Chapter 2. Topological Spaces and Continuous Functions

12. Topological Spaces, topological operations, separation

Definition X set, Ac P(X) topoogy on X if
(1) 9. XcA
(2) closed under arbitrary union
AcAd:UA= [ AecA
Ale A
(3) closed under simple intersection

A BeA=AnBeA

Remark (3) < VA cA|A|<oo NA €A
closed under finite N

Definition (X,.4) topology call A € A an open set

Ex. A=P(X) discrete topology write (X,P(X)) = Xdiser
A ={2, X} trivial(indiscrete) topology

A = maximal chain in (P(X),¢) > HW

A={Ac X :|X\A4| <o} u{z}
finite complement (f.c.) topology

0 =
®oX

similarly: countable complement topology
trivial topology motivates

Definition (X, .4) topological space
x1,x9 € X are call topologically indistinguishable
ifVAe A (x1€e A= a9¢A)
| means
T1,T9 € Aorxy,x0¢ A
topology A cannot distinguish x, o

Definition (7 Kholmogorov axiom) - (very basic separation axiom)
A is Ty if 7 topologically indistinguishable points
<> Vo +ay JAe Arvie Aagd Aora ¢ Aage A

¢ o = 0 ° o '0

Figure 2 - 1

Let A be a topology on X. Define an equivalence relation on X by
1 ~ To < x1 is topologically indistinguishable from x5
Then let } equivalence class of x under ~

X=X/~={[z].: 2 X}
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and define a topology Aon X by
A={{[z].:xec A} : Ac A}

thus topology identifies (and removes) topologically indistinguishable points
(X, A) is called Kholmogorov quotient of (X..A)
Trivial topology is not Ty unless | X| =1

Ex. if A={@, X} then X = {+}

often will assume Tj

Definition (X, A) Ac X is called closed if X\A is open
{A;}ier, Ai closed, ({A;} = A closed A, B closed Au B closed

iel

Definition x € X. An O € A, O >z is called neighborhood of x

Definition (X,A) Ac X any set
Let Int(A) =U{A’e A: A’ c A}
the interior of A {z € X(x € A): 30 e Az €O c A}

={reX:30e A ze¢0OcA}

Figure 2 - 2. interior point

1) Int(A)c A

2) Int(A) =A< Aisopen (= Int(g) =g Int(X)= X)
3) Ac B=1Int(A)cInt(B)

4) Int(Int(A)) =Int(A)(< Int(A) open)

lemma

pf. 1) V
2) “<"open AeA' ={A'eA:A'c A}
AoInt(A)=UA'>A =Int(A)=A

1)
“=7Int(A)=A A=U{A' e A: A" c A}
| ——
t A
A c A28 A e A= A open

3) AcBA={A"eA:A'c A}
cB' ={B'eA:B'cB}
Int(B)=UB >UA =Int(A)

4) Int(A)=UA" for A’'c A= Int (A) open

2, Int(Int(A))=Int(A)



Definition (X, A) Ac X define the exterior«< try not to use much
Ext(A) = Int(X\A)
={zeX:30e A OnA=g}

x eExt(A) exterior point
Figure 2 - 3. exterior point

closure

A= X\Ext(A) = X\Int(X\A)
={reX:VOeAO>30=>0nA=*g}

Lemma Properties of closure
A>A A=Ae Aclosed(=2=02,X =X)
A=A (ie. Ais closed)
AcB=AcB

Remark V VS S cV set span has similar properties:
span(S) > S
S 5 S" = span(S) > span(S’)
span(span(S))=span(.S)
Operations of this sort are called hull operations
[Similar conv(X') convex hull]
so closure is a hull operation

Definition Ac X Bd A=A4n X\A=A4\Int(A)
elsewhere is called (top.) boundary of A
(0A!) BdA={zeX:YVOecAOecx O¢ AOnA+2}
x € Bd A is called boundary point

x €eBd(A) boundary point
Figure 2 - 4. boundary point

Ex. A= discrete top. all Ac X open = and closed
A=Int(A)=A Bd A=A\Int(A) =

Ex. A= trivial top. Ac X A+@, X
Int(A)=0 A=XBdA=X



Definition we say (X,.A) is 71 (Fréchet)
if Vo # 29 3 OLQEA : O1314 01¢$2m029$2 02#1‘1

Figure 2 - 5. T7 axiom

Lemma 7T) g points are closed 4(;)» finite sets are closed
{z} ={z}
pf. (2) because closedness is invariant under finite union
() Ais Ty let 2y € X 0 % 1
x93 Og open Oy ¢ 17 Ogn{z1} =2
=>mxo ¢ {1} Vg tm

= {1} = {71}

T1 = Ty but not converse

o oy (2%

Figure 2 - 6

A is T(] {.Tl} = {:1:1,:1:2}
Ex. finite complement(f.c.) topology is T}

Definition (X,.A) is 75 (Hausdorff)
if Voi,29 € X 21 # 29 3013 21 O35 X5 O; open
01 n 02 =g

() (.
L o

Figure 2 - 7

Ty = T (= T,) but not converse

Ex. |[X|[=o00, A=fc. topon X
r1,90€ X X1 % X9
019ZE1029I‘2 OZEA
01,02 *J = |X\Ol|, |X\OQ| < 00
[X\(O1n O2)] =[(X\O1) u (X\O2)| < 0
| X[=00=01n0y+ @ f.c. top. is not Hausdorff



Definition (X, A"),(X,.A) two topologies on same space

we say A’ is finer than Aif 4’5 A
strictly finer than A2 A

coarser than A'c A

strictly coarser than A ¢ A

I to usage of “weaker/stronger”, “higher/smaller” elsewhere (try to avoid)

Remark of course if Ais T; (i=0,1,2)
A’ finer = A’ is T}, too

Remark A ->AAcX ZAI c ZA
Int 4 (A) > Int4(A)

Definition A c X is dense if A= X.
X is separable if 34 ¢ X dense and countable (p.189-190 in book)

13. Basis for Topology

most important topologies. we will work with can be defined through a basis

Definition X set Bc P(X) is a basis for topology on X if
Bl) VexeX 3BeB zeB < UB=X
B2) VBy,ByeB VreX
reBiNBy dB3eB x€BscB;nBy

»
7

N

Figure 2 - 8

Definition X = (X,.A). B is basis for topology A
the topology A is generated by B A = A(B)

AcA=VreAIBeBreB Bc A (%)
Remark Bc A

Lemma Ac A< A=U{BeB:BcA}
pf. = AoU{BeB:BcA} AcU{BeB:BcA} by (%)
< A=U{BeB:BcA}

I
VzeAIBeB BcAB>«x

I
Ae A
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Figure 2 - 9

Lemma Ac A< 3IB'cB A=UB
= B ={BeB:BcA}

< A=UB VreA3dBeB xeB BcUB =A

=AeA
so open sets are unions of basis elements

Lemma A(B) is a topology
pf. A(B)={UB':B c B}
B=g=>0cA
B'=Buse Bl) = XeA
{Astaerc A Ay=UB, B,cB
UA.=UUB.=UUB, €A

—_——
cB

assume A’ A" € A
A/:UB/ A//:UB// B,,BIIEB
let re AnA”"= IAB'eB’ xeB' nB"

B// € B//
N B'c A
B B// I A//

2 3B eBcA weB"cBnB"

reB"cA NnA"
Vee AnA”" IB"ec A xeB"cAnA"
= A'NnA"isopen = A'nA”eA

Lemma (B.2) (X,A4) CcA
how to identify VOe A xeO 3JUeC xeUcO
a basis = (C is a basis

B B’
Lemma (X, A),(X,A")
A>A<=VereX VBeB
A’ finer reB=3B"eB" xzeB'chB




Definition (R,<) B={(a,b):a<b} (a,b)={zr:a<z<b}
topology generated by B is called standard (Euclidean) topology on R
assumed below by default

Definition B’ = {[a,b):a < b}
R, = (R, A(B")) lower limit topology

Lemma (X, A) basis B Int(A)=U{BeB:BcA}

Ex. 1) A=(0,1) AcR
A=[0,1] Int(A)=A=(0,1) (A open)
2) A={1} A=A Int(A) =0

Bd A=A
3) A=[0,1) A=[0,1] Int(A)=(0,1)
Bd A={0,1}
4) A=Q Ja’,a" € (a,b) o' €Q a”eR\Q
A=R Int(A) =@
Bd(A) =R rational and irrational numbers are dense
Ex. Ry

1) A=[0,1] Int(A)=][0,1)
A=A BdA={1}

2) A=[0,1) Int A=A=[0,1) A open and closed!
A=A BdA=¢

3) A={1} IntA=92
A=A BdA={1}

4) A=Q like previous example

Definition X set S subbasis S cP(X)
topology of X is the topology with basis US = X
B={N&":8cS|S< o}
finite intersections of elements in S
A = unions of finite intersections of elements in S

14. The Order Topology

First major source of important topologies!

Definition (X, <) ordered set a<b
(a,b) ={z:a<x<b}
[a,b) = {z:a <z <b} etc. (had before)

Definition (X, <) ordered set. the order topology A on X
is the one with basis B consisting of
1) all open intervals (a,b) a<b
2) [ag,b) ag smallest element b > aq (if Jag!)
(a,bg] by largest element a < by (if 3bo!)



Ex. |X]|<oo X ordered = A discrete topology
similarly (Z,,<)

Ex. (R,<) A= Euclidean topology on R
Ex. R xR with dictionary order

Recall axb>cxd<a>cor (a=candb>d)
no smallest or largest element

cXa,axb)= {C}x(d’b) a=c
(cxd,axb) {{C}X(d,OO)U(C,a)XRU{Q}X(_OO’Z))

Figure 2 - 10

Ex. {1,2} xZ, dictionary order

lxn=aqa, 2xn=b, X=a;...a,...b; by. ..
(bl,bg) = {bz} {bz} open
{a1} =[a1,a2) {ai} open

1 nearest element
similarly {a;} open i >1

{b;} open j >2

but {b;} is not open

if by € B open 3b; € (a,b) c B b> by

a<b; a=a, for some n
B> (a,b) 2 {an+17an+27'-'}
|B| =00

Definition (X,<) a€ X define (a,+00) = (a,00) ={x:x>a}
[a,00) ={z:x>a}
(—o0,a) (-o0,a] rays
(a,00) (—o0,a) open rays (open sets)
[a,00) (-0, a] closed rays (closed sets)

15. The Product Topology

Definition (X, A),(X,B) define a topology
AxB=Con X xY by the basis
{AxB:AeA BeB}

C is called the product topology on X x Y

c<a



Theorem if A’ c A is a basis for A
B’ c B is a basis for B
= {A'xB':A'e A',B"e€B'}
is a basis for Ax B

Figure 2 - 11

Definition 7 : X xY - X m(xxy)=x
To: X xY =>Y mo(rxy) =y
projection

Theorem S ={m'(U):U c X open}u{m,(U):UcY open}

(7' (U) =UxY, n;'(U) = X xU)
is a subbasis for A x B

|}
NV S ’IZ “ e
-
Y

i

Figure 2 - 12

16. The Subspace Topology

(X, A) topological space Y c X } my notation
(Y,A") with A’={AnY : Ae A} = Ay is called subspace topology

Lemma (X, A) basisB Y cX
{BnY :BeB} is a basis of (Y, Ay)

Definition if X oY oU
we can say U open in Y if U € Ay
U closed in Y if Y\U € Ay

Ex. X=R Y=[0,1] U=(0,1]
U=Y isopeninY
Y is not open (in X)
U is not open in X



Lemma XoY o UisopeninY,Y openin X
= U open in X

Theorem AcX BcY (X xY,C) C=AxB
A B product topology A4 x Bg =Caxp
Ex. I=[0,1]
I? = I x I with dictionary order topology will be called the ordered square
I2 =1 x I cR? but topology on I3 is different from subspace topology of R?

Ex. A={1/2}x(0,1)=(1/2x0,1/2x1) is open in I?
Now consider topology related to R?
Let p=1/2x1/2€ A
assume 31B>1/2x1/2 BeB
{(a,b) x (¢,d) : N[0, 1]} basis of relative top.
=>a<1/2b>1/2=>B¢A=p¢Int(A)
In fact, similarly you see Int(A) = @

Definition (X,<) Y c X convex
< Va,beY a<b
VeeX a<x<b=>xeY

Figure 2 - 13

(Distinguish from A c V' convex V' VS over R)

Remark Intervals and rays are convex
but not the other way around.

Ex. X =R\{0}
Y = (-00,0)
this is convex subset in X
but one can’t make Y = (-00,a) (-o0,b] (a,b)...
for a,b in X (not in R!)

(< = <lyxy)
YcX

(X’ <) restricted order (Y’ < |YXY)
2 ¥
(X,0.) (Y,0)

relative topology

order topology
Theorem if Y c X convex, then O, , = (O.)y

Convention (X,<) Y cX assumed with subspace topology(O.)y
(=04, if Y convex!) (see pg. 25])
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Ex. QcR subspace topology from (R, <)
has a basis By = {(a,b) nQ:a,beR}
order topology from (R, <) has a basis
Bg = {(a,b) :a,bE Q}

These bases are not the same (e.g. Qn (0,7) € By \ By)

of course B, c B;

and you can show all sets in B; are unions of sets in By, so the topology of By, By are the
same

but this shows for general ordered sets be careful (we will see later examples that top’s
different)

17. Closed sets, Accumulation points and Limit points

already defined closed sets

Theorem @, X closed
A, B closed = Au B closed
{A;}ier closed = [ A; closed

Theorem X>Y2>A AclosedinY < 3A’cY closed A=A'nY

Theorem X oY >Z Y closed in X, Z closed in Y
= Z closed in X

AcX A=A" ={reX VOeA:032=0nA+3}
! ={zeX VOeB:0O320=0nA+g}
B basis of A

Theorem Y c X AcY (Y, Ay) relative topology
A=Aty

Definition Ac X z e X if x € A\{x}
(&VOcAO>32=0n(A\{z}) +?)
call x an accumulation point(& H ) of A
if x € A and x is not an accumulation point of A
call 2 an isolated point(2LH 7)) of A
A is discrete(©] AFR 3}) if all its points are isolated

Aa
A X Lo
Iy

Figure 2 - 14:

. . Figure 2 - 15: isolated
accumulation point

point
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Definition A,.. = {acc. points of A}

-

Figure 2 - 16:
accumulation point
set

Theorem A= AU A,

Theorem X is Tj. Then x € X is accumulation point of A
< for every neighborhood O3 x |On A| = o0

Convergence care is needed with limit and convergence

Definition X >xq,29,...,2,,...
we say limx, =2 z, >z

n—oo

if VO>2 Oe A3INy Vn> Ny x,, € O

Figure 2 - 17

Remark (X, A), (X, A"), A2 A z,->p4x=>x,>47

Ex. =z, =nin R with finite complement topology O
LetaeR Osa O%*@
= |R\O|<o0 INVn>N x,€0
T, >80 X,=n—>a VaeR

Theorem X is Ty (Hausdorff)
= limit(if it exists!) is unique } unique limit property
i.e. every sequence of points converges to at most one point

Remark Converse is false, see following Ex.

Ex. of a non-Hausdorff space with unique limit property X = Squ{Q}u{Q2'}  “dupli-

S
So
cate”
[CL(], b) _
A with top basis { (a,Q] a,beSq U{(a,Q)u{Q}:aeSq}
(a,b) a<b

12



%]

basis of order topology on Sq

Figure 2 - 18

Az, = order topology on So
Ax\(oy = order topology on Sq with Q - (=T)

X is not T5 because any two basis elements containing 2, )" intersect
but X has the unique limit property
Let {z,} c X

Lemma z, - Q(respectively ') < AN Vn > N z,, = Q(respectively Q)
pf. Assume 3 infinitely many z, € Squ {2}
O if infinitely many z,, = ' = 3z, = Q' but 3U open Qe U Q' ¢U
=1, + Qf
So 3 infinitely many z,, € Sq  {z,,} ¢ Sq countable
property of Sq = bounded. z,, <d de Sq z,, ¢ (d,Q]
Ty, + Q=1 4 QL

Now assume (z,)c X =z, >zl 22e¢ X x!l+2?
If ' € Sg = (x,,) bounded x2 # 2, Q)

Tp, = 2t 22 in Sq e Ty = a! = 22

Similarly if 22 € S

So return to test {x!, 22} = {Q,Q'}

but this gives 7 by previous lemma

Thus 2! = 22 and X has unique limit property

Theorem X ordered = X is T3 in order topology
(X, A)isTy, YcX= (Y, Ay)is Ty
(X, A)Y,B) Ty = (X xY,AxB) is Ty
W If 3z, xg,...,0,€A z,>2 %2
then x is an accumulation point of A
but the converse is false  Ajm € Aace

Definition limit points Ay, == {z € X : 3z, € A\{x} z, - 2} (I do not use like in book)
Alim & Aace can happen (I will give you ex. later)
This is why be careful you understand well how a “limit point” is meant!

( return to this pI9 and B4)

In “metrizable” spaces like R, R™ with Enclidean topology, it’s okay.
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ﬂk

L4
Y

L]

Figure 2 - 19

Theorem (z,,y,) — (z,y) < in X z,>zin A
and in Y y, >y in B (separation axiom, section 31)

Definition A space (X,.A) is regular if (p. 194)

T AZZ#ZL‘ 3019l‘ OZEA
0:20A O1n0y=9

Figure 2 - 20

Definition A space (X,.A) is normal if
VAl,AQ AlZZQ AQZZQ AlﬂAQZQ
301,02 A O1n0Oy=2 0;2 4;

Figure 2 - 21

If points are closed, then normal = regular = T5

§

Ty but not always otherwise!
So we have a diagram

(! In other books, T3 = normal, T = regular)

Figure 2 - 22

Definition 73 is regular Hausdorff (=regular Fréchet)
T, is normal Hausdorff (=normal Fréchet)

14



Theorem order topologies are normal and 75 (and hence anything else)

H8abced

@ Convergence behavior

X space
A topology on X — convergence behavior of 4 C(A)
AcP(X) (z;) € X¥ — {limit point of (z;)}

={zxeX:z;>x}eP(X)
A € {topology on X} c P(P(X))
S'(VX) }
Convergence behavior functor S(X) v F(X«,P(X))

Question Does the convergence behavior determine the topology
i.e. is the convergence behavior functor injective?

Ex. (X¢,A) and you prove f,, » f in A< f, > f pointwise
= A = product topology?
or X metrizable you prove f, - f in A< f, = f uniform
= A = uniform topology?

The answer is no! in general
i.e. one cannot identify a topology from its convergence behavior alone

Ex. Consider X = Squ{Q} =Squ{Q,Q'} Define a topology
A on X with topology basis
Thus let B = {(a,b) :a <ba,beSq}u{[ap,b):beSa}u{(a,Q]:aeSy}
~ om0l
B=Bu{(B\{Q})u{Q}:QeBeB}

This is the topology as in the previous example.
A = A(B) is not Hausdorff but has unique limit property

Now consider A’ = A(B') with B’ =Bu {{Q}}
(again to check easily B’ is a basis)

A’ is Hausdorff but A and A’
have same convergence behavior: C(A) = C(A")
Tp—»xin Az, >z in A

Thus the convergence behavior does not define the topology, not even whether it is T3
= not even up to self-transform fixing convergence behavior

[ h: X — X bijective ]
A {h(A): Ae A} = h(A) is a topology
F(X«,P(X)) C(A)~h(C(A))
h h C(h(A))
if C(A)=C(A") 3Jh:X - X bijective
A" =h(A) s.t. C(A) =C(h(A))?

even this answer is no! |

15



Remark You can consider as well
X=5q A=A(B)
A= A(Bu {{Q}})
Then A+ A’ but C(A) =C(A")
however in this case obviously both A, A" are T;
and I don’t know if 7 self-transformation h on Sq with h(A) = A’
likely not, but it requires some argument to prove
while in our way we get this + 75 - independence readily
for example, A > {x} one element set
< x has no immediate predecessor
or x = ay
(z has always an immediate successor or x = §)
but A contains uncountably many 1-element sets (old exercise)
so then one cannot argue with number of of 1-element sets that Ah, etc....)

@ Limit points

Exercise let X be a topological space
x1 € F(Z,,X) a sequence
let h:7Z, — Z, bijective
then z, -z in X < ) > 2 in X
This means ordering a sequence is not relevant for its limit(s)
Then the limit points of a sequence {x € X : z,, » z}
can in fact be defined on the set{z,}

Definition X topological space Ac X |A| =w
define Am = {z e X : 3h:Z, - A bijective h(n) — x}

Note, however, that A # A,
the set of limit points of A as a set, as defined in the closure section

In fact, Ay = |J (A (if X is Ty)
ATCA A =w
also for any subset A ¢ X (not necessarily of cardinality w)

H8abced

20. The metric Topology

most important and fundamental source of topology

Definition X set d(z,y) > 0 x # y distance if
d(z,z)=0 d(z,y)>0x+y
d(z,y) = d(y,z)
d(z,y) +d(y, z) > d(z, 2)

d(z,y) distance between x and y

16



Definition B.(z)={yez:d(z,y)<e} e>0,xeX
(open) ball e-ball centered at x

A7
..~/

I

Figure 2 - 23

Definition The metric topology Ay on (X, d) induced by d is the one
with basis {B.(z):x € X, e>0}

To check: balls form a basis

Figure 2 - 24

Bl) X o [ B(z)o J{a} =X
B2) 3e(x) n Ba(y)
BEH(Z) C BE({L‘) n Bgl(y)
for € = min(e —d(z,z),¢ —d(y,z)) >0

Definition (X,.A) metrizable < 3d on X
with A = A, induced by d

0x=
Ex. X,0(z,y)= ey
lx+y

discrete distance Bi(z) = {x} so
it induces the discrete topology A = P(X)
T explains the name
A c X every a € A is discrete point, every set is discrete
so the discrete topology is metrizable

Ex. Standard metric on R d(z,y) = |z —y|
induces the usual (Euclidean) topology

because (a,b) = B.(x) for = = a+b b-a

€ =
2
Euclidean topology is metrizable

= Inon-uniquely d(z,y) = 2|z - y| induces the same topology.

17



Ex. R finite complement topology not metrizable

if were () By, (z) = {z}
n=1 ——r
open

R\{z} =J(R\B,y,(z))
— — n=1 ‘“———
uncountable finite
—_—
countable

Definition V Vector Space over R or C
a norm |.||: V - [0, 00)
satisfies ||[v]|=0 < v =0y
[AVI[ =[]Vl AeR(C) veV
IVl + [[w]| > [[v+w]| eg |V|]=V<V,v>if3<>

||.]| induces a metric by d(x,y) = ||x - y||

{inner product space}c{normed space}c{metric space}c{topological space} all ¢
we see here later 1

Ex. R" with Euclidean norm
Il = (o1, )l = T v 22
induces the product topology on R" =R xR x --- xR
basis are {(ay,by) x -+ x (an,b,) : a; < b;}

Ex. The Holder p-norm
%[l = &/l + - + [z, for pe[1,00)
are not multiples of ||.|| = ||.||2 for p # 2
but all induce the same topology on R"

Definition (X,d) metric space Ac X x e X dist(z, A) = inf{d(x,a) :a e A}
Lemma dist(z,A)=0<zecA

Definition (X,d) metric space Ac X
diam A = sup{d(a,a’) :a,a’ € A}

Ex. diam B.(x) < 2¢ (not always “="!)

\ [/
N

7

Figure 2 - 25

diam can be oo if d is unbounded

Ex. diam (Z,) = o0 Z, c R with Euclidean metric

Research Problem A c R? diam (A)<1 Ac El/\/g(x) for some z?

18



1/v/3 smallest possible?

] 2

Figure 2 - 26

sometimes it is useful to bound d

Theorem Let (X, d) metric space
Define d: X x X - R by d = max(d, 1)
standard bounded metric

d induces A7 = A4, same topology

Lemma (X,d),(X,d") Az>Ay
< VreX e>030 Bys(x)c By(x)

Lemma A c (X,d) Agaxa is the relative topology of d of A

if A is metrizable = A4 is metrizable

Theorem (X,d) topological space
Ty —>x<Ve>03IN Yn> N d(z,,z) <€ x, € B(x)

Theorem metric spaces are Hausdorff and normal (so anything else in chart p[I4])
pf. mostly the idea for order topologies (exercise)

Theorem (X,d) metric z€¢ A< 3z, € Az, > 2

Sequence Lemma
i.e. trouble at plI4]l does not occur for metrizable spaces

Remark: if XY metrizable with dx,dy, then X xY" is also metrizable (e.g.) with d(z; x
Y1, T2 x y2) = dx (v1,72) + dy (Y1, 2).

18. Continuous Maps

(X,A) (V,B)

Definition f: X — Y topological space continuous
if and only if YO e Bopenin Y f~1(O) open in X
continuous relative to the topologies A c B

Ex. (X,A) (X,B)
A finer than B < idy : (X, A) - (X, B) is continuous
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Remark (book p.90) if VO € A f(O) € B, call f open

Lemma Let (X, .A) have basis A’, (Y, B) have basis B’
f continuous < VB’ eB’ f~1(B')e A
< VB eBVre fY(B') JA'eA xeA c f1(B)

(“e—0" and sequence condition)
Lemma if (X,d) (X,d’") are metric spaces can take balls as bases
f:X =Y continuous < Ve>030>0 Bs(z)c f1(BA(f(x)))
< Ve, >zin X f(z,) - f(z)inY

Theorem X,Y topological spaces f: X — Y The following are equivalent
1) f continuous
2) VAcX f(A)c f(A)
3) VBcY closed f~}(B) c X closed
4) Yz eX VU5 f(x) open 3V 3z open
Ve ft(U) (& f(V)eU)

Definition f homeomorphism if
f:X =Y bijective, f, f~! continuous
(X, A) (Y, B)

A={f"Y(B): BeB} B determines A

X ~Y topologically equivalent
if 3f : X - Y homeomorphism

Definition f:X < Y continuous, injective
if f~1: f(X) — X continuous,
call f a (topological) embedding

Ex. f:[0,2m) > St ={(x,y):a2+y?>=1} f(t)=(cost,sint)
with relative topology to R?
is bijective and continuous
but its inverse is not continuous < f is not open
[0,) T=f([0,a)) cS"isnot open 1€ St but Ve>0 S'nB(1)¢T
N
[0,27) open

Constructing Continuous Functions

see p.105, 106 in the book

Pasting lemma

X=AuB A, B closed in X
[: X =Y fla:A->Y

flg: B =Y continuous = f: X - Y continuous

Maps into product
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Theorem f: A — X x Y (with product topology) is continuous <
coordinate functions fi:A—->X fi=pryof
forA=>Y  fa=pryof

are continuous. (er(IE,y) =z, pTY(xay) = ?/)

19. Product Topology II

Motivation: X; x... X, with topology A4 ... A,

defined product topology by
(1) subbasis / for n = 2 but finite n is same story

U{prgl(U) : U c X} open}
k=1

U=X1X...Xk_1XUXXk><---XXn
or

(2) basis
{U1X...UkZUiCXZ' open}

gives (same) product topology
But what if oo product? There’s a difference!
First let’s define general tuple indexed by an arbitrary set.

Convention write F(X,Y) for {f: X - Y}
Recall {f:Z, - X} ~ Xv={(ay,az,...):a;€ X}
(= F(Z0 X) 1 () = )

:HX
ﬁXi:{f:ZJr—’UXiif(n)EXn Vn}

For J index set, X set, define J-tuple of elements in X to be a function x:J - X

T =(Ta)aes () = x4

X' ={z: z(a)eXVaed }={f:J—> X}

A = {AOC}OCEJ
Definition [[A.={f:J > JA4s: f(a)ec A, VaeJ}
aeJ aeJ

J - indexed product

Definition {A,}acs (Aa,As) topological space
the box topology on A = H A, is defined by the basis

aeJ
{U=T]Us:U, €A, VaeJ}

aeJ
“U is a box” generalization of (2) above
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Definition (A,,A,) topological space
the product topology on A =[] A, is defined by the subbasis

U U pr;l(Ua)

aeJ UyeAy
with pr, : A - A, being the projection on the
a-th coordinate pr,((as)ges) = an generalization of (1)

The product topology will be assumed by default!

Obviously, box topology o product topology.
but box topology is quite strong and often good for counterexamples, while product
topology is used in many theorems.

For metric spaces (A,,d,), there is one more important topology on [T A,, the uniform
topology. It has basis being boxes of “equal length”

B={]]Be(za) : wa € Ay, >0}

aeJ

€ does not depend on «!

Theorem the uniform topology is induced by the uniform metric

d((aa)acs, (ba)aes) = sup{da(aa,bs) t € J}
1 bounded metric

Convergence

M write f(X7Y)prod f(Xuy)box f(Xuy)uni

Theorem Convergence in the product topology is pointwise convergence

Definition f, - f:< VaeJ f.(a)— f(a)in A,
VaeJ VYOeA,O53 f(a) IN Vn>N f,(a)eO

Th./Def. Convergence in the uniform topology is the uniform convergence
a2 freVe>0IN V>N VaeJ d,(fu(a), f(a)) <e
remark: f—>f VaeJ Ve>03IN Vn>N d,(fn(a), f(a))<e

What is convergence in the box topology?

Ex. Consider {f:R - R} with box topology. When f,, — 07
assume f, (z1) #0 choose Uy, (=fu, (1), fu, (1)) f1¢U = H U,

zeR
assume 3xo #x1 N >Ny fu,(X2) # 0 Ug(=fo(x2), fo(x2)) fot U= H U,

xreR
~ find (fo,, fags--.) ¢U 30 open. - f,, » 0
etc. when does this fail?
fo—>0< 3N Sy:=|J{z: fu(z) # 0} finite

n>N

and Ve e Sy fo(z) =0
(<=> f|SN e 0|SN had fn|SN = O|SN)
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0 xz+n ) . )
(so box convergence = pointwise and uniform convergence)

Ex. fu(z)= {
of course f,, = 0 and even f, =30
also [{z: fo(z) #0}| =1 < c0Vn
but (J{z: fu(z) #0} =Z, n[N,oc0) infinite
n>N
so f, + 0 (and not to any other limit) in box topology

I/n xz=n

The box topology is easily seen to be Hausdorff and I can prove regular. It is not known
about normal see Ex.5 p.203

Theorem In product or box topology of F(.J, X)
(and hence in the uniform topology as well, if X, metric)
for A, c X, HAa: HA_a
aeJ aeJ
Ex. Consider F ={f:R - R} in box topology. F =F(R,R)pex
Let A=]](0,1) ={f:R - R:image(R) c (0,1)}
__aeR
Then A =]][0,1] = {f:R - R|image(R) c [0,1]}

aceR

but consider Ay, ={feF:3f,c A{f}: fn—> [}
Alim = U H{[O’l) “£5

‘S|<:R aeR [071] aes
S|<oo
={f:R—R|image(f) c[0,1], IS c R |5] < oo image( flr\s) c (0,1)}

E.g. 0e Ay 0¢ A (0 =zero function)
Ajim & Aace = sequence lemma fails = box topology not metrizable
= (A'> A A metirzable# A’ metrizable)

1 box 1 uniform while T; ¢ < 2

It took me some to give an example of A c X with
;1\/43#§3 blﬁlt4hn1=§3, i.e.

A not closed (= has accumulation point A, # @) but no converging sequence(except
constant)
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Ex. (may skip, not very good)
Consider X = {f:R - Ryjsr } With range R with discrete topology
and pointwise convergence topology X = F(R, Rgiser )proa (product discrete topology)
ie. fu>f<eVreR AN Vn>N f.(x)=f(x)
the basis of the topology

_ {vi} ==
{US,yl ----- yn_H{ R z#x,...,2,

zeR
:S={xy,...,x,} cR Afinite (z; # x;), Y1,...,yn € R}
Fix a bijection ® : {finite subsets of R} - R\{0}
Consider the family

constant function except for finite zero set

0 rzesS ’
fS(x):{q)(S) :cth} ﬁ

Figure 2 - 28

A={fs:ScR finite} c X
} function (f(x)=0 VzeR)
0eA\A A has accumulation point 0

If 0 e U open U basis element
,,,,, o for some ScR |S]< oo

N——
y;=0

fseUnA+@=0¢cA, obviously 0 ¢ A
Now take sequence fs,, fs,,... n A fg, # fs, 1#]

U S; is countable, take xq € R\ U S

fsn(ffo) O(S,) fs,(x0) # fsm(xo) Vn,meZ,n+m

fs, (z¢) does not converge in discrete topology

= fs. [

So A contains no converging sequence! (except eventually constant)
(= X not metrizable etc.)  Aue 30, Aym =@ End Ex.

Note: Ay, =3 means A has no limit point in X, not in A.
A has no limit point in A just means A is discrete,
and I can find you discrete non-closed sets in
simple spaces like A={2:neZ,}cR=X

Order topologies 11

Theorem (X, <) ordered set = order topology is normal
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Ex. R xR with dictionary order is metrizable
~ (0,1) x (0,1) HW Ex. 2.20.2 p. 124
ordered square I2 = [0,1] x [0, 1]is not, proof later! see pg.
in particular, restricting the order topology of
R xR to [0,1] x [0,1] does not give the
same topology as the topology from restricting
dictionary order on [0,1] x [0, 1] see pg.

(My) pf. Let (X,<) be ordered.
A, Bc Xclosed disjoint fixed.

idea. Vae A construct (z4,9,)3a (Ta,ya)NB=0
Vbe B (T, ) 2b (Tp, ) NA=0
Va,b (Ta,Ysa) 0 (T, ) =@ () see pg. 2T

Let then Oy = | J(%a,¥a) O2=J (@b, )

acA beB
OlDA OQDB OlﬁOQZQ
Need to define x4, Y., Ty, Yp
First, need to take care of blank intervals

Definition a) (recall) I ¢ X convex if
Va,bel a<b VreX a<x<b=>zel

[ L
DU LX ¥

Pz .
L3¢

Figure 2 - 29

b) I c X is called blank interval(BI) if
I convex and In(AuB) =9

¢) I c X is maximal b.i.(MBI) if
I'isBI VBI [I'scIl=1=1

Lemma each BI I c! one MBI [ = M;
pf. ImaxBI I 5 I by maximum principle
unique because if I, 1> T I=Tul'>]

MBI also defines BI o

I51 Tmax=1=1

P Ny
I>]' I'max=1=1

by max

In particular, Vo ¢ AuB {z} is BI
3! MBI o {z} write it M,
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Lemma Vz,yeX [z,y] Bl & M,=M,

pf.-<= M,=M,>{z,y} BI
Figure 2 - 30

[x,y] c M, = [z,y]n(AuB) =@ = [z,y] BI
= x¢AuB LetIBI I>=z
I c MBI M;
xr e MBI M;
by uniqueness M;= M,
now x,y € [z,y] BI; by 1 above argument
Mgy = My = M,

Convention (X, <)For each MBI A c X fix an element, ax € A.(AC!)
Return to definition of y, (namely M,, =A)

Figure 2 - 31

Assume a€ A, Soa¢ B=B

if a = max X set y, = 0o (y, = co(formally) with (z4,va) = (Za,0) = (24,a] )
otherwise 3a” > a a" is lower bound for Bn[a,o0) Bn(a,a") =@

[0] a" is immediate successor of a set y, = a”

Otherwise, 3a’ € (a,a”) (need to avoid a’ € B)

YA

>

Figure 2 - 32
2,
[1]if @’ € A set y, =a’ Y TESPT A

Figure 2 - 33
[2]ifa’" ¢ A=a ¢ AUB sety,=ap,
Then y, has the following properties
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1) y, =00 only if a = max X
assume a # max X below
2) y,>a and ([a,ya] NnB =g or y, =succ(a) )
pf-if ya < a, then need case [2] and
Mya = MCV]VIa, = Ma’(!)
= [ya,a'] blank a € [y,,a’] a ¢ Af
3) if ya ¢ A then by (!) we have y, = apy,, or y, = succ(a) is the immed. succ. of a

Similarly y; for be B
T should be defined so that

1) ZTp=-ocoonly if b=min X
assume b # min X
2) Tp<band ([l’_b,b]ﬁAZQOI'SL’_prI'ed(b))
=
L"‘;
= || e B
,A v

Figure 2 - 34

L

-

3) if Ty ¢ B then 7y = QUpg- OF Ty = pred(b) is the immed. pred. of b

Similarly z,. So now x,, Y., Tp, yp defined.

Now assume a € A be B

Without loss of generality, a <b = (Yo, # 00 Tp + —00)
assume (24, v.) N (Tp,75) = @ (**); to prove (*) at page 25 by 7
SO Tp < Ya

if y, = succ(a), then (z4,v,) = (24, a], so (**)= T < a. But b>a, so a € An[Tp,b] ¢ to 2)
Similarly 7y, # pred(b).

x_b,b ﬂA:@ o

%ay::'lﬂB:Q [xbuya]n(AUB):Q
Z U
¢ A2

ya :ya:aMa

Mya:Mﬁ o 3y y
h U

N\‘Y"‘:N;_w)‘( E .
Figure 2 - 35

= (%) at page25=m
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Chapter 3. Compactness, Connectedness, Completeness

26. Compact Spaces

[ try to discuss this first exclusively for metric spaces and say later how/what to generalize
to topological spaces.

Definition =z, c (X,d) sequence, z,, is a subsequence if
N, > M1 Mm, € 2y

Definition (sequence) compactness / limit point compactness ( see warning(!!Def.) page. B0)
(X,d) is called compact if
V(z,) c X sequence, I(x,, ) c (x,) subsequence
converging in X dre X :x, — x limit point

Remark (X,d) compact = diam(X) < oo
and must be attained
Jr,ye X d(z,y) = diam(X)

ex. R is not compact
(0,1) is not compact (with Euclidean distance)

Ex. R,d=min(d,1) bounded, is not compact

Ex. R with discrete distance is bounded and attains diameter but not compact
(every converging sequence must be eventually constant)

But [0,1] is compact (with Euclidean distance) prove now!

Lemma =z, cR increasing Ty 2 Ty
strictly increasing x, > x,_1
decreasing Tp £ Tpo1
strictly decreasing x, < x,_1
monotonous = increasing or decreasing

Lemma =, increasing and bounded (above)

x, = sup{x,}
similarly decreasing
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Lemma (x,) bounded = 3(x,, ) monotonous

pf. Assume A(z,, ) increasing will show lemma

o by finding one decreasing sequence.
ng = O, k=0
Let x = sup{z, : n > ny}
if infinitely many x, =2 3 constant subsequence = increasing 7
if exists no z,, = x
dny x,, >x-1 =z, <z
max{ry,...,Tn, } <T
dng>ny Tp, >Tp, Tp, <T
T, increasing 7
So 3 finitely many x,, = x
Let ngyy =max{k:zp =2} 2w <z, (=x) 10 >ngy
Zp, decreasing

Theorem (Bolzano-Weierstrass)
Every bounded sequence in R o converging subseqence

Ex. [0,1] (2n)c[0,1]
z, ¢ R bounded ==z, — =
[0,1] closed = x €[0,1]
T, = x € [0,1] in relative topology
= [0,1] compact

Theorem (X,d;),(Xs,ds) compact
= (X x Xy, d; +dy) compact
1 or any d inducing product topology \/d? + d3 ...

Theorem (X,d) compact A c X compact (in relative topology)
= A=A d| axa

Theorem (X,d) any metric space A c X compact
= A closed and bounded

‘—F‘“__\-
Theorem (Heine-Borel) X = R” with Euclidean metric \(
Figure 2 - 36
A closed and bounded < compact AcBclIxI

Ex. [0,1]* c R¥ with uniform metric closed and bounded

but 3f, = { } 3g : fu,, = g uniformly

1 z=n
0 x#+n
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Thoerem f:(X,d) — R continuous X compact
f bounded and f attains maximum value
pf. if 3f(x,) > 00 z,eX
o Jz,,, cx, converging x, —>T
f continuous f(z,,,) -~ f(z) e RY
so assume f(x,) bounded
Ve>0 3Fxcex  f(x)>sup(f(x))-e
(z1/5) has converging subsequence z,,, - r € X
P () ~ 1(2)
L sup f f(z) =sup f =max f

Corollary (X,d) compact = X attains diam < oo
pf. d:X xX - R continuous
PJ- . ,

compact

} T use; not to confuse with my use of “limit point” (pg. 28])
! Definition (X,d) is acc. point compact
< VScX |S|=00 S hasacc. point A, #D

Lemma (X,d) acc. point compact <> sequentially compact
pf-<= |S|=00 3si,89,--€S si#s;
A\
3s,,, = X at most one S, =X
X acc. point of §
= (z,) c X sequence, if set {z,} finite
then 3 finitely many equal z,, — done
50 [{zn}] = oo
= it has accumulation point x
choose x,,, € Bijm(x) oy, =2

Theorem The ordered square [0,1]? with the
(see pg. 2H) order topology of the lexicographical order is not metrizable

(but it is Ty like any order topology; it is also linear continuum)
(promised this theorem as an application of compactness)

pf. assume [0,1]? were metrizable

~ define f:[0,1] > R by f(z) =diam({z} x [0,1]) >0
(w.l.o.g. bound the metric to avoid infinite)
diam (A) =sup{d(z,y) : A}
Consider g € [0,1]. Let z,, N 29 Then (x,,1) - (x0,1)

and in fact for any sequence z!, € [(xg,1), (2, 1)]

———
Dy,

x!l = (xg,1)

Thus AL@OE((%, 1),D,)=0

d(z, A) =sup{d(z,y) : y € A}

diam (D,,) < 2d((zo,1),D,) by triangle inequality
So diam(D,,) = 0 and D,, o {x,} x [0,1]

= f(z,) = diam ({z,} x[0,1]) =0
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So lim f(z)=0

1'47220
Similarly let x,, 7 z argue with (z0,0) < (x,,0)
that lim f(z) = 0. Thus now

T
Vage[0,1] lim f(x)=0, but f(zg)>0
T—xQ
Claim A such f=m
pf. Lete>0
If exist infinitely many x € [0, 1] with f(z) > €
then by compactness they have an accumulation point
Jx, > x0€[0,1] x0# 2,
f(zn)2€ #to lim f(x)=0
T—TQ
SoVe Sc=[z:f(z)>e}|<o0
Then S = |{xz: f(x) >0} = |J Si/n is countable,
i=1
but we wanted S = [0, 1], which is uncountable /m

HW do it for [0,1] x [0, 1); similar proof for {f : R - R} product topology
but {f:Z, - R} = R¥ with product topology is metrizable Th. 20.5 p.123

Covering Compactness (sec. 26)

Definition (X,d) metric space
O c P(z) is an open cover(ing) of X if
UO=X and YO €O O open in X
O' c P(X) is called a subcover of O if O’ c O and O’ cover of X

Definition X is covering compact if every open
cover of X contains a finite subcover

Theorem (the Borel-Lebesgue Covering Theorem)
(X, d) metric space X sequentially compact <> X covering is compact
for the proof, we need lemmas

Lemma (X,d) compact space = VX; 2 X520 X3o ... filtration with
nonempty closed sets, we have ﬁXi +Q
pf. Takew,eX, Fr, >o X closed zeX, Vi m
Remark < also true. See last part of B-L proof below
Ex. X =R =x;=(-00,—i] closed filtration NX;=2

Lemma (HW) z, >z in (X,d) Ve>0 3IN VYn,m>=N
d(zy, Ty ) < € (Cauchy-property) m
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Pf of B-L “=" Prof. Friedrich 2.11.90
Step.1 X sequentially compact = 3 finite e-net
Step.2 = X separable (HW)
Step.3 = X is Lindeldf (every cover has countable subcover)
Step.4 = X covering compact

Step.1

pf.

Step.2

Step.3

X compact = Ve>0 dpy,...,pre X

k
UBe(pZ):X = {p17"'7pk} is e-net

1
by 7 assume 3¢ >0 Vpi,...,pr Yk {p1,...,pr} nOt enet

take po € X  Bc(po) € X 3Ip1 ¢ B(po)

Be(pO)UBe(pl) QX Elp2¢Be(pO)UBe(p1)
So find a sequence p; ¢ X with d(p;,p;) > Vi, j

any subsequence gives 7 to Cauchy-property = does not converge.
X compact (sequentially) = 3JAc X |A|<w A=X X separable

A = J{finite 1/n-net} (think about it!) used d(z, A) lemma
n=1

X separable, O open cover

to show 30 5> O’ countable subcover
Let Ac X, |A|<w, A=X
A={(a,r) e AxQ:30 €0 B,(a) c O}

P )
4
R7e0
C«\x'E*ﬂ
_//

Figure 2 - 37

A countable

for each (a,r) € A choose an O = O(a,r) € O with B,(a) c O (AC!)
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O’ ={0(a,r): (a,r) e A} |O|<w
claim ' is open cover of X (subcover of O), i.e. UO' =X x

pf- veX Ocover 30e0 we€O 3Fe>0 B(r)cO 5;;‘

Since A is dense, Ja€ A d(x,a) <¢€/3
= take r e Qn(e/3,¢/2)
r>e/3 B.(a)3z
r<€/2 By(a)c Begiepo(x) € Be(x) c O 0

30O B,(a)cO Figure 2 - 38
(a,r)e A xeB.(a)cO :=0(a,r) e
Vee X30'e O : z e [ ]
Step.4 (final) O open cover
10’ countable subcover X=0,u0yu---uU

Consider F), = X\ U O;

FioFyo ... Fclosed
if ViF] qt@f—::'ﬂFi@::'UO + X7

So some F,, =g = X = UO
={0;}1, is finite subcover of O m(end of “=")

Pf of B-L “«<" X convering compact = X sequentially compact.
assume pq,...,Pn.... sequence in X
Consider F,, = {pns1,Pns2,---} Un=X\F,
Fy o F5 o F3 closed U c Uy c Us open

00 N
if JU,=X
n=1

. UU,=X = Fy =0
covering property =
Thus (JU; ¢ X = (F+92
-1 i=1
pe(\Fi peFi={pyps,...} €e=1 3ni>1 d(pn,p)<1
i=1
peF,, ={pns1,---} €=1/2 Iny>ny d(pp,,p)<1/2

peF,, ={pny1,---} €=1/3 Ing>ny d(pp,,p)<1/3

.. Pn; = p subsequence of (py) [ ]
(Do Heine’s Theorem; 27.6, p.174)
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Now to general topological spaces

Covering Compactness Section. 26 Limit point Compactness Section. 28

X, Th. 28.1 p.177(Sq)

Covering <+ Accumulation point
Compactness = Compactness
X, pBA(+1) § #X,Sq 7 works as above X X p. B4(+1)
Sequence
Compactness

Lemma order topology is covering compact = 3 smallest and largest element.

Rem The converse is true if LUBP; see Th 27.1 in book

Theorem order topology s.t. 3 smallest, largest element and Least upper bound property,
= Seqence compact (Generalization of Bolzano-Weierstrass theorem)

Ex. So=2S80\{Q} “smallest uncountable ordered set”
but no largest element = not covering compact
but Sg is sequentially (and hence accumulation point) compact = not metrizable!
x1,Ta, - € Sq {x;} cSq {z;}] <w= {x;} bounded
ag smallest element of Sp 3be Sq  {x;} c [ap, b] sequentially compact.
Generalization of Bolzano-Weierstrass = 3 converging subsequence in [a,, b]
also converging in Sgq
(order topology of interval = relative topology)

Remark This example shows also if z€ A (pgI3) A = Sq
then not necessarily x € Ay, <reSq =0
like in pg. 23]
Z = gg but Q ¢ (SQ)lim

1 explains the notation Sq

(x1)
Theorem Tychonoff’s Theorem (Section 37, p. 167)

The product topology of (any number of) (covering) compact spaces is
(covering) compact

Ex. ¥ ={0,1}%+ = {sequence of 0,1}({0,1} discrete topology)
X ={0,1}> 4 is (c.) compact by Tychonoff’s theorem
(= also accumulation point compact) (X is T3 etc.)
but X is not sequentially compact.
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{O 1}2 {0 1}2 pointwise convergence

= {(fn)converge < Vo e ¥ {f,(0)} is eventually constant}

Consdier (f,) c {0,1}* given by f,(0) = o(n)
fo:S=>{0.1}  £((0,1,0,...,0,1,1,0,...))=1

. 1 A 1 7 even
Let (fn,) € (fn); choose ¢ € ¥ with a(ni)—{ 0 i odd }
fn,(0) =0(ng) = { (1) ]]z i:li?in } is not eventually constant

fnk _/_)g

Remark There are simpler examples for ‘acc. point compact # sequentially compact’

like Xgise X {0, 1}indise, |X|= o0, but not even T

Above (*1) has an example of a space that is covering (and accumulation point) compact,
but not sequentially compact, but this example uses Tychonoff’s theorem
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Pb.

sol.

Prove that I? ordered space is covering compact

O open cover

Let xq € [0,1] I(xg) = x9 % [0,1]

O induces covering of I(x) Oy ={0NnI(20): 0 €O}

RN e |

Figure 2 - 39

I(zo) 2 [0,1] (covering) compact
30, € Oy, |04 | <00 UOL, = I(x0)
for each O’ € 07 choose an Op € O with Og, n I () = O’
Omo = {OO’ : Ol € @;«“0} |01'0| < 0
=30, c O Oyl <o (Ay, :=)UO,, 2 1(x0)
Ay 39 x 0 open = Ay o (x) x yh, mo x 0]  xf <z (20 %0)
= Ay, 2 (24, 70) x [0,1]
Similarly if zg#1 Ay, 329x1
= Ny 2 (20,25) x[0,1]  zf > xg
= Ay, 2 (20, 2f) x[0,1]
so for each g € [0,1] 3 finite subfamily of O,0,, and
Jaf <xo<xy UOy 2 (2h,xf) x[0,1]
with (zf,zy) = (z5,1] xo=1
= [O,I‘g) To = 0
Now {(xf,z() : xo€[0,1]} is an open cover of [0,1]
[0,1] compact

zq, .. my s (2, 2y uu (2, 2 = [0,1]
then | JO,, is a finite subcover of O

i=1
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Pb. Prove that I? is sequentially compact
sol. Let (z, xy,) cI?
(zn) c [0,1] sequence 3z,, -z
wlo.g (Dz,, =2 (2) z,, 7z (3) x,, N
go over to subsequence
(2) (ZnysYn,) = (2,0) (3) (nysyn,) = (,1)
(1) H(ynkl) < (Yny) Ynyp, 7Y (xnklaynkl) - (z,y)

The 12 is sequentially compact

generalize that argument to prove the [0,1]“ is sequentially compact with the dictionary
order.

s (solution below)

(It is also covering compact but this needs Th 27.1 in book and HW 10.)

Sol. Assume (f;)2, € F(Z,,[0,1]) =~ [0,1]*
does not have converging subsequence in dictionary order. We give 7.
We construct for each n € Z, a subsequence (fy,)5>, of fi
and a sequence (C})g2, such that (fi,41) € (fen) is a subsequence

We prove by induction, ¢ =1 is ok fz1 = f
Assume ( fi,)52, constructed as well as C4,...,Cpq
Consider (frn(n))52, w.lo.g. I(fems1) < (fr)
(1)fk,n+1(n) =C, (k- o)
frms1(n) = C,, w.lo.g. either (2)fynr1(n) # C, (k- o)
(3) fems1(n) x Cp (k= 00)
Cl [<n

(2)fk,n+1mf(l): 0 I>n /
(3) fina— 1= (1<

(1) constructed fy ,+1 and C,, Induction complete
So now I(fen) € (fr) (C1,Cy,...) as needed.
Consider (fix)52, diagonalization

f;%k(n) = Cn k>n

fk,k lw—m) (01,02,03, e ) ~ (f(n) = Cn) é

Thus for non-metrizable spaces, ‘(any sort of) compact = separable ’ is false!

23. Connected Spaces

Definition X topological space. A separation (I write (disjoint) decomposition)
UV UVcXopen UV=#g
UuvV=X UnV=g
X connected < X has no separation
X disconnected < 3 separation

Remark X is connected < VAc X A open and closed
=A=gorA=X
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Remark do not use “separable” in this context (3 separation) 3JAcX: A=X,|A|<w
for disconnected pg. 32 step 2. in B-L proof

Definition A c X separation of A in X
UV UV =#@ UV not necessarily open
A=UuV UnV=g
UnV=0

U,V disjoint and none containing an accumulation point of the other
Lemma A is connected (in relative topology) <> A has no separation

Ex. X=R A=[-1,0)u(0,1],(U =[-1,0),V = (0,1])
(0,1]n[-1,0)=[0,1]n[-1,0) = @
(0,1]n[-1,0) = (0,1]n[-1,0] = @

A disconncected

Remark U nV ={0}#@ but this is not forbidden!
1 U,V have common accumulation point

Ex. R? Ex. R?

\

-— &
Figure 2 - 40 Figure 2 - 41
U V U V
{(2,0):x e R} u{(z,1/z):2>0} {(2,0):x e R} u{(0,1/z): x>0}
separation no separation
UnV=UnV=0 VnU=#g

Lemma (D separation of X Y c X connected
=YcCorYcD

()Theorem X>x YcP(X) VYe) Y connected, Y >z
= |JY connected

Figure 2 - 42

(*)Theorem If Ac X connected and Ac B c A = B connected.
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N A

Ex. not true for interior!  \__/ R

Figure 2 - 43

Theorem The image of a connected set under continuous map is connected

Theorem X,Y connected = X xY connected
= true for finite products

Ex. R¥ box topology or uniform topology
R connected (prove later)
R« = {bounded sequences}u{unbounded sequences}
both open and disjoint non-empty
= R« disconnected with uniform or box topology

Ex. R« with product topology
R™ ~ {(z1,...,7,,0,...,0)} > R¥ connected

NR*=0 R=|JR" connected
n=1

Rv = R f:Z, >ReRv

R dense f,(z) = { (J)C(SL’) iiz

R« connected

}—> f pointwise

24. Connected Subspaces of R

) (X, <) ordered set is a linear continuum if
0) |X|>1
1) Least Upper Bound Property(LUBP)
2) Ve,ye X wz<y=>3zeX x<z<y
Intermediate Element Property(IEP)

Definition (recall

(")Theorem L is linear continuum with order topology, Y c L convex
=Y connected
in particular, L connected, and so are intervals and rays in L
recall: Y c L convex Vx,yeY x<y Vzel
r<z<y=z¢€Y
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pf. By contradiction
Assume Y=AuB AnB=g A B*@ A,Bopen (inY)
a€A beB assume wlo.g a<b

I=[a,b]=An[a,bJuBnla,b] Ay, By open in I

~—

Ag Byo
———{_,‘4'.__\_”
Figure 2 - 44

c=sup Anla,b]
S
Ao

dd<c
1) IfceBy=c+a=(d,cJ]c By DByopenin [

o L
3d<f<C [f,C]CBO
Figure 2 - 45
[f,c]nAg=@ % toc=supAy
S
c'd
2) IfceAy=c+b=13[c,d)c Ay Ay openin [ {
Figure 2 - 46

de<f<d feAy ftoc=supAd, m
Corollary R connected and intervals and rays in it.

Remark Converse of this Theorem also true:
(X, A.) connected = (X, <) is linear continuum

Theorem Intermediate value theorem
(X, A) connected (Y, <) order topology
f: X =Y continuous = Vr,ye X Vce[f(x),f(y)]
dde X f(d)=c
pf. by contradiction if Ir e (f(z), f(y)) r¢ f(X)
- Consider X = f~1((=00,7)) U f~1((r,0))
separation of X

Remark take X' =[z,y] — de[z,y] “Darboux property”

Ex. I2 ordered square with dictionary order is a linear continuum
different from R

Ex. X well ordered = X x [0,1) with dictionary order is a linear continuum
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Important case:

o (80 1 X =Sa(=So\{))
w consider Sq x [0,1)\{agx 0} == A
X K with dictionary order
) topologist’s long line
Figure 2 - 47 A is locally homeomorphic to R (every point has a neighborhood
homeomorphic to an interval)
but not embeddable in R; it is not separable

25. Components

Definition X topological space define equivalence relation on X by x,y € X
x ~y 3 connected subspace W of X Wz y

equivalence class
Definition [z]. is the connected component of x € X
C, =[z]. =U{C c X connected, C'52} connected by pgl38 (!)

maximal connected set containing x
Remark C, closed as C,(5 z) is connected = C, c C,

Definition X satisfies the connected neighborhood condition (CNC) (resp. at x € X)
if every point (resp. the point x € X) has a connected neighborhood

Lemma yeC, = V(U,V) separation of X zeU =yeU

<= if CNC see Ex. 3.26.10

pf. = 3 connected subspace W s x,y

- assume by contradiction 3(U,V) xelU yeV
(UnW,V nW) separation of W
W connected = UnW(Gz)=gor VaWky)=0 1/

< by contraposition 3z ¢y

VW 5z connected W 3y
Cp = U{W 5 x connected} # y

connected neighborhood condition = C, open(and closed)
(1) (2) or Remark above
= (C, U (X\C,) is a separation
W Wy
(x

.
A

N\

X%
[8”
Figure 2 - 48: (1) 4 Figure 2 - 49: (2)

Note If Ac X, connected components of A are meant with respect to relative topology
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Definition X is totally disconnected if all its connected components are points

Example If |[S|=n<oo
f(sa Rdiscr)prod ~ R%

discr

f(Z+7 Rdiser)prod = (Rdiscr)w

Remark A c X discrete = A totally disconnected (in relative topology)
converse is false

totally disconnected

e (Rv, dictionary order) also totally disconnected

Ex. QcRis totally disconnected (but surely not discrete)
x<y 3Ire(x,y) irrational

Q=(Qn(=00,7))u(Qu(r,00))

open in Q open in Q
I can separate points by open sets
(whose union is the whole space unlike in T5!)

Remark @ does not satisfy the CNC, but “<” of lemma is still true
(1),(2) . .
Remark CNC=== every union of connected components is open and closed
(which is false for Q)

Definition X locally connected at x

VU 5 x neighborhood 3U" c U U’ 5 x neighborhood connected M\
_ul
X locally connected if locally connected at x Vo e X J
Figure 2 - 50

Remark X locally connected (at )= CNC (at ) (set U = X)

Theorem X is locally connected < YU c X open
VC, c U component of U (in relative topology)
C, c X open
Ex. {f:R - R} with uniform topology F(R,R)yu
f(x)=xze{f:lim /(@) =1} = Ay open and closed
T—> 00 ZI/‘
OE{fi llmM:O}:AO

x
disconnected! every behavior — oo gives a separation

Figure 2 - 51 connected components [ f].

{f:ﬂir»R}
f~g< f-g bounded
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Path Connectedness and Path Components

Definition path: [a,b] > X fromze X toye X

is continuous f(a) =z, f(b) =y

—

PN PR
19} z

Figure 2 - 52

X is path connected if
Vr,ye X 3 pathin X from z to y
write “x < y”

Remark path-connected = connected

Ex.

V,| - || norm, whose unit ball B={zeV : |z| <1}

Bis convex Vx,yeB, te[0,1], tz+(1-t)ye B. Then
t—tx+(1-t)y continuous in ¢ (in norm topology)

B is path connected

R?\{0} path connected

Figure 2 - 53

I2 is not path connected, but it’s a linear continuum (LUBP HW!) So it’s connected

a=(x1,y1) b=(x2,42) z2>xy

Figure 2 - 54

f:[0,1] > X continuous image must be connected

if image 3 a,b= image > [a,b] > (x1,72) x[0,1]
—_———
uncountable

3$0€(ZL'1,ZL‘2) f(@ﬂ[o,l])ﬂ({l‘o}x(o,l))ZQ
S — open
countable

F1({zo} x (0,1)) c RN Q, but Int(R\Q) =g 4
non-empty open as [ is continuous
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Ex. A={zxsini:0<z<1}cR? topologist’s sine curve

0]

Figure 2 - 55

A=Au({0} x[-1,1])

A connected = A connected but A is not path connected
Let there be a path f:[0,1] - A c R2
f@)=@@%y@D“mhf®)=miD‘ﬂU= %f)

x continuous z71(0) c [0,1] closed = Fmaxz~1(0) =:a’

wlo.g. f:[a,1]->A z(t)>0 t>a = img(flwi)cA

z(a’) =0,2(1) = 1 = by Intermediate Value Theorem

Vee(0,2] 3t z(t)=z=y(t)=sin(2) Image(f)=Au{0xy(a)}
[a’,1] (sequentially) compact, f continuous = Img(f) closed

= Tmg(f)=Auv{0xy(a)}=A+ Au{0xy(a)} ¢

This means the closure of a path-connected set is not path-connected!
(Compare theorem(*) on pg. [38)

Definition X topological space, define equivalence relation by
xr~y 3Jpathin X from x to y
[x]. is «’s path component

Theorem path components of X are
disjoint path connected subspaces
whose union is X
each path-connected subspace of X is
contained in exactly one path component

Figure 2 - 56
Figure 2 - 57
Ex. QcR

all components trivial = all path components are trivial
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Ex. from pglddl topologist’s sine curve is connected but not path-connected!

A has one component, A, and
two path components A\{0 x 0} and {0} x [-1,1]

=Aq =As

note that in A,
Ay is open but not closed = unlike components, path
Ajg is closed but not open  components need not be closed

Ex. connected take A\{0x0}u {0} x ([-1,1]\Q)

this is still connected (= one component)
but has uncountably many path components!

Figure 2 - 58

Ex. Consider {f:R - R} with uniform topology

connected component C of f is the set of maps g
with |g — f| bounded. (see Ex. 3.26.2 p.160 in book, p. B8 in note)
This is path connected in fact it is convex (as ¢ VS/R)
tf+(1-t)g gives a (straight) path from f to g e C;
Similarly you can do in box topology with
Cr={g:{z:g9(x) # f(x)}| < oo} (is also convex)

Again there is a local version

Definition X is locally path connected if
VU >x open 3U > U’ >z U’ path connected

Remark locally path connected = locally connected

Ex. (0,1)x[0,1) with dictionary order is not connected, not locally connected
(= not path connected and not locally path connected.)

Ex. [0,1]x(0,1) with dictionary order is not connected but locally connected
not path connected, but locally path connected

Ex. every set with the discrete topology is locally connected
and locally path connected since U = {x} 5 x is open
(but, of course, totally disconnected and path-disconnected)

Theorem X locally (path) connected < YU c X open
VYU’ (path) component of U U’ c X open

Theorem each path component of X lies (entirely) within a component of X
if X is locally path connected, then components and path components are the same

Corollary connected and locally path connected = path connected
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Ex. I2=[0,1]2 has LUBP(HW1) (See Pb.3. p.160 in book)

Intermediate Element Property (IEP) = Linear continuum
Th.(!) pB9
fr——

path connected?

(a,b) & (c,d) ifa=c “ ,4_

Figure 2 - 59

but (a,b) <> (¢,d) if a# ¢
assume f:[0,1] - I2 f(0)=(a,b)=axb

f(A)=(cd)=cxd
f([0,1]) o [axb,ecxd]
A=Qn[0,1] c[0,1] dense, countable
f continuous = f(A) 2 f(A) = £([0,1]) 2 [a x b,c x d]
B:=f(A)n(axb,cxd) dense in (a xb,c x d), countable
but (axb,exd)> |J {z} x[0,1] = Is € (a,b)

a<x<b
uncountable, disjoint union

Bn({s}x[0,1])=@ (axbcxd)>{s}x[0,1]>{s} = (0,1) open
Bg(axbcexd) 1

so path components of I are {s} x [0,1] 1’ Ay

Figure 2 - 60

43. Complete metric spaces

Assume (X, d) metric space
Recall (proof of Borel-Lebesgue) (X, d) o (z,,)

Ty —>x=>VYe IN Ym,n >N d(x,,x,) <€

Definition We say (x,,) is Cauchy-sequence if (x,,) satisfies (m)
Lemma (x,) converges = (x,) Cauchy-sequence

Definition We say (X, d) is complete if every Cauchy sequence converges
(i.e. converse of lemma holds)

Lemma Let (z,) be a Cauchy-sequnece, if (z,) has a convergent subsequence,
then (x,) converges
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Corollary X complete < every Cauchy sequence has a convergent subsequence

(f)Comment  (0,1) =~ ERI homeomorphic

Eucl.
non-complete

so 3 metric on (0,1) giving Euclidean topology
with respect to which (0,1) is complete
Thus completeness depends on metric (not only on metrizability)

complete

Corollary X compact = X complete
topological property metric property
metrizable topology = complete with respect to every metric

space compact inducing the topology

Theorem R* complete. (with Euclidean metric)
pf. let (z,) be Cauchy-sequence
= (x,) bounded = (x,) > [-M, M]* compact
= (x,) has convergent subsequence = (,,) converges

For R¥ recall the following lemma

Lemma let X = HXa with product topology, and

ael

for age I let mq, : X = X,

be the projection (x4 )aer = Tayg

Then 7, > 7 in X < Vael 7,(7,) = mo(T) in X,

(i.e. convergence in the product topology is pointwise convergence)

Theorem The product topology on R“ has a metric with respect to
which it is complete

pf. d(f,@)zsi%){w} d(a,b) =min(|a - b|,1)

d gives product space

assume (7, ) Cauchy-sequence in (X =R, d)
Vi m;(Z,) is R is Cauchy-sequence because
|mi(@) - mi(b)| <i-d(a,b) i-fixed

so m;(T,) = a; convergent in RVi Then,

T, > (a;)2 in X

Remark (z,) Cauchy-sequence, with respect to d
< (x,) Cauchy sequence with respect to d
(X, d) complete < (X, d) complete

Ex. Q,(-1,1) with Euclidean metric not complete
consider x, € Q =z, -2 in R (for Q)
-1+2e(-1,1) > -1 (for (-1,1))
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Remark (-1,1) ~ R  homeomorphic

not complete complete

so 3d on (-1,1) giving Euclidean topology
with respect to which is complete — completeness
pglT (1)Comment <« depends on metric(not only on metrizability)

Theorem Let (X, d) complete.
Ac X closed = (A, d|axa) complete
pf. (z,)cA (z,)c X Cauchy-sequence (x,) -z in X
- Cauchy-sequence A closed = r € A =
(r,) >z in A

Remark < also true: A c X complete = A closed

Remark R’ =F(J,R)y0q is in general not metrizable,
so completeness makes no sense
but RY . is metrizable. Recall uniform metric

Definition Let (Y,,d,) metric space.
Let d, = min(d,, 1)
For Y = H A, define the uniform metric on Y by

aed

o(z,7) = i}:?{d—a(ﬂ'a (7),7a(7))} To 'Y — A,

Theorem (Y,d) compete =Y’ =[[Y, Y,=Y
aeJ
is complete with uniform metric 1 index the copy

pf. let (f,) c Y’/ Cauchy-sequence with respect to o
then (7, (f,)) c Y, Cauchy-sequence in (Y,,dq)
= Cauchy sequence in (Y,,d,)

To(fn) = Yo in Y,

Let f:a~y,

We claim f, — fin (Y7, 0)

Given € > 0 choose N with Vn,m > N
d(fn(oz),fmﬁoz)) <€e/2 YaeJ(<0(fm, [n)<€/2)
I (0), () < of2

This holds Yae J VYn>N

0(fn, f) =sup d(fu(), f(@)) <ef2 <€
=Ve>03IN Vn>No(fn,f)<e=>fun—>f

Definition Now assume X is topological space

C(X,Y)c F(X,Y) =YX
I
is {f e YX: f continuous}

Definition f:X - (Y,d) bounded if f(X)cY
is a bounded set diam(f(X)) < oo
B(X,Y)cYX

”{f : X > Y f bounded}
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Theorem (Y, d) metric space
B(X,Y) and C'(X,Y)(X topological space)
are closed in (YX 7) and therefore complete

Ex. C(R,R)cF(R,R)yuu cloused (but not discrete)

C(R,R) c F(R,R)pox (closed and) discrete <= HW
C(R,R) c F(R,R)proq is dense (and not closed)

U

R[z] dense (Lagrange Interpolation)

Completion

Definition (X,d), (Y, d) metric spaces
wesay f: X > Y is isometry if
Vo, ze X d(z,7)=d(f(x),f(Z))

Remark f isometry = injective
so f is also called an “isometric embedding”

Theorem (Existence of completion)
(X, d) metric space 3(Y,d) complete metric space
f:X =Y isometric embedding

Definition If (X,d) metric space (Y,d) compete metric space
f: X =Y isometric embedding
call f(X)cY the completion of X

Remark completion is unique up to isometry

Construction U(X¥) = {(z1,22,23,...) € X Cauchy sequence} c Xv
Let ~ be equivalence relation on U(X¥)
(i) ~ () = d(, x7) > 0
Then Y =T(X):=U(X¥)/ ~
d([(x:)], [(27)]) = lim d(z;, 27)
f: X <Y isgiven by .~ [(x,z,2,...)]

Ex. X =Q with Euclidean metric I'(Q) = R construction of real numbers
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