaOI'X:UAZ'l'Z’EAZ'VZ'EZ+}
i=1 i=1

1€l

xe=T[X-=[]X
i=1

1€l

(later define [T e; Ao for A={A,}aes)

6. Finite sets and Cardinalities

Definition set A finite IneN 3f: S, ={1,...,n -1} - A bijective
|A|:=n-1eNu{0} cardinality of A |A|< oo
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Caution why is this well defined?

Can SmAAéSn m#+n
to prove is Af : S,, = S,, bijective if n # m

This is intuitively clear, but it is good to prove it formally using the tools from set theory
we developed. I skip details but it requires some steps which are important for other

reasons.

Theorem 6.2 Let A be a set. Assume 3f: A — {1,...,n} bijective

Let B A, B+ 2. ]
Then (1)3ImeNm<n f: B - {1,...,m} bijective
and (2) 3f: B - {1,...,n} bijective

The proof uses induction

C ={ne€Z, : Thereom holds}

prove that C' is inductive
leCifneC=n+1eC=0C=2,

Corollary
pf.

Corollary
pf.

Corollary
pf.

Corollary

Corollary

Corollary

if A is finite, 7 bijection between A and a proper subset B of itself
if A~ B since A~{1l,...,n}=B¢AB~{l,...,n}
previous theorem (2) = /

Z. =N is not finite
n—n+1 f:7Z, > 7Z.\{1} bijective

|A| is well defined(for A finite)

otherwise, {1,...,n} ~{1,---,m} m<n

K L

A finite B ¢ A = B fintite and |B| < |A|

The following are equivalent VB # &
(1)B is finite

(2)3f : S, —» B surjective for some n
(3)3f: B— S, injective for some m

Finite unions of finite sets are finite
A={Ax}acs |J]| <00 Vae J |Ay| < oo
=[JAul=1U Al <00

aeJ AeA
induction on |J| =n
|J|=2 A={A, B}
{1,...,.n} < A {1,...,m} < B
{1,....,n+m} e, AU B

induction set A, u---UA,, = (A, U---UA, 1)UA,
[ S —— ——
A B

11



7. Countable and uncountable sets

Definition A set infinite if not finite Vn Af : S,, — A bijective
A countably infinite if 3f : A - 7Z, bijective

Remark countably infinite = infinite

pf. if not 3 bijection(surjection) Z, - {1,...,n} = 3 injection i : Z, - {1,...

- {1,....n}eZ, I=i({1,...,n})g{l,...,n}
il1,.my : {1,...,n} = I bijection

{1,...,n} has bijection to proper subset 7

Definition A countable< A finite or countably oo
uncountable otherwise

Lemma (' cZ, infinite = C countalby infinite
bijecti . . .
pf. construct h:Z, e, ¢ with recursive definition

min

h(n) = smallest elemet of C\h({1,...,n-1}) > exists because cZ,

Cn-1

and prove h is bijective!

Recursive in terms of itself but care is needed e.g. h(n) =minC,,,; nonsense since
h(n) ¢ Cn+1

Principle of recursive definition (see book §1.8 for more detail; skip here)

If h(1) € A and 3 formula defining h(n) in terms of h(1),... h(n-1)
then this formula determines a unique function h:7Z, - A

Theorem Let B # @. Then the following are equivalent
(1) B countable (including finite!)
(2) 3f : Z, - B surjective
(3) 3f : B - Z, injective

Corollary B countable, C' ¢ B (=3)> C' countable

12
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Corollary Z, x Z, countably infinite

[ S
g o
N

i 9.
b1

i
’é\
:

Y
.
2

o& ‘(L‘:
\q \v \u

S L

pf-(1)

- i

¢ 2) ' 7 7

- W Adesy be Zi—> 2,-?,
Figure 1 - 5: proof

(2) define f:Z, xZ, - Z, by f(m,n) =2m3" injective
(prime factorization is unique)

FExercise Q countably infinite

Theorem countable union of countable sets is countable
i.e. A={A,}aes J countable Ya € J A, countable

= [ A countable
AeA
pf. fix g:Z, -~ J surjective

Vaeld fo:7Z, - A, surjective
consider h:Z, xZ, - | J Aa

aeJ

h(k,m) = fyn)(m) h surjective
Theorem Finite product of countable set is countable

n
ie. A,..., A, countable = [ ] A; countable
i=1

Remark not true for oo products
[]{0.1} = {0,1}* uncountable
i=1
{0,1}° — P(Z,)={A:AcZ,}
h((x1, 29, ..., Tp,...))={neZ, x; =1}
lifneA

h-1(A) = ith x,, =
(A) = (z1,29,...) with x Oifn¢A

Theorem VA 3 no bijection between A and P(A)

pf. assumeAép(A)

