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〈 Syllabus rules 〉

0 Sets, Numbers, Maps, Fields, Rings

0.1 Set theory

set = {collection of objects}

Ex A = {0, 1, 2}, N = {0, 1, 2, 3, · · ·}

some notations:



x ∈ A : element
x 6∈ A : not element
A ⊂ B : A contained in B; when x ∈ A , then x ∈ B
A ( B : A ⊂ B and A 6= B

∅ : empty set(no element)

Ex

1. x = 1, A = {1, 2, 3}
⇒ x ∈ A

2. x = 4 ⇒ x 6∈ A

Ex 1 ∈ {1, 2, 3}

{1} ⊂ {1, 2, 3}, {1, 2, 3} ⊂ {1, 2, 3}, {1, 3} ⊂ {1, 2, 3}

{1} ( {1, 2, 3} not {1, 2, 3} ( {1, 2, 3}

N ⊂ Z ⊂ Q ⊂ R

A ∩B = {x : x ∈ A and x ∈ B} : intersection
A ∪B = {x : x ∈ A or x ∈ B} : union
A \B = {x : x ∈ A and not x ∈ B} : set difference

What kind of numbers?

N natural numbers (0 incl.) 0, 1, 2, 3, · · ·
Z integers · · · − 3,−2,−1, 0, 1, 2, 3, · · ·
Q rationals m

n
(m, n ∈ Z, n 6= 0)

R real numbers
C complex numbers
H quaternions (Hamilton numbers; later)

N+ := N \ {0} positive natural numbers

if A ⊂ X , Xfixed, then X \A =: A is called complement of A in X
if A ∩B = ∅ ⇔: A,B disjoint

indexed ∩ and ∪
{Ai : i ∈ I } sets

⋂

i∈I

Ai := { x : x ∈ Ai for all i ∈ I }
⋃

i∈I

Ai := { x : x ∈ Ai for at least one i ∈ I }



Ex. when I = Q and Ai = { x ∈ Q : x ≥ i } then
⋃

i∈I

Ai = Q and
⋂

i∈I

Ai = ∅

and
product set A×B := { (x, y) : x ∈ A, y ∈ B }

A×A× · · · ×A
︸ ︷︷ ︸

n times

=: An

example: R2 := { (x, y) : x, y real } coordinate plane
R3 := { (x, y, z) : x, y, z real } (3-dimensional) Euclidean space

cardinality # of elements in the set (or ∞)
|∅| = 0, |{1}| = 1, |Z| =∞

equivalence relation on a set X : S ⊂ X ×X with 3 properties:

∀x ∈ X : (x, x) ∈ S (reflexivity)
∀x, y ∈ X : if (x, y) ∈ S, then (y, x) ∈ S (symmetry)
∀x, y, z ∈ X : if (x, y), (y, z) ∈ S, then (x, z) ∈ S (transitivity)

We write x ∼S y, or simply x ∼ y, “x is equivalent to y”, for (x, y) ∈ S.

Ex S = {(x, x) : x ∈ X }, S = X ×X trivial equivalences

Ex x, y ∈ X = Z, x ∼n y if n | (x− y) (n ∈ N, n > 0)

0.2 Real numbers

Arithmetic

m · k
n · k =

m

n
reduction (k ∈ Z, k 6= 0) ,

m

n
± p

q
=

mq ± pn

nq

m

n
· p
q
=

mp

nq
,
m

n
/
p

q
=

mq

np
(n, p, q 6= 0)

Rational numbers are ”dense(조밀)”. But they are not all. E.g., x =
√
2 /∈ Q;

x is irrational

more generally if z is integer and x =
√
z is not integer, then

√
z is irrational.

0.2.1 Algebra of Real Numbers

Addition & multiplication

{
commutativity(교환법칙) a+ b = b+ a, ab = ba
associativity(결합법칙) (a+ b) + c = a+ (b+ c), a(bc) = (ab)c

but not subtraction & division



3− 5 6= 5− 3, (3− 1)− 2 6= 3− (1− 2)
3÷ 5 6= 5÷ 3, (3÷ 2)÷ 5 6= 3÷ (2÷ 5)

.

implicit parentheses: a− b − c = (a− b)− c
from left to right a÷ b ÷ c = (a÷ b)÷ c

.

