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GS2004 Linear Algebra Fall 2018

Jordan normal form and Jordan basis

Let F be a field. A Jordan box Jλ,n (for λ ∈ F and n ∈ N+) is an n× n matrix over F of the sort

Jλ,n =



















λ 1 · · · 0

0 λ 1 · · · 0
...

. . .
. . .

...

0 0 · · · λ 1

0 0 · · · 0 λ



















.

We say that A′ ∈ Mn(F) is in Jordan normal form if it looks like

A′ =







































Jλ1,n1
0 0 0

0 Jλ2,n2
0 0

0 0
. . . 0

0 0 0 Jλk ,nk







































. (1)

It is not necessary that λi are all different.

We say that A ∈ Mn(F) has a Jordan normal form, if there is an ordered basis β, called Jordan basis for A, so

that (for an invertible matrix Q),

A′ := [LA]β = Q−1AQ (2)

is in Jordan normal form. Note that the columns of Q are the vectors of the Jordan basis.

It is very easy to see that then

χA(t) = χA′(t) =

k
∏

i=1

(λi − t)ni ,

so that χA splits. The important is the converse of this easy fact.

Theorem 1. Let A ∈ Mn(F) be so that χA(t) splits. Then A has a Jordan normal form. This Jordan normal

form is unique up to permuting the Jordan boxes Jλi,ni
.

The proof of this theorem (in the book) is long and technical. In particular, it explains that every A ∈ Mn(F)

has a Jordan normal form when F is algebraically closed.

The case of non-splitting χA (over non-algebraically closed F) is more complicated. For F = R, there is a version

of the theorem as follows.
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A generalized Jordan box Ja,b,n for a, b ∈ R, b > 0 (and n ∈ N+) is a (2n)× (2n) matrix over R of the sort

Ja,b,n =

















































a b 1 0 0 0 · · · 0 0

−b a 0 1 0 0 · · · 0 0

0 0 a b 1 0 · · · ...
...

0 0 −b a 0 1 · · · ...
...

...
... 0 0

. . .
. . .

...
...

...
... 0

. . .
. . .

...
...

0 0 · · · 0 a b 1 0

0 0 · · · 0 −b a 0 1

0 0 · · · 0 0 a b

0 0 · · · 0 0 −b a

















































.

Note that χJa,b,n(t) = ((t− a)2 + b2)n, i.e., Ja,b,n corresponds to conjugate-complex roots a± b
√
−1 of χA.

We say that A′ ∈ Mn(R) is in generalized Jordan normal form if it looks like (1), except that beside Jλk,nk
we

have diagonal boxes Jal,bl,n′

l
.

Theorem 2. Let A ∈ Mn(R). Then A has a generalized Jordan normal form A′ = [LA]β (again unique up to

permuting, possibly generalized, Jordan boxes).

Here we assume that F = R but that χA splits, and explain how to find a(n ordinary) Jordan basis in practice.

Note that, while the Jordan normal form is more-or-less unique, a Jordan basis is very non-unique! Thus we

cannot expect to arrive at the same, or even very similar, results.

To understand how to find one Jordan basis, we first observe some of its properties. Let β = {v1, . . . ,vn} be

such and

mi =

i
∑

j=1

nj ,

withm0 = 0. Let for j = 1, . . . , ni, vi,j = vmi−1+j. Let βi = {vi,1, . . . ,vi,ni
} (as on ordered set), and Vi = spanβi.

Then Vi are LA invariant subspaces, and
[

LA

∣

∣

∣

Vi

]

βi

= Jλi,ni
.

Then one sees that

(LA − λiId)(vi,j) =

{

vi,j−1 j > 1

0 j = 1

The sequence vi,ni
→ vi,ni−1 → · · · → vi,1 → 0 (where → is the application of LA − λiId) is called a chain.

Thus a Jordan basis consists of chains. They form bases of the generalized eigenspaces Ker((LA−λiId)
j). Each

chain contains exactly one eigenvector, thus the dimension of the eigenspace to eigenvalue λ is equal to the

number of chains to eigenvalue λ.

Finding the chains must be done for each eigenvalue separately. The most complicated situation is when there

are several chains (and Jordan boxes) to the same eigenvalue, and in particular when there are such of different

length.