~ consider B={acA:a¢ f(a)} c A, BeP(A)
let b=f1(B)eA
it b= f1(B) e B=b¢ f(b) = f(/(B)) = B
itb¢B=bef(b)=B 4

pf. can be modified to f surjection A — P(A) (Exercise)
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Theorem(book) 3 no surjective map A - P(A)
3 no injective map P(A) - A

Notation we will write A = B “A embeds in B” if 3 f : A - B injective

Theorem R uncountable
pf. describe {0,1} - R injective

not 2 because  (0,1,1,1,...)

00 o I
($17---,$n,---)'—>23—; 1/2
i1 1

(1707' 707 )

now if R countable
3f : R - Z, injective
ho f:{0,1}* - Z, injective #
But this makes use of algebraic and analytic properties of R etc.. (convergence...)

later proof only using order properties

Definition If for f, A 3f: A - R bijective say
A has the cardinality R, of the continuum

linear continuum if bijection preserves order
Example {0,1}* has cardinality of the continuum (need a bit of proof!)

Remark

a) {AcZ, |A|< oo} all finite subset of Z, is countble!

b) (Z.,)g ={(z1,...) z;€Zy InVN>naxzy=0 } countable!

eventually zero integer sequence
| z.-z
¢) Z[t] = {polynomial with integer coefficients} countable

{algebraic numbers} = | J {roots of P}c R countable
PeZ[t]

d) transcendental numbers =R\{algebraic numbers} are uncountable
(Cantor’s proof of existence of transcendental numbers)
even although very hard to find explicit transcendental numbers
m,e,ab a rational, b algebraic but not rational
e.g. 2¥2  (Baker’s theorem)
but proofs are very hard!!

See Exercise 1.7.6 p.49

Definition Say sets A, B of same cardinality (“equicardinal”) |A| = |B],
if 3f: A— B bijective

Th (Schroeder-Bernstein) A< B, B— A = |A|=|B].
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9. Infinite sets and axiom of choice

Some criteria for infinite sets we had are sufficient to exactly characterize infinite sets

Theorem 9.1 A set, the following are equivalent:
(1) 3f : Z, — A injective
(2) 3A < B bijective B ¢ A
(3) 4] = o0
pf. important for us is (3)=(1) Assume |A| = oo
construct f(n) by induction
Ja; e Aset f(1):=a
da, € A\({1,...,n-1}) set f(n):=a,

An

This proof uses a choice of element in an infinite family of sets {A,}
The freedom of such choice does not follow from previous set constructions so we need a
new method

Axiom of choice(AC)

A:{Ai}iel AZ'#:@AZ'HA]'ZQ Z#:j (1)
= 3C c|JA; with [Cn Ay = 1Vie T 2)

iel

This is the same as saying 3f : A > UA with f(A)e AVAe A
because given f take C'=image(f) which satisfies (2) because of (1)
and given C' define f(A) =z forxeCn A

One can show (lemma 9.2 in book) that when one uses a choice function we can get rid
of the condition A; N A; =@

Lemma B family of sets 3c: B->UB
with ¢(B) e BVYBeB

now with this one can make proof of (3)=-(1) in Theorem 9.1 more precese

let C={A'cA: A"+ 2}
take c:C - UC
F(m) = c((AVF({L, . on = 11)..

AC did generate some controversy as to bizarre consequences like the Well-ordering the-
orem. But now it is widely accepted.

10. Well-ordered sets

Definition (A,<) well ordered if 3@+ A’ c A
smallest element a=minA’ € A’ exists

Example (Z,,<)
(Z,<) is not well ordered, neither

([0,1],<)  ((0,1),<)  (R,<)

15



Construction of well ordered sets
(a) if (A, <) well ordered and B c A
(B, < |Bxp) is well ordered
(b) A, B well ordered = A x B with dictionary order is well ordered

Theorem FEvery nonempty finite ordered set has the order type of (.S, <)
So is well ordered

Example 77 is well ordered with dictionary order
Z¥ also has a “dictionary order”

(CL17...7CLn7...)< (bl,...,bn,...)

if 34 aq =b1 o Qi :bi—l ai<bl-

but it’s not well ordered e.g.{(1,...,1,2,1,...,1) : i€Z,}
has no smallest element

is there another < making Z7 well ordered?

Theorem (Well-ordering theorem W.O.T.; Zermelo 1904) For every set A 3 <
such that (A, <) well ordered

This proof only uses the AC and startled many mathematicians at that time which led
to suspicions about AC.

Unfortunately the proof (as for the AC) is not constructive, so one can’t know what is
<7

Corollary da well-ordered uncountable set

Definition X well ordered set a € X let S, ={ze X :x < a}
section of X by «

(needed later)

lemma 3 well ordered set A with largest element €2
st. Sog={aeA:a<Q}=A\{Q}
is uncountable, but all other sections of A
Se ={a€A:a<a} are countable

write A = Sq U {Q} =S,

Example of something similar
({1} u{l-L:neZ.},<) well ordered
then Q=1 and |Sq| = 00 but Va<1 |S,|< o

Theorem if A c S countable then
A has an upper bound in Sq

11. The Maximum Principle
AC has several consequences (later proved equivalent to it) of the type “maximum prin-

ciple”
Two versions here

16



Definition A set, <c A x A is strict partial order(s.p.o)
if (1) Va € A a # a (Nonrefelxivity)
(2) Ya,b,c a<band b < c= a<c (Transitivity)
(like order but don’t need to compare all elements)

Ex. (P(A),%)
Remark a<b:< a<bora=>b defines a partial order(not strict)

Definition (A,<) s.p.o. set B c A is (simply) - I use the word ‘chain’
ordered subset if
< |pxp is an order on B
(i.e. Vb,c,e B: b<corc<b)

Ex. {S,:neZ,} cP(Z,) with ¢

Definition B is maximal ordered subset (=‘maximal chain’)
if B is ordered subset and VA > B’ 2 B, B’ is not ordered subset of A

Ex. A={S,:ne€Z,} is not max ordered
n
because AU {Z,} is ordered
I

but A" ={S,}U{Z.} is m.o. in (P(Z,),%)
pf. A¢ A AcZ, assume A'U{A} is ordered

if |[Al]=00 ADS, VYn=A=7, ¢ A}

if |A| < oo let m =maxA(e A)

then S,, c A or A(>m) c S,,(3 m)?

U
So Sp,u{m}cAc S,
I Sm+1
= A= Sm+1 € A,é

Theorem(Max Principle, <= AC) (A, <) s.p.o. set = 3B c A max (simply) ordered subset

Definition (A,<) s,p.o. set B c A subset
c € A upper bound for B if Vbe Bb=cor B<(C
Q € A is maximum element if dae€ A Q <a

Remark if A is ordered, maximum element €2 is unique(if exists), but not always when
A is strictly partially ordered

Lemma (Zorn) (A,<)s.p.o.
0 if VB c A ordered 3 upper bound of B in A
AC = A has a maximum element

This has some important applications:
@LA: every vector space(infinite dimension) has a basis(next page)
@functional analysis: Hahn-Banach

T":V'-> W V' cV linear

ATV - W T =T|y with ||T]| = ||T"|]
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@Deﬁnition cardinality

Theorem

§

W.O.T.

we say |A| < |B| B has greater cardinality than A
if 3c: A - B injective 3K : B - A injective
ACY ACY
3¢’ : B - A surjective 3K’ : A — B surjective
we say |A| =|B| B has same cardinality as A
if 3¢: A — B bijective

For any two sets A, B
either |A| < |B|, |A| = |B| or |B| < |A]
(Ex. 1.10.11) Cardinalities are “strictly ordered”

recall |Z,| = w infinitely countable cardinality
IR| = ]y “aleph zero” cardinality of the continuum

Continuum hypothesis A cardinality k£ with £ > w, K < Rg

Generalized C. h.  V|A| = o0, A cardinality k > |A|, k < |[P(A)|

independent of other set theory axioms!

Theorem

pf.

1)

2)

Remark

V VS over 'V has a basis

(use Maximum Priniciple)

K ={AcV:A linearly independent }

(K, ¢) cP(V) is s.p.o. set

3 max chain £ ¢ K (chain = (simply) ordered subset)

Consider B= | JEcV
EeE
we claim B linearly independent

)\Z‘EF Z)\ivi=Ov,~eE,~ EZE(S'
i=1
€ chain = 3j E; =max(E;)", > E; Vi
v; € B; E; € € c K linearly independent = \; =0
B generating
Assume B not generating. Jv ¢ span(B) veV
= Bu{v}(e K) linearly independent Bu{v} > E VE €&
Ko&=Eu{Bu{v}}>E&isachain in (K, g)
€ is maximal = &' =€ = Bu{v}e& =
vel| JE=B=1

FEe&
= B basis

highly non-constructive:
What is a basis of R over Q7
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