Order algebraic of operations

1. multiplication & division precede addition & subtraction

a+ b · c = a+ (b · c) [ 6= (a+ b) · c]

2. evaluate innermost parentheses 1st

Ex 2

outer()
︷ ︸︸ ︷

(6 + 3
︷ ︸︸ ︷

(1 + 4)
︸ ︷︷ ︸

inner()

) = 2(6 + 3 · 5)

= 2(6 + 15)

= 2 · 21 = 42

Distributive Property

(b+ c)a = a(b+ c) = ab+ ac

←−simplify

−→expand
Examples of use:

(a+ b)(c+ d) = ac+ ad+ bc+ bd

(a+ b)2 = a2 + 2ab+ b2

Additive inverses & subtraction

additive inverse of a ∈ R −a : a+ (−a) = 0

a− b = a+ (−b)

Rules of additive inverse



−(−a) = a
−(a+ b) = −a− b
(−a)(−b) = ab

(−a)b = a(−b) = −ab
(a− b)c = ac− bc

multiplicative inverses & division

multiplicative inverse of b ∈ R, b 6= 0
1

b
(= b−1) : b · 1

b
= 1

a

b
= a · 1

b
= a · b−1

see rules for rational numbers

a

b
+

c

d
=

ad+ bc

bd
,
1
a

b

=
b

a
,
−a
b

=
a

−b = −a

b
,
−a
−b =

a

b
(in particular

1

−b = −1

b
)

0.2.2 Inequalities

a < b a less than b (a left of b on real line)
a > b a greater than b
a ≤ b a less/smaller than or equal to b
a ≥ b a greater/bigger than or equal to b

a < b, b < c ⇒ a < c transitive

addition

a < b, c < d ⇒ a+ c < b+ d

multiplication

a < b c > 0 ⇒ ac < bc
c < 0 ⇒ ac > bc

⇒ (additive inverse) a < b ⇒ −a > −b
multiplicative inverse & inequalities

ab 6= 0, a < b 1
a
< 1

b
if ab < 0

1
a
> 1

b
if ab > 0

Ex ab > 0

1. a = 2, b = 3 1
3 < 1

2

2. a = −3, b = −2 − 1
2 < − 1

3



ab < 0 3. a = −2, b = 3 − 1
2 < 0 < 1

3
Intervals

Let a, b ∈ R, a ≤ b

set = {objects with some property}
(a, b) = {x ∈ R : a < x < b} open interval
(a, b] = {x ∈ R : a < x ≤ b} left-open intervals
[a, b) = {x ∈ R : a ≤ x < b} right-open intervals
[a, b] = {x ∈ R : a ≤ x ≤ b} closed interval

Ex

1. A = [0, 2), B = (1, 3)

A ∩B = (1, 2), A ∪B = [0, 3)

A \B = [0, 1], B \A = [2, 3)

2. A = [0, 1], B = [1, 2)

A ∩B = 1

3. A = [0, 1], B = (1, 2)

A ∩B = ∅ (A,B disjoint)

∞ :infinity, ⇒∞ > a ∀a ∈ R

−∞ :negative infinity, ⇒ −∞ < a ∀a ∈ R

(a,∞) = {x ∈ R : a < x}
[a,∞) = {x ∈ R : a ≤ x}

(−∞, a) = {x ∈ R : x < a}
(−∞, a] = {x ∈ R : x ≤ a}

(Note: ’[−∞,’ or ’,∞]’ make no sense, since ∞, −∞ 6∈ R)

Absolute value

|x| =
{

x x ≥ 0
−x x < 0

Ex | 32 | = 3
2 , | − 2| = 2, |0| = 0

Ex {x ∈ R : |x| < 2} = (−2, 2)



0.3 Functions and Their Graphs

0.3.1 Functions

Domain(정의역) and target(공역)

function f from A and B associates to each a ∈ A (argument) an element
f(a) ∈ B (value)

f : A −→ B

A : domain of f domain(f)
B : target of f target(f) ⊇ range(f)

Ex f(x) = x2, x ∈ R

Then f(3) = 32 = 9

f(− 1
2 ) = (− 1

2 )
2 = 1

4

Ex f does not need to be defined by a single
expression.

g(x) =







3x if x < 0√
2 if x = 0

x2 + 7 if x > 0

These conditions must be disjoint!