We will do this in the following example.
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Problem 1. Find the Jordan normal form and a Jordan basis of the matrix

A =













157 −91 −11 3

192 −112 −13 5

597 −341 −45 2

−150 83 13 4













.

Hint: χA splits and all eigenvalues are integers.

Solving this requires some understanding, so be careful about what is being done. Essentially all we learned

about linear algebra calculations is needed!

Solution. First, we determine the characteristic polynomial. (You must know how to do it, so I don’t explain.)

We find

χ(t) = t4 − 4t3 + 6t2 − 4t+ 1 .

Next, we find the eigenvalues, which are roots of χ. In general this can be difficult, but with the hint that χA

splits all λ are integers, we need to try only divisors of the absolute term, which are ±1. This way we find the

factorization

χ(t) = (t− 1)4 ,

which means there is only one eigenvalue, λ = 1.

Alternatively, we need not calculate χA, but only detA, but then we need to test for λ | detA if A − λId is

invertible.

Next, we find the eigenspace, which is the kernel of A − λId = A − Id. We do row reduction. Let us fix the

following notation.

• An entry ‘↔ [m]’ right to a row of a matrix means that in the following matrix, the row is exchanged

with row m (type I operation)

• An entry ‘·µ’ or ‘: µ’ right to a row of a matrix means that in the following matrix, this row is multiplied,

resp. divided by µ (type II operation).

• An entry ‘+µ[m]’ right to a row of a matrix means that in the following matrix, µ times row m of the

current matrix is added (type III operation)













156 −91 −11 3 +[4]

192 −113 −13 5

597 −341 −46 2 −3[2]

−150 83 13 3













(try first to get the numbers smaller)













6 −8 2 6 : 2

192 −113 −13 5 +[4]

21 −2 −7 −13

−150 83 13 3












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











3 −4 1 3

42 −30 0 8 −14[1]

21 −2 −7 −13 −7[1]

−150 83 13 3 +50[1]













(3)













3 −4 1 3

0 26 −14 −34 : 2

0 26 −14 −34 −[2]

0 −117 63 153 +9/2[2]

























3 −4 1 3 ·13
0 13 −7 −17

0 0 0 0

0 0 0 0

























39 −52 13 39 +4[2]

0 13 −7 −17

0 0 0 0

0 0 0 0

























39 0 −15 −29

0 13 −7 −17

0 0 0 0

0 0 0 0













From here one sees that the kernel has dimension 2, and a basis is

{v2,v1} =



































29

51

0

39













,













15

21

39

0



































. (4)

Thus there are two chains (to EV λ = 1). Each chain ends on some vector in the span of these two vectors (4).

The sum of the lengths of the chains is n = 4, thus there are two options: 2, 2 or 3, 1.

To continue these chains (and find out their lengths), it is necessary to find out which vectors in the span of

(4) lie in the image of A− Id.

To do this, we repeat the previous row reduction doing simultaneously the same with v1,v2. (When you write

yourself, you don’t need to write again the whole matrix reduction, but you should make clear what you are

doing!)

We will have to repeat this reduction few times. Now pay only attention to the extra columns ‘(a)’ for v1 and

‘(b)’ for v2, which are the two vectors in (4).
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(c)-41
3
(a)

−234

(c)

−29

2(a)+3(b)

117

(a)

15

(b)

29

−338 −51 195 21 51

−533 0 78 39 0

0 0 117 0 39













156 −91 −11 3 +[4]

192 −113 −13 5

597 −341 −46 2 −3[2]

−150 83 13 3













(5)

−29 15 68

−51 21 51

153 −24 −153

0 0 39













6 −8 2 6 : 2

192 −113 −13 5 +[4]

21 −2 −7 −13

−150 83 13 3













−29/2 7.5 34

−51 21 90

153 −24 −153

0 0 39













3 −4 1 3

42 −30 0 8 −14[1]

21 −2 −7 −13 −7[1]

−150 83 13 3 +50[1]













−14.5 7.5 34

152 −84 −386

254.5 −76.5 −391

−725 375 1739













3 −4 1 3

0 26 −14 −34 : 2

0 26 −14 −34 −[2]

0 −117 63 153 +9/2[2]













−117 −14.5 117 7.5 34

650 76 −663 −42 −193

0 102.5 0 7.5 −5

0 −41 0 −3 2













3 −4 1 3 ·13
0 13 −7 −17

0 0 0 0

0 0 0 0













(6)

−1521 1521

650 −663

0 0

0 0













39 −52 13 39 +4[2]

0 13 −7 −17

0 0 0 0

0 0 0 0













1079 −1131

650 −663

0 0

0 0













39 0 −15 −29

0 13 −7 −17

0 0 0 0

0 0 0 0













(7)

Look left of the fifth matrix (6). The bottom two rows of the matrix are 0, but the entries in columns (a) and

(b) are not. This means that v1 and v2 are not in the image of A− Id.

If we have two chains of length 2, there would be two linearly independent vectors v1,2 and v2,2 sent to v1,1,v2,1,

which is a basis of span {v1,v2}. Then v1,v2 would both lie in Im(A−Id), which is not the case. This argument

is already enough for us to conclude that the chain lengths are 3, 1, and thus the Jordan normal form of A is

A′ =













1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1













. (8)

However, we have to work more to find a Jordan basis.

We found that dim(Im(A− Id) ∩Ker(A− Id)) < 2. If dim(Im(A− Id) ∩Ker(A− Id)) = 0, both chains would

break up, which we know is impossible. Thus dim(Im(A− Id)∩Ker(A− Id)) = 1. To continue one of the chains

(the one of length 3), we need to find a vector in Ker(A− Id) = span {v1,v2} which lies in Im(A− Id).
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In (6) we have to find some linear combination of columns (a) and (b) making the two bottom entries to 0. This

is seen to be

v1,1 = 2(a) + 3(b) = 2v1 + 3v2 =













117

195

78

117













. (9)

As v2,1 we may take any vector linearly independent from v1,1 in Ker(A − Id), for example (to keep entries

small),

v2,1 = (a)/3 =













5

7

13

0













.

The second chain (which is just an eigenvector) is thus done, and we leave it. We continue with the first (longer)

chain.

Since row and column operations commute, we need to calculate the linear combination (9) only in (5) (to know

what is 2v1 +3v2), and from (6) on, to find a preimage v1,2 (under A− Id). Note that this preimage is defined

only up to Ker(A− Id), which we already know. Thus it is enough to find one preimage v3, and I do this here

most simply setting the last two components (v3)3 = (v3)4 = 0.

v3 = (c) =













−1131/39

−663/13

0

0













=













−29

−51

0

0













Again, we cannot be sure to take v3 = v1,2, because we need that v1,2 lies in Im(A− Id) (to have v1,3).

We row-reduce v3 again until (6). The last two entries are not zero, meaning v3 lies outside of Im(A − Id).

However, we know that we can correct v3 by some element in Ker(A − Id) to lie in Im(A − Id) (i.e., the last

two entries to become 0). One possible correction is seen to be

v1,2 = (c)− 41

3
(a) =













−234

−338

−533

0













,

again because this linear combination makes the last two entries in (6) to be 0. In (7) this linear combination

leads (again setting the last two components to 0) to the preimage

v1,3 =













83/3

50

0

0













.

This is the final element of the chain, and thus no correction by elements in Ker(A− Id) is necessary (we seek

no further preimage).

Thus now we got our Jordan basis β together.

β = {v1,1,v1,2,v1,3,v2,1} =



































117

195

78

117













,













−234

−338

−533

0













,













83/3

50

0

0













,













5

7

13

0



































.
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Verify

(A− Id)(vi,1) = 0, (A− Id)(v1,3) = v1,2 and (A− Id)(v1,2) = v1,1. (10)

One can check that β is a basis, but it is more elegant to argue formally from (10) without further numeric

calculation.

We know v1,1, v2,1 are linearly independent. Also (A − Id)(v1,2) = v1,1 6= 0, so v1,2 6∈ Ker(A − Id) =

span {v1,1,v2,1}. Thus v1,2 is linearly independent from v1,1, v2,1. Finally (A − Id)(span {v1,2,v1,1,v2,1}) =

span ({v1,1}), but (A − Id)(v1,3) = v1,2 6∈ span ({v1,1}). This shows that v1,3 is linearly independent from

β \ {v1,3}, and thus indeed β is a basis.

And in this basis β we have [LA]β = A′ in (8), as we liked. �

Problem 2. Find the Jordan normal form and a Jordan basis of the matrix

A =













−80 44 8 4

−115 64 11 5

−220 116 25 15

24 −12 −3 −1













.

In particular, determine all eigenvalues, and argue that your Jordan basis is indeed a basis.

Hint: χA splits and all eigenvalues are integers. Think about how to use this information to

determine the eigenvalues more easily.

Solution. First, we determine the eigenvalues. One can determine the characteristic polynomial. Rather, we

calculate the determinant. We find

detA = 16 .

I do row operations. Let us fix the following notation.

• An entry ‘↔ [m]’ right to a row of a matrix means that in the following matrix, the row is exchanged

with row m (type I operation)

• An entry ‘·µ’ or ‘: µ’ right to a row of a matrix means that in the following matrix, this row is multiplied,

resp. divided by µ (type II operation).

• An entry ‘+µ[m]’ right to a row of a matrix means that in the following matrix, µ times row m of the

current matrix is added (type III operation)
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−80 44 8 4 : 4

−115 64 11 5

−220 116 25 15

24 −12 −3 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 4 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−20 11 2 1

−115 64 11 5 −5[1]

−220 116 25 15 15[1]

24 −12 −3 −1 +[1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 4 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−20 11 2 1

−15 9 1 0

80 −49 −5 0

4 −1 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −4 ·

∣

∣

∣

∣

∣

∣

∣

−15 9 1

80 −49 −5 +5[1]

4 −1 −1 +[1]

∣

∣

∣

∣

∣

∣

∣

= −4 ·

∣

∣

∣

∣

∣

∣

∣

−15 9 1

5 −4 0

−11 8 0

∣

∣

∣

∣

∣

∣

∣

= −4 ·
∣

∣

∣

∣

∣

5 −4

−11 8

∣

∣

∣

∣

∣

= −4 · (40− 44) = 16 .

With the hint that χA splits and all λ are integers, we have

χA(t) =

t
∏

i=1

(t− λi) (11)

and thus λ1λ2λ3λ4 = 16 with λi ∈ Z. Then all λi | 16.

We test that A± Id is invertible, by calculation of the determinant.

χA(1) = det(A− Id) = 1 , χA(−1) = det(A+ Id) = 81 . (12)

The determinant det(A− Id) was in Quiz 6.

We have thus that no λi = ±1. Then we can conclude λi = ±2, and don’t need to test eigenvalues λi =

±4,±8,±16. If you don’t see this, you can test 6 more 4× 4 matrices. (The rule applies here again: either you

think a little, or calculate a lot.)

One can test that λ = −2 is not an eigenvalue (one more determinant to calculate), but it can be seen (saving

this calculation) from χA(1) = 1 (12) that in (11) all factors must evaluate to ±1 in t = 1, thus must be t or

t− 2 (and none can be t+ 2). Thus

χA(t) = (t− 2)4 .

We see thus that λ = −2 is not an eigenvalue, and we have all λi = 2.

We consider thus λ = 2.

Next, we find the eigenspace, which is the kernel of A − λId = A − 2Id. We do row reduction. Let us fix the

following notation.

• An entry ‘→ [m]’ right to a row of a matrix means that in the following matrix, the row is taken out

and inserted as row m (type I operations)

• An entry ‘·µ’ or ‘: µ’ right to a row of a matrix means that in the following matrix, this row is multiplied,

resp. divided by µ (type II operation).

• An entry ‘+µ[m]’ right to a row of a matrix means that in the following matrix, µ times row m of the

current matrix is added (type III operation)
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Again we explain the columns added on the left later. Some zero entries in the matrices (but not columns left

of them!) are omitted.

(a)

2

(b)

0

(c)

0

(d)

0

0 1 0 0

25 −7 −5 1

−9 3 11 −2













−82 44 8 4 : 2

−115 62 11 5

−220 116 23 15

24 −12 −3 −3 : 3













(13)

1 0 0 0

0 1 0 0

25 −7 −5 1

−3 1 11/3 −2/3













−41 22 4 2 +2[4]

−115 62 11 5 +5[4]

−220 116 23 15 +15[4]

8 −4 −1 −1













−5 2 22/3 −4/3

−15 6 55/3 −10/3

−20 8 50 −9

−3 1 11/3 −2/3













−25 14 2 0 → [3]

−75 42 6 0 −3[1]

−100 56 8 0 −4[1]

8 −4 −1 −1













0 0 −11/3 2/3

0 0 62/3 −11/3

−5 2 22/3 −4/3

−3 1 11/3 −2/3













0 0 0 0

0 0 0 0

−25 14 2 0 : 2

8 −4 −1 −1 ·(−1)













(14)

0 0 −11/3 2/3

0 0 62/3 −11/3

−5/2 1 11/3 −2/3

3 −1 −11/3 2/3













−12.5 7 1

−8 4 1 1 −[3]













0 0

0 0

−5/2 1

11/2 −2













−12.5 7 1

4.5 −3 0 1













(15)

From here one sees that the kernel has dimension 2, and a basis is

{v2,v1} =



































2

0

25

−9













,













0

1

−7

3



































. (16)

Thus there are two chains (to EV λ = 2). Each chain ends on some vector in the span of these two vectors (16).

The sum of the lengths of the chains is n = 4, thus there are two options: 2, 2 or 3, 1.

To continue these chains (and find out their lengths), it is necessary to find out which vectors in the span of

(16) lie in the image of A− 2Id.

To do this, we repeat the previous row reduction doing simultaneously the same with v1,v2.

We will have to repeat this reduction few times. Now pay attention to the extra columns ‘(a)’ for v1 and ‘(b)’

for v2, which are the two vectors in (16).

Look left of the fifth matrix (14). The top two rows of the matrix are 0, and the entries in columns (a) and (b)

are also. This means that v1 and v2 are in the image of A− 2Id.
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Thus there are vectors vi,2 with (A− 2Id)vi,2 = vi,1 for i = 1, 2. This means that we have two chains of length

2. This argument is already enough for us to conclude that the chain lengths are 2, 2, and thus the Jordan

normal form of A is

A′ =













2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2













. (17)

However, we have to work a bit more to find a Jordan basis. We can take

v1,1 = (a) =













2

0

25

−9













,v2,1 = (b) =













0

1

−7

3













to be the end (eigen)vectors of the chains.

We found that dim(Im(A−2Id)∩Ker(A−2Id)) = 2. In (14) we have to find some vectors vi,2 with (A−2Id)vi,2 =

vi,1.

We need to continue calculating the row reduction from (14) on, to find preimages vi,2 (under A− 2Id). Note

that these preimages are defined only up to Ker(A− 2Id). But it is enough to find one preimage vi,2, and I do

this here most simply setting the first two components (vi,2)1 = (vi,2)2 = 0.

v1,2 = (c)/2 =













0

0

−5/2

−11/2













, v2,2 = (d) =













0

0

1

−2













.

These are the final elements of the chains, and thus no correction by elements in Ker(A− 2Id) is necessary (we

seek no further preimages).

To demonstrate that indeed the chains break up at vi,2, I have once more row reduced vi,2 as columns (c), (d).

In (14) one sees that the determinant of the two left top rows/columns is
∣

∣

∣

∣

∣

−11/3 2/3

62/3 −11/3

∣

∣

∣

∣

∣

=
1

3
6= 0 .

This means that no non-trivial linear combination, even after adding elements in Ker(A−2Id), lies in the image

of A− 2Id. This displays that indeed the chains break up.

Thus now we got our Jordan basis β together. To remove the fraction, I multiply the first chain by 2.

β = {2v1,1, 2v1,2,v2,1,v2,2} =



































4

0

50

−18













,













0

0

−5

11













,













0

1

−7

3













,













0

0

1

−2



































.

Verify that (A− 2Id)(vi,1) = 0 and (A− 2Id)(vi,2) = vi,1.













−80 44 8 4

−115 64 11 5

−220 116 25 15

24 −12 −3 −1













·













4 0 0 0

0 0 1 0

50 −5 −7 1

−18 11 3 −2













=













8 4 0 0

0 0 2 1

100 40 −14 −5

−36 4 6 −1













=













4 0 0 0

0 0 1 0

50 −5 −7 1

−18 11 3 −2













·













2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2













.

One can check that β is a basis, but it is better to argue formally without numeric calculation.
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We know v1,1, v2,1 are linearly independent. Also (A − 2Id)(vi,2) = vi,1 6= 0, so vi,2 6∈ Ker(A − 2Id) =

span {v1,1,v2,1}. Thus vi,2 are linearly independent from v1,1, v2,1. Finally (A− 2Id)(span {v1,2,v1,1,v2,1}) =
span ({v1,1}), but (A − 2Id)(v2,2) = v2,1 6∈ span ({v1,1}). This shows that v2,2 is linearly independent from

β \ {v2,2}, and thus indeed β is a basis.

And in this basis β we have [LA]β = A′ in (17), as we liked. �

Problem 3. Find the Jordan normal form and a Jordan basis of the matrix

A =













28 −14 −4 −3

34 −17 −5 −4

115 −58 −15 −9

−19 10 2 0













.

Hint: χA splits and all eigenvalues are integers.

Solution. First, one must find the eigenvalues. One can determine the characteristic polynomial. But more easily

calculate detA = 1, implying that all EV must be ±1 (when they are all integers and χA splits). Testing λ = 1

shows that it is not an eigenvalue, thus λ = −1, and we find

χ(t) = t4 + 4t3 + 6t2 + 4t+ 1 .

(λ = −1 is the only eigenvalue).

Next, we find the eigenspace, which is the kernel of A− λId = A+ Id. We do row reduction. (I don’t indicate

the row operations.)

Again we explain the columns added on the left later.

(a)

1

(b)

0

2(a)+3(b)

2

(c)

0

2(c)+(b)=(d)

0

(e)

0

0 1 3 0 1 0

14 −8 4 1 −6 3

−9 6 0 −2 2 −4













29 −14 −4 −3

34 −16 −5 −4

115 −58 −14 −9

−19 10 2 1













(18)

−26 18 2 −6 6 −12

−36 25 3 −8 9 −16

−67 46 4 −17 12 −33

−9 6 0 −2 2 −4













−28 16 2 0

−42 24 3 0

−56 32 4 0

−19 10 2 1













3 −2 0 1 0 2

−15 10 0 −5 0 −9

−13 9 1 −3 3 −6

−9 6 0 −2 2 −4













0 0 0 0

0 0 0 0

−14 8 1 0

−19 10 2 1













(19)

0 0

0 0

1 3

−2 −4













0 0 0 0

0 0 0 0

−14 8 1 0

9 −6 0 1













(20)

From here one sees that the kernel has dimension 2, and a basis is

{v1,v2} =



































1

0

14

−9













,













0

1

−8

6



































. (21)



12 jordan

Thus there are two chains (to EV λ = 1). Each chain ends on some vector in the span of these two vectors (21).

The sum of the lengths of the chains is n = 4, thus there are two options: 2, 2 or 3, 1.

To continue these chains (and find out their lengths), it is necessary to find out which vectors in the span of

(21) lie in the image of A+ Id.

To do this, we repeat the previous row reduction doing simultaneously the same with v1,v2. (When you write

yourself, you don’t need to write again the whole matrix reduction, but you should make clear what you are

doing!)

We will have to repeat this reduction few times. Now pay only attention to the extra columns ‘(a)’ for v1 and

‘(b)’ for v2, which are the two vectors in (21).

Look left of the third matrix (19). The top two rows of the matrix are 0, but the entries in columns (a) and (b)

are not. This means that v1 and v2 are not in the image of A+ Id.

If we have two chains of length 2, there would be two linearly independent vectors v1,2 and v2,2 sent to v1,1,v2,1,

which is a basis of span {v1,v2}. Then v1,v2 would both lie in Im(A+Id), which is not the case. This argument

is already enough for us to conclude that the chain lengths are 3, 1, and thus the Jordan normal form of A is

A′ =













−1 0 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1













. (22)

However, we have to work more to find a Jordan basis.

We found that dim(Im(A+ Id) ∩Ker(A+ Id)) < 2. If dim(Im(A+ Id) ∩Ker(A+ Id)) = 0, both chains would

break up, which we know is impossible. Thus dim(Im(A+ Id)∩Ker(A+ Id)) = 1. To continue one of the chains

(the one of length 3), we need to find a vector in Ker(A+ Id) = span {v1,v2} which lies in Im(A+ Id).

In (19) we have to find some linear combination of columns (a) and (b) making the two top entries to 0. This

is seen to be

v1,1 = 2(a) + 3(b) = 2v1 + 3v2 =













2

3

4

0













. (23)

As v2,1 we may take any vector linearly independent from v1,1 in Ker(A + Id), for example (to keep entries

small),

v2,1 = (b) =













0

1

−8

6













.

The second chain (which is just an eigenvector) is thus done, and we leave it. We continue with the first (longer)

chain.

Since row and column operations commute, we need to calculate the linear combination (23) only in (18) (to

know what is 2v1 + 3v2), and from (19) on, to find a preimage v1,2 (under A+ Id). Note that this preimage is

defined only up to Ker(A + Id), which we already know. Thus it is enough to find one preimage v3, and I do
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this here most simply setting the first two components (v3)1 = (v3)2 = 0.

v3 = (c) =













0

0

1

−2













Again, we cannot be sure to take v3 = v1,2, because we need that v1,2 lies in Im(A+ Id) (to have v1,3).

We row-reduce v3 again until (19). The first two entries are not zero, meaning v3 lies outside of Im(A + Id).

However, we know that we can correct v3 by some element in Ker(A + Id) to lie in Im(A + Id) (i.e., the first

two entries to become 0). One possible correction is seen to be

2v1,2 = 2(c) + (b) = (d) =













0

1

−6

2













,

again because this linear combination makes the first two entries in (19) to be 0. (The factor 2 is added to keep

the entries to be integers.) In (20) this linear combination leads (again setting the last two components to 0) to

the preimage

2v1,3 =













0

0

3

−4













.

This is the final element of the chain, and thus no correction by elements in Ker(A+Id) is necessary (we seek no

further preimage). The last column left of the matrices is the test that indeed no multiple v1,3 can be corrected

by an element in Ker(A + Id) to lie in Im(A+ Id): the first two rows of column (e) in (19) are not a multiple

of the first two rows of column (a) or (b) (which are multiples of each other, as we found out before).

Thus now we got our Jordan basis β together.

β = {v2,1, 2v1,1, 2v1,2, 2v1,3} =



































0

1

−8

6













,













4

6

8

0













,













0

1

−6

2













,













0

0

3

−4



































.

Verify

(A+ Id)(vi,1) = 0, (A+ Id)(v1,3) = v1,2 and (A+ Id)(v1,2) = v1,1, (24)

by












28 −14 −4 −3

34 −17 −5 −4

115 −58 −15 −9

−19 10 2 0













·













0 4 0 0

1 6 1 0

−8 8 −6 3

6 0 2 −4













=













0 −4 4 0

−1 −6 5 1

8 −8 14 −9

−6 0 −2 6













=













0 4 0 0

1 6 1 0

−8 8 −6 3

6 0 2 −4













·













−1 0 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1













.

One can check that β is a basis, but it is more elegant to argue formally from (24) without further numeric

calculation.

We know v1,1, v2,1 are linearly independent. Also (A + Id)(v1,2) = v1,1 6= 0, so v1,2 6∈ Ker(A + Id) =

span {v1,1,v2,1}. Thus v1,2 is linearly independent from v1,1, v2,1. Finally (A + Id)(span {v1,2,v1,1,v2,1}) =

span ({v1,1}), but (A + Id)(v1,3) = v1,2 6∈ span ({v1,1}). This shows that v1,3 is linearly independent from

β \ {v1,3}, and thus indeed β is a basis.

And in this basis β we have [LA]β = A′ in (22), as we liked. �


