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0 Sets, Numbers, Maps, Fields, Rings

0.1 Set theory

set = {collection of objects}
Ex A={0,1,2}, N={0,1,2,3,---}

some notations:




re€A : element
x ¢ A : not element
ACB : A contained in B; when z € A, thenx € B
ACB : ACBand A# B
@ : empty set(no element)
Ex

1.z=1, A={1,2,3}
= rxec A

2.x=4=zx¢A
Ex1e€{1,2,3}

{1} © {1,2,3}, {1,2,3} c {1,2,3}, {1,3} C {1,2,3)

{1} € {1,2,3} not {1,2,3} € {1,2,3}

NCZcCcQcCR
ANB = {x :zxz€Aandz € B} :  intersection
AUB = {z :x€Aorxe B} :  union
A\B = {x : z€ Aandnot z € B} : set difference

What kind of numbers?

natural numbers (0 incl.) 0,1,2,3, ---
integers ---—3,—2,—-1,0,1,2,3, ---
rationals = (m, n € Z,n # 0)

real numbers

complex numbers

quaternions (Hamilton numbers; later)

HOREOCNZ

N; := N\ {0} positive natural numbers

if AC X, X fized, then X \ A =: A is called complement of A in X
if ANB =0 <: AB disjoint
indexed N and U
{A; :iel} sets ﬂAi ={x:xecA foralliel}
iel
UAZ' = {x :x €A forat least onei € [ }
el



Ex. when I =Qand A4; = {z €Q : xZi}thenUAizQandﬂAizg
icl i€l
and

product set A x B := {(z,y) : x € A, y€ B}

i4><A><---><4:: A"

n times

example: R? := {(z,y) : z,y real } coordinate plane

R3 := {(x,y,2) : z,y,z real } (3-dimensional) Euclidean space
cardinality # of elements in the set (or co)
2] =0, {1} =1, |Z] = o0

equivalence relation on a set X: S C X x X with 3 properties:
Ve e X : (x,z) €S (reflexivity)
Ve,y € X : if (z,y) € S, then (y,z) € S (symmetry)
Ve,y,z € X+ if (z,y),(y,2) € S, then (z,2) € S (transitivity)

We write © ~g y, or simply = ~ y, “x is equivalent to y”, for (z,y) € S.

Ex S={(z,z) : x € X}, S =X x X trivial equivalences

Exz,ye X =7, x~pyifn|(x—y) (neN,n>0)

0.2 Real numbers

Arithmetic

N

: +
B _ ™ eduction (k € Z,k £ 0), L+ 2 - T4=P0
n-k n n q ngq

Rational numbers are ”dense(% @ )”. But they are not all. E.g., = v/2 ¢ Q;
x is irrational

more generally if z is integer and x = /2 is not integer, then /2 is irrational.

0.2.1 Algebra of Real Numbers

Addition & multiplication

{ commutativity (2l
3

B}HA) a+b=>b+a, ab = ba
associativity (2 5

) (a+b)+c=a+(b+c), a(bc)= (ab)c

but not subtraction & division



3—5#5—-3, (3—1)—2#3—-(1-2)
3+5#£5+3, (3+2)+5#3+(2+5)°

implicit parentheses: a —b—c=(a—b) —c
from left to right a+b+c=(a+b)+c’

Order algebraic of operations

1. multiplication & division precede addition & subtraction

a+b-c=a+(b-c)[#(a+b)- (|

2. evaluate innermost parentheses 1st

out;ir()
7 N
Ex 2(6+3(1+4))=26+3-5)
—_——
inner()
= 2(6 + 15)
=2-21=42

Distributive Property

(b+c)a=a(b+c)=ab+ac

S simplify

—’expand
Examples of use:

(a+0b)(c+d) =ac+ ad+ be+ bd

(a +b)? = a® + 2ab + b*

Additive inverses & subtraction

additive inverse of a € R —a : a4+ (—a) =0

a—b = a+ (-b)

Rules of additive inverse



—(—a) = a
—(a+b) = —a-—b
(—a)(=b) = ab
(—a)b=a(-b) = —ab
a—0b)c = ac—bc

multiplicative inverses & division

1 1
multiplicative inverse of b € R, b # 0 E(: b b 7= 1
E =a- E =a- b_l
see rules for rational numbers
a+c ad+bc 1 b —a a a —a a(, articula 1 1)
-+ == - =—-,— = — = ——, — = — (in particular — = ——
b'd bd T &b b b b b P b~ b
b
0.2.2 Inequalities
a<b a less than b (a left of b on real line)
a>b a greater than b
a<b a less/smaller than or equal to b
a>b a greater /bigger than or equal to b
a<b b<c = a<c transitive
addition

a<b c<d=a+c<b+d

multiplication
a<b ¢>0 = ac<bc
c<0 = ac>bc

= (additive inverse) a < b = —a > —b
multiplicative inverse & inequalities

ab#0, a<b l<%ifab<0
s Tirab>o0
Exab>0
l.a=2,b=3 <3

2.a=-3,b=-2 —L1<—



ab<03.a=-2b=3 —1<0<4%
Intervals

Let a,b e R, a <D

open interval
left-open intervals
right-open intervals
closed interval

set = {objects with some property}
(a,b) = {reR:a<z<b}
(a,b] = {reR:a<z<b}
[a,b) = {xeR :a<x<b}
[a,b] = {z€R :a<x<b}
Ex
1. A=10,2), B=(1,3)
ANB=(1,2), AUB =[0,3)
A\ B=[0,1], B\ A=12,3)
2. A=[0,1], B=1[1,2)
ANB=1
3. A=1[0,1], B = (1,2)

AN B =2 (A,B disjoint)

oo :infinity, = co > a Va € R

—00 :negative infinity, = —oo < a Va € R

(a,00) = {z€eR :a<z}
[a,00) = {z€R : a<uzx}
(—o00,a) = {xeR :zxz<a}
(—o00,a] = {xeR :zx<a}
(Note: '[—00,” or 7, 0]’ make no sense, since oo, —oco ¢ R)

Absolute value

8
—N—
| B
8

8 8

Ex [3] =3

5 | —2/=2,10/=0

Ex{zeR : |z| <2} =(-2,2)

AN
o o



0.3 Functions and Their Graphs
0.3.1 Functions

Domain(% 2] 9) and target(5 %)

function f from A and B associates to each a € A (argument) an element
f(a) € B (value)

f:A— B

A : domain of f domain(f)
B : target of f  target(f) D range(f)
Ex f(z) =27 €R

Then f(3) =32 =9

Ex f does not need to be defined by a single
expression.

3x ifxz<O
glz) =1 V2 ifx=0
22 4+7 ifzx>0

These conditions must be disjoint!

Domain={z € R : some condition for z}

9(=2) = 3-(-2)=-6
g(0) = V2
g(1) = 124+7=8

Equality of functions

Definition : Two functions f, g are equal if

domain(f) = domain(g), target(f) = target(g)(not in book!),

and for all x € domain(f) we have f(z) = g(x).
Ex

f:R— R, f(z) =3z



g:R— R, g(t) =3t

f =g (how you call the variable in definition does not matter)

FiR—R, f(z)=3

f = g(how you call the variable in definition does not matter)

because z = —1 g(x) =v9=3, f(z) =3-(-1) = -3

fFiR—R, f(z)=3x

g:{xreR : >0} — R, g(x)=3x

f =g (how you call the variable in definition does not matter)

f#9



because domain(f) # domain(g)
Definition : Assume A C B C R and f : B — R function
Then the function g : A — R given by g(x) = f(x) forallz € A

is called the restriction of f to A and written

g=1r

A .

in the ab Lg=
[(in the above ex. g = f {$€R:x>0})]

Ex A=1,2 f(x) =22 g(z)=32z—-2

f)=9(1) =1, f2)=9(2) =4 = f=y

so functions can be equal even if given by very different formulas.
Domain

Convention(g <F): If no domain is given, we assume that the domain is the
maximal subset of R where definition makes sense.

1

Ex f(¢) = 3

— domain(f) ={zx €R : 3x—4§é0}:R\{§}

Ex f(z) = v3z —4

— domain(f) ={z R : 3x—420}:[§,oo)

(x+1)(z+2)
(x +2)

Ex f(z) = ¢ + 1, gla) =

domain(f) =R, domain(g) ={x € R : 4+2#0} =R\ {-2}



g is not defined in —2!

Functions via tables

x| fx)
0.1 ] 1.01
0.2 ] 1.04
0.3 ] 1.25
0.4 1.39

Range(*] 9) of a function

Definition : Range of a function f: A — B is all b € B for which these is
at least one a € A with f(a) =b

<~—target of f

range of f
Ex f:R—R f(z)=|z|

domain= R, target = R, range = {x € R : = >0}

Ex f=

(x| fz) )

domain { > range

when f is given by a table

Ex f =3z +1 domain(f) = [-2,5]
Is 19 € range(f)?
19=f(z)=3zx+1, —2<x <5
— r=2=06 &[-2,5]

so no x exists — 19 & range(f)



0.4 Coordinate Plane and Graphs

y — axts, vertical axis
A

; » r — axts, horizontal axis
1

coordinate plane

p = (z,y) rectangular(Cartesian) coordinates of p

Graph of a function

f:A— B ABCR

The graph of f consists of all points (z, f(x)) for z € A
graph(f) := {(z, f(x)) : x € A} C AxB.
Ex A=1{1,2,3,4}

x| fz) ’
1 2 ) 4 points
2 3 ’
3| —1
4 1 >

grap l(f) = {(L 2)7 (27 3)7 (3? _1)a (47 1)}

Ex A =[-4,4] f(x) = |«]

Y

Even and Odd functions




f(z) = 2% Then reflecting graph of f with respect to y — axis gives graph
itself. Because f(z) = 22 = (—x)% = f(—x)
Definition: f is called even(-&<=, &3H) function if

f(x) = f(—x) for every z € domain(f)

(Note:This means in particular that x € domain(f) = —x € domain(f).
For example f(z) = z? for domain(f) = [—1,1) is not even!)
other examples f(z) = |z| (domain(f) = R)

)
Because | — z| = |z| /
> T
Y
f(x) =cosx ¥
T
Y
f(x) = 2?

Graph(f) has rotational symmetry by 180° around origin

< graph(f) is mapped to itself
when we mirror with respect to both x- and y — axis

given f what function is graph f after mirroring with respect to
both z- and y-axis

y-axis x-axis

f(ZL') mirroring f(—l‘) mirroring —f(—ZL')

Graph(f) has rotational symmetry by 180° around origin



These are odd functions.
Definition f: A — B odd(7] &<, &) if Ve € A (—x € A and)

Ex f(z) =2" nodd
in particular f(z) ==

Y
&

f=sinzx
0.5 Composition of functions
Ex h(x) = /z + 3 is calculated in 2 steps:

1. add 3

2. take the root

These correspond to two separate functions g(z) = = + 3 and

f(y) = /y. So h(z) = f(g(z)).

We need this often, so we make definition.
Definition The composition of f and g

is defined by (f o g)=f(g(z)).

This is defined when z € domain(g) and g(z) € domain(f).
Thus domain(f o g) C {x € domain(g) : g(x) € domain(f)}.

(and ”=" if we do not specify domain(f o g) )per convention!

Bx Let f(3) = —. 9(o) = a*

1. evaluate (f o g)(3)
sol: (fog)(3)=f(9(3)) =f(3%) = f(9) =55 =3

2. find a formula for (f o g)
sol: (f e g)(z) = fl9(x)) = f(@*) = =

3. determine domain(f o g)

sol: domain(f o g) = {x € domain(g) : g(x) € domain(f)}
— —
R {yeR : y#4}
={reR : 22 #£4} =R\ {-2,2}



Composition is associative : fo(goh)=(fog)oh=: fogoh

Composition is not commutate : f o g # g o f in general
e.g. Let f(z) =22, g(z) =2 +1

flg)) = flz+1) = (z+1)* =2+ 20+ 1, g(f(2)) = g(2*) =

flg(x)) # g9(f(x))
Identity Function

I:A— A I(x)=z, =14
when f: A— A, then lof=f=fol

(I is the identity for the operation of composition)

Sometimes one can write h = f o g for f, g simpler than h.
Such decomposition h = f o g is not unique.

h_\/m h=Ff-g f(y)z\/ﬂ 9($)222+1
o 332+1 ~ . o y—i—3 - 2
h=fog fly)=

0.6 Inverse functions

Ex. f(z) = 3z find x with f(z) =6
sol. 3t =6 = =2
flz) =y

sol.3r =y = x =

solve for z Y
3

(exactly one z exists)
r=:f"(y) = %
This can be defined if for given y there is exactly one x.
This is of course not always the case.
f(z) =® +1 [dom(f) = R]
2?+1l=y
What is f~1(y)?

y>1 2 values for x

r==2yy—1, thus y=1 1 value for x
y <1 O0values for =

We must change domain(f) so that only one z occurs.
Definition: Let f: A - B andy € B, B ' C B

We define f~Y(B')={z € A : f(x) € B'}

J7Hy) S A(seth) as f[THy) ={z € A : fla) =y} =F""{y})

f is injective if for ally € B, | f~1(y) |<1 &

Ve,ye A f(z)=fy) =z=y

241

f is surjective if for all y € B, | f~1(y) [>1 & range(f) = B

(| | means number of elements)



f is bijective(book: one-to-one) if f is surjective and injective

S|y =1, fHy) ={=}

Definition Then we can define an inverse function f—!
f~Yy) := x for the z with f(z) =y.
(when f is bijective, x is unique.)

Domain and Range of inverse function:
domain(f~1)=range(f)
range(f~!)=domain(f)

The Composition of a function and its inverse
Y f(z)) =2 VY € domain(f)
f(f~'(y)) =y Vy € range(f) = domain(f~')
(f~to filz) = f~H(f(2) = = = Id(z)
f_l o f = Iddomain(f) f o f_l = Idrange(f)
1 You can use to check formula for f~1

Ex f(z) = 2432 (2°C = f(2)°F)
i) = 2= 5 )
5((2x+32)-32) 5.2z

9
check (f~'o f)(z) = [~ (22 +32) = 9 = 95 =z

Comments about notation:
variable name does not matter.
1) f~Y(z) =52 — 37/z

f~Hy) =5y =37y
I choose y for argument of f~! and z for argument of f to indicate that = and
y are possibly in two different sets x € domain(f), y € range(f).

are equivalent statements

2 17 # F0) ™ = 77
ex. f(x) =22 (x> 0), f_l(y)z\{§ X
fly)~' = O

Thus if ” f =17 is written be careful how it is meant!

0.7 Group, Field, Ring

Definition A group (G, +), (G,-) (additive/ multiplicative notation)
G set and - : G x G — G map “operation”

(91,92) =1 91" 92 = 9192
with the following properties

1) 31 € G 1l-element or neutral element, identity (book)

l-g=g-1=9g VYgeG

2)VgeGIg €eG:g9-d=¢ -g=1, ¢ = g~ inverse of g



3) 91(9293) = (9192)93 V91,92, 93 € G (associativity)
Definition If additionally
4) g192 = g291 for all g1, g2 € G, then G is an Abelian (commutative) group

example (Z,+) is Abelian group with neutral element 0

Def (F,+,-) is a field if - addition
multiplication
40,1 € F' s.t.

1) (F,+) is an Abelian group with neural element 0

2) (F\ {0},-) is an Abelian group with neural element 1
3) +,- are distributive: (a +b)-c¢ = ac+ be Va,b,c € F
if in (F'\ {0},-)

no inverse
exists inverse (F'\ {0}, ) monoid with or w/t 1
commutative F is field F'is commutative ring with or w/t 1
noncommutative | F' is skew-field | F' is noncommutative ring with or w/t 1

Rem additive inverse of b in (F,+) is written as —b and a — b = a + (—b)

a
for mult. inverse we write b = —, and — =a-b"' =b"' - a (Note: in a skew-

b b

field, % makes no sense!)

Ex (C,+,-), (R,+,), (Q,+, ) are fields
(Z,+,-) ? but - has no inversee.g. 2 € Z Age€Z: 2-g=1
—> comm. ring with 1, but no field
(2Z,+, ) now - has no inverse and no identity [ Ae € 2Z : e-k = k Vk € 27Z)]
—> comm. ring without 1

Th. (cancellation laws) F' field, a, b, c € F' arbitrary
1)a+b=c+b=a=c
2) b#0,a-b=c-b=a=c

Corollary The identity elements 0,1 € F' are unique.

Th. In any field F,
1) a-0=0-a=0
2) —(a-b)=(-a)-b=a-(-b)

Corollary The additive identity 0 in F' has no multiplicative inverse.



0.7.1 characteristic

Def F field. Define the characteristic char(F') € N by

min{n €Ny : 1+1+---+1 =10} ifsuch an n exists

n times

0 otherwise

char(F') :=

Ex For F = Q,R,C, char(F) =0 (no n)

Let n > 1. Consider
Zy, = Z./nZ = { conguence classes modn } = {0,1,2,...,n — 1}.
(Zp,,+,0) additive Abelian group
(Zp, -, 1) everything ok except inverse

Lemma 3 mult. inverse <= n prime

So Z,, is a field for n prime, but only a ring for other n (cyclic field/ring)
For n prime, char(Z,,) = n.

Rem Only 0 and primes can be characteristic of a field.

Rem If char(F) =1, then 1 = 0 = F = {0}, not interesting.

0.8 Complex numbers
0.8.1 arithmetic, norm, conjugate

C complex numbers
z € Cisof the form z = a+bi, a,b € R, a = Rez real part
b = Omz imaginary part

i = +/—1 (imaginary unit)

z=a+bi
w=c+di

z+w=(a+c)+ (b+d)i —z=—a—"bi
zw =z -w = (ac — bd) + (ad + be)i
if z€ R (i.e.,, b=0), zw = (zc) + (2d)i

Z = a — bi (complex) conjugate

7 =a?+b% = |z|? |z| = Va? + b? € R norm
2| =0 <= a=b=0 < 2=0 ] abs. value

z
_ 1 a b ]
:>for2750,z b — WZ: <a2—|—b2> — (m)l

— N




Th C forms a field.

h The conjugation has the following properties.

&) |zw] = |2 - Jw
Q) \5\—% (w # 0)

e) |z[ = fw| < [z +w| < [2] + |w]

Pf a), b) exercise
¢) |zw|? = 2wzw = 27ww = |22 |w|? = (|2||w])?
1 1
—‘ = — because |w| - ‘—| = ‘w- —‘ =11 =1
w |w w w
so use then c)

e)

d)

f) previous theorem

lz4+w|? = (z 4+ w)(Z + ) + 2Z + 2Re(2W) + ww
b)
< |2 + 2] + |w]?
a,c)

|2 + 2|z Jw] + [w]?
first inequality a consequence of second:

C

)
=z =1=1]-lz[ = [2]

2l = 1(z + w) + (w)| < [z +w|+]-w] = |z+w|+[uv]
bring |w| on other side = [

(2] + Jaw])®



0.8.2 Trigonometric Functions (4}Zgh)

The unit circle unit circle: circle with center (0,0), radius= 1
equation: 2 +y%? =1

Angles in the unit circle

I : positive horizontal axis = {(x,0): = > 0}
IT : positive vertical axis ={(0,y): y >0}
IIT : negative horizontal axis = {(z,0): x < 0}
IV : negative vertical axis ={(0,y): y <0}

angle 6 used in trigonometry is angle between radius
of unit circle and positive horizontal axis measured
counter clock wise naturally 6 € [0°,360°)

6 € [0°,90°] 6 € [90°,180°] 0 € [180°,270°]
Negative Angles 6 are measured

by —6 clockwise direction from 0 Al
positive horizontal axis thus same

radius can give 2 different angles

0 € [-90°,0°] 6 e [—180°, —90°]

thus same radius can give 2 different angles

depending on positive or negative: 9950

—135°

=

(6 — B = 360°)

0 = 225° 4 360°

0
~7B
%‘9

Angles> 360°
6 > 360° is obtained by
going once (or several times) around the circle
(counterclockwise; for negative 6 clockwise)
The same radius corresponds to angles differing by H
n - 360°.
Length of Circular arc

circumference= 27

I Or
or _ 360° ' 180
an angle of [ radians is one with unit circle arc of length [
(later more about radians)
Special Points on Unit Circle

= 585°



o /= 30°

o6 =60°

Cosine and Sine

y=3—-w="%
3)
0 radian | 6 degree (x,y)
0° 0 (1,0)
. 3° | (£.3)
i 450 (L L)
4 V27 V2
T 60° | (3.%)
z 90° (0,1)
T 1800 (_170)

(cos 0, sin ) Definition: The cosine of an angle 6, cos 0, is defined to be the
first coordinate of the end point of a radius of unit

o
NI

circle at angle
The sine of 0,
coordinate.

0 with positive horizontal axis.

sin 6, is the end point’s second

Thus the coordinates of the end point are (cos 6, sin8).

Ex.

0 degree | cosf | sinf
0° 1 0
w5
oy |8
90° 0 1
180° —1 0

The signs of Cosine and Sine

coordinate axes divide R? into quadrants(AFHZ ).
quadrant determines sign of sin 6, cosf




A

0c(0,%) sinf > 0, cosf >0
2828 | snezd 6e(3m)  cosf<0, sinf>0
c0s 6<0 | cos 050 | 0 e (m, = sinf < 0, cosf <0

)
2m) cosf >0, sinf <0
The Key Equation Connecting Cosine and Sine
(x,y) = (cos,sin ) end point of radius € circle 2% +y? = 1
— cos?f +sin’?f =1

Periodicity (55 7]43) of sin and cos

the same radius determines angles up to multiples of 27

Thus:

cos(x + 27) = cos(x)

sin(z + 27) = sin(x)

Definition: f: R — R periodic if 3d > 0 (period) with
flx+d) = f(x) Vx eR
(Vx € dom(f) =+ d € dom(f) also ok)

cos, sin are periodic functions with (minimal) period 2.

The graph of Cosine and Sine

cos?f +sin?0 =1 — cos?6,sin’h <1
— | cosf],|sinf| <1 yt
—1<cosf <1

1 <sinf<1 /R\ AV
VAV VAN,

f=sinzx

g = COSx
Thus

Domain and range of cosine and sine:
dom(cosine)=dom(cos)=R
range(sin)=range(cos)=[—1, 1]

Polar coordinates

(z,y) € R*\ {(0,0)} = z=z+iyc C\{0}=(r,0) € (0,00) x [0,27)

(x,y) Cartesian (rectangular) coordinates
r, ) polar coordinates
(

r = |z| norm of z € C
0 = arg(z) argument of z, 0 € [0,27) (or R/27Z)

polar coordinates behave more naturally w.r.t. complex mult.
arg(z - w) = arg z + argw |z w| = |z] - |w]

complex exponential and log




e = cos(f) + isin(6) (6 € R)

thus

e*TW = e% (cos(y) + isin(y))

Since |cos(y) + isin(y)| = 1 and arg(cos(y) + isin(y)) = y (up to 27Z), we
have for z = x + iy,

T4y T T4y
- — I
|€ | (& and arg(e ) Y or
|€Z| = e’'%* and arg(ez) = Qmz.

One can again define a complex log as
log(w) = z when e* = w (w #0).

But log(w) is defined only in C/2miZ.

complex roots

Let n € N, n > 1. The multiplication formula gives
2" = |z|"(cos(narg(z)) + isin(narg(z))) .

Thus when w # 0, there are n_distinct n-th roots of w, i.e., complex num-
bers z with 2" = w.

The are given by the formula

2rk 2
Zk+1 = \"/|'w]-<cos (arg(wzl—l— z >+isin<arg(w)+ Fk)) , k=0,....,n—1

n

In case of real roots /w, w € R, there is a natural choice (take the positive
number for {/w if n is even — and w > 0), but for mathematicians there is
no canonical choice of complex roots.

Thus the expression /w for w € C is ambiguous,
and when you work with complex roots, you must say which one you mean!

0.8.3 Algebraic closedness

One main reason for importance of complex numbers is that C is algrabically closed.
Def F' is algrabically closed field if every polynomial

P = zg+ z1t + z9t% + ... + 2,1, zi €F 2z, #0,

splits
P=z, - (t—t)) -(t—t1)-...-(t—tn), G EF

t; — root or zero of P.



multiplicity of t; = [{j : ¢t; = t; }| > 1

(if mult= 0, not a root)
if mult= 1, ¢; is simple root
if mult= 2, ¢; is double root
if mult= 3, ¢; is triple root

0.8.4 Quaternions H

H={a+bi+cj+dk :abc,deR}

i, J, k formal symbols (¢ =d =0 = complex nrs) = H DO C

f. ’ ' z=a+bi+cj+dk

U el S Rl I Z=a—bi—cj—dk Z-E:|z|2:a2+b2+cz+d2
2

k=51 @ | -1 ||

H forms a skew-field (like field but multiplication is non-commutative)