Domain={x ∈ R : some condition for x}

g(−2) = 3 · (−2) = −6
g(0) =

√
2

g(1) = 12 + 7 = 8

Equality of functions

Definition : Two functions f, g are equal if

domain(f) = domain(g), target(f) = target(g)(not in book!),

and for all x ∈ domain(f) we have f(x) = g(x).
Ex

f : R −→ R , f(x) = 3x



g : R −→ R , g(t) = 3t

f = g (how you call the variable in definition does not matter)

Ex

f : R −→ R , f(x) = 3x

g : R −→ R , g(x) =
√

(3x)2

f = g(how you call the variable in definition does not matter)

f 6= g

because x = −1 g(x) =
√
9 = 3, f(x) = 3 · (−1) = −3

Ex

f : R −→ R , f(x) = 3x

g : {x ∈ R : x > 0} −→ R , g(x) = 3x

f = g (how you call the variable in definition does not matter)

f 6= g



because domain(f) 6= domain(g)

Definition : Assume A ⊆ B ⊆ R and f : B −→ R function

Then the function g : A −→ R given by g(x) = f(x) for all x ∈ A

is called the restriction of f to A and written

g = f
∣
∣
∣
A
.

[(in the above ex. g = f
∣
∣
∣
{x∈R : x>0}

)]

Ex A = 1, 2 f(x) = x2, g(x) = 3x− 2

f(1) = g(1) = 1, f(2) = g(2) = 4 → f = g

so functions can be equal even if given by very different formulas.

Domain

Convention(협약): If no domain is given, we assume that the domain is the
maximal subset of R where definition makes sense.

Ex f(x) =
1

3x− 4

→ domain(f) = {x ∈ R : 3x− 4 6= 0} = R \ {4
3
}

Ex f(x) =
√
3x− 4

→ domain(f) = {x ∈ R : 3x− 4 ≥ 0} = [
4

3
,∞)

Ex f(x) = x+ 1, g(x) =
(x + 1)(x+ 2)

(x+ 2)

domain(f) = R, domain(g) = {x ∈ R : x+ 2 6= 0} = R \ {−2}



g is not defined in −2!

Functions via tables

x f(x)
0.1 1.01
0.2 1.04
0.3 1.25
0.4 1.39

Range(치역) of a function

Definition : Range of a function f : A −→ B is all b ∈ B for which these is
at least one a ∈ A with f(a) = b

✿
✲
③

✲

✲

A f

B

target of f✛

range of f
✻

Ex f : R −→ R f(x) = |x|

domain= R, target = R, range = {x ∈ R : x ≥ 0}

Ex f=

domain







x f(x)
...

...
...

...
...

...
...

...







range

when f is given by a table

Ex f = 3x+ 1 domain(f) = [−2, 5]

Is 19 ∈ range(f)?

19 = f(x) = 3x+ 1, −2 ≤ x ≤ 5

→ x = 18
3 = 6 6∈ [−2, 5]

so no x exists → 19 6∈ range(f)



0.4 Coordinate Plane and Graphs

y − axis, vertical axis

x− axis, horizontal axis

✻

✲

1

1

coordinate plane

y − axis

x− axis

✻

✲

x

y

p

p = (x, y) rectangular(Cartesian) coordinates of p

Graph of a function

f : A −→ B A,B ⊂ R

The graph of f consists of all points (x, f(x)) for x ∈ A

graph(f) := { (x, f(x)) : x ∈ A } ⊂ A×B .

Ex A = {1, 2, 3, 4}

x f(x)
1 2
2 3
3 −1
4 1

y

x

✻

✲

4 points

graph(f) = {(1, 2), (2, 3), (3,−1), (4, 1)}

Ex A = [−4, 4] f(x) = |x| y

x

✻

✲
-4 4

4

Even and Odd functions



f(x) = x2 Then reflecting graph of f with respect to y − axis gives graph
itself. Because f(x) = x2 = (−x)2 = f(−x)

Definition: f is called even(우함수, 짝함수) function if

f(x) = f(−x) for every x ∈ domain(f)

(Note:This means in particular that x ∈ domain(f) ⇒ −x ∈ domain(f).
For example f(x) = x2 for domain(f) = [−1, 1) is not even!)

other examples f(x) = |x| (domain(f) = R)

Because | − x| = |x|

y

x

✻

✲

f

f(x) = cosx

y

x

✻

✲ f

f(x) = x3

y

x

✻

✲

Graph(f) has rotational symmetry by 180◦ around origin

⇔ graph(f) is mapped to itself
when we mirror with respect to both x- and y − axis

given f what function is graph f after mirroring with respect to
both x- and y-axis

f(x)

y-axis

mirroring−→ f(−x)
x-axis

mirroring−→ −f(−x)

Graph(f) has rotational symmetry by 180◦ around origin

⇔ f(x) = −f(−x)



These are odd functions.
Definition f : A→ B odd(기함수, 홀함수) if ∀x ∈ A (−x ∈ A and)

f(x) = −f(−x)

Ex f(x) = xn n odd
in particular f(x) = x

y

x

✻

✲

f = sinx

0.5 Composition of functions

Ex h(x) =
√
x+ 3 is calculated in 2 steps:

1. add 3

2. take the root

These correspond to two separate functions g(x) = x+ 3 and
f(y) =

√
y. So h(x) = f(g(x)).

We need this often, so we make definition.
Definition The composition of f and g

is defined by (f ◦ g)=f(g(x)).

This is defined when x ∈ domain(g) and g(x) ∈ domain(f).

Thus domain(f ◦ g) ⊂ {x ∈ domain(g) : g(x) ∈ domain(f)}.

(and ”=” if we do not specify domain(f ◦ g) )per convention!
Ex Let f(y) =

1

y − 4
, g(x) = x2

1. evaluate (f ◦ g)(3)
sol: (f ◦ g)(3) = f(g(3)) = f(32) = f(9) = 1

9−4 = 1
5

2. find a formula for (f ◦ g)
sol: (f ◦ g)(x) = f(g(x)) = f(x2) =

1

x2 − 4

3. determine domain(f ◦ g)
sol: domain(f ◦ g) = {x ∈ domain(g)

︸ ︷︷ ︸

R

: g(x) ∈ domain(f)
︸ ︷︷ ︸

{y∈R : y 6=4}

}

= {x ∈ R : x2 6= 4} = R \ {−2, 2}



Composition is associative : f ◦ (g ◦ h) = (f ◦ g) ◦ h =: f ◦ g ◦ h

Composition is not commutate : f ◦ g 6= g ◦ f in general
e.g. Let f(x) = x2, g(x) = x+ 1

f(g(x)) = f(x+ 1) = (x+ 1)2 = x2 + 2x+ 1, g(f(x)) = g(x2) = x2 + 1

f(g(x)) 6= g(f(x))
Identity Function

I : A→ A, I(x) = x, I = IA

when f : A→ A, then I ◦ f = f = f ◦ I
(I is the identity for the operation of composition)

Sometimes one can write h = f ◦ g for f, g simpler than h.
Such decomposition h = f ◦ g is not unique.

h =

√

x2 + 3

x2 + 1

h = f · g f(y) =
√
y g(x) =

x2 + 3

x2 + 1

h = f̃ ◦ g̃ f̃(y) =

√
y + 3

y + 1
g̃(x) = x2

0.6 Inverse functions

Ex. f(x) = 3x find x with f(x) = 6

solve for x

sol. 3x = 6 ⇒ x = 2
f(x) = y

sol. 3x = y ⇒ x =
y

3
(exactly one x exists)

x =: f−1(y) =
y

3
This can be defined if for given y there is exactly one x.
This is of course not always the case.
f(x) = x2 + 1 [dom(f) = R]
x2 + 1 = y
What is f−1(y)?

x = ±
√

y − 1 , thus







y > 1 2 values for x
y = 1 1 value for x
y < 1 0 values for x






(1)

We must change domain(f) so that only one x occurs.
Definition: Let f : A→ B and y ∈ B, B′ ⊂ B

We define f−1(B′) = {x ∈ A : f(x) ∈ B′}
f−1(y) ⊆ A (set!) as f−1(y) = {x ∈ A : f(x) = y} = f−1({y})
f is injective if for all y ∈ B, | f−1(y) |≤ 1 ⇔
∀x, y ∈ A : f(x) = f(y)⇒ x = y

f is surjective if for all y ∈ B, | f−1(y) |≥ 1 ⇔ range(f) = B

(| | means number of elements)



f is bijective(book: one-to-one) if f is surjective and injective

⇔ | f−1(y) |= 1, f−1(y) = {x}

Definition Then we can define an inverse function f−1

f−1(y) := x for the x with f(x) = y.
(when f is bijective, x is unique.)

Domain and Range of inverse function:

domain(f−1)=range(f)
range(f−1)=domain(f)

The Composition of a function and its inverse

f−1(f(x)) = x ∀x ∈ domain(f)
f(f−1(y)) = y ∀y ∈ range(f) = domain(f−1)
(f−1 ◦ f)(x) = f−1(f(x)) = x = Id(x)
f−1 ◦ f = Iddomain(f) f ◦ f−1 = Idrange(f)
↑ You can use to check formula for f−1

Ex f(x) = 9
5x+ 32 (x◦C = f(x)◦F)

f−1(y) =
5(y − 32)

9

check (f−1 ◦ f)(x) = f−1(95x+ 32) =
5((95x+ 32)− 32)

9
=

5 · 95x
9

= x

Comments about notation:
variable name does not matter.
1) f−1(x) = 5x− 37

√
x

f−1(y) = 5y − 37
√
y

are equivalent statements

I choose y for argument of f−1 and x for argument of f to indicate that x and
y are possibly in two different sets x ∈ domain(f), y ∈ range(f).

2) f−1(y) 6= f(y)−1 =
1

f(y)
ex. f(x) = x2 (x ≥ 0), f−1(y) =

√
y

f(y)−1 =
1

f(y)
=

1

y2

Thus if ”f−1” is written be careful how it is meant!

0.7 Group, Field, Ring

Definition A group (G,+), (G, ·) (additive/ multiplicative notation)
G set and · : G×G→ G map “operation”

·(g1, g2) =: g1 · g2 = g1g2
with the following properties

1) ∃1 ∈ G 1-element or neutral element, identity (book)

1 · g = g · 1 = g ∀g ∈ G

2) ∀g ∈ G ∃g′ ∈ G : g · g′ = g′ · g = 1, g′ = g−1 inverse of g



3) g1(g2g3) = (g1g2)g3 ∀g1, g2, g3 ∈ G (associativity)

Definition If additionally

4) g1g2 = g2g1 for all g1, g2 ∈ G, then G is an Abelian (commutative) group

example (Z,+) is Abelian group with neutral element 0

Def (F,+, ·) is a field if

[
+ addition
· multiplication

]

∃0, 1 ∈ F s.t.

1) (F,+) is an Abelian group with neural element 0

2) (F \ {0}, ·) is an Abelian group with neural element 1

3) +, · are distributive: (a+ b) · c = ac+ bc ∀a, b, c ∈ F

if in (F \ {0}, ·)

exists inverse
no inverse

(F \ {0}, ·) monoid with or w/t 1

commutative F is field F is commutative ring with or w/t 1

noncommutative F is skew-field F is noncommutative ring with or w/t 1

Rem additive inverse of b in (F,+) is written as −b and a− b = a+ (−b)
for mult. inverse we write b−1 =

1

b
, and

a

b
= a · b−1 = b−1 · a (Note: in a skew-

field,
a

b
makes no sense!)

Ex (C,+, ·), (R,+, ·), (Q,+, ·) are fields
(Z,+, ·) ? but · has no inverse e.g. 2 ∈ Z 6 ∃g ∈ Z : 2 · g = 1
=⇒ comm. ring with 1, but no field

(2Z,+, ·) now · has no inverse and no identity [ 6 ∃e ∈ 2Z : e ·k = k ∀k ∈ 2Z]
=⇒ comm. ring without 1

Th. (cancellation laws) F field, a, b, c ∈ F arbitrary

1) a+ b = c+ b⇒ a = c

2) b 6= 0, a · b = c · b⇒ a = c

Corollary The identity elements 0, 1 ∈ F are unique.

Th. In any field F ,

1) a · 0 = 0 · a = 0

2) −(a · b) = (−a) · b = a · (−b)

Corollary The additive identity 0 in F has no multiplicative inverse.



0.7.1 characteristic

Def F field. Define the characteristic char(F ) ∈ N by

char(F ) :=







min {n ∈ N+ : 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n times

= 0 } if such an n exists

0 otherwise

Ex For F = Q,R,C, char(F ) = 0 (no n)

Let n > 1. Consider
Zn = Z/nZ = { conguence classes modn } = {0, 1, 2, . . . , n− 1}.
(Zn,+, 0) additive Abelian group
(Zn, ·, 1) everything ok except inverse

Lemma ∃ mult. inverse ⇐⇒ n prime

So Zn is a field for n prime, but only a ring for other n (cyclic field/ring)
For n prime, char(Zn) = n.

Rem Only 0 and primes can be characteristic of a field.

Rem If char(F ) = 1, then 1 = 0 ⇒ F = {0}, not interesting.

0.8 Complex numbers

0.8.1 arithmetic, norm, conjugate

C complex numbers
z ∈ C is of the form z = a+bi, a, b ∈ R, a = ℜez real part

b = ℑmz imaginary part

i =
√
−1 (imaginary unit)

z = a+ bi
w = c+ di

z + w = (a+ c) + (b+ d)i −z = −a− bi

zw = z · w = (ac− bd) + (ad+ bc)i
if z ∈ R (i.e., b = 0), zw = (zc) + (zd)i

z = a− bi (complex) conjugate

z · z = a2 + b2 = |z|2 |z| =
√
a2 + b2 ∈ R

[ |z| = 0 ⇐⇒ a = b = 0 ⇐⇒ z = 0 ]
norm
abs. value

=⇒ for z 6= 0, z−1 =
1

|z|2 z =

(
a

a2 + b2

)

−
(

b

a2 + b2

)

i



Th C forms a field.

Th The conjugation has the following properties.

a) z = z

b) z + w = z + w

c) z · w = z · w

d)
( z

w

)

=
z

w
(w 6= 0)

e) z ∈ R ⇐⇒ z = z

f) z + z = 2ℜez, z − z = 2iℑmz

Th The norm has the following properties.

a) |z| = |z|

b) |z| ≥ |ℜez| |z| ≥ |ℑmz|

c) |zw| = |z| · |w|

d)
∣
∣
∣
z

w

∣
∣
∣ =
|z|
|w| (w 6= 0)

e) |z| − |w| ≤ |z + w| ≤ |z|+ |w|

Pf a), b) exercise

c) |zw|2 = zwzw = zzww = |z|2|w|2 = (|z||w|)2

d)

∣
∣
∣
∣

1

w

∣
∣
∣
∣
=

1

|w| because |w| ·
∣
∣
∣
∣

1

w

∣
∣
∣
∣
=

∣
∣
∣
∣
w · 1

w

∣
∣
∣
∣
= |1| = 1

so use then c)

e)

|z + w|2 = (z + w)(z + w)

f) previous theorem

↓
= zz + 2ℜe(zw) + ww

b)

≤ |z|2 + 2|zw|+ |w|2
a,c)
= |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2

first inequality a consequence of second:

|−z| c)= | − 1| · |z| = |z|
|z| = |(z + w) + (−w)| ≤ |z + w|+ | − w| = |z + w|+ |w|
bring |w| on other side =⇒ �



0.8.2 Trigonometric Functions (삼각함수)

The unit circle unit circle: circle with center (0, 0), radius= 1
equation: x2 + y2 = 1

Angles in the unit circle

I : positive horizontal axis = {(x, 0) : x > 0}
II : positive vertical axis = {(0, y) : y > 0}
III : negative horizontal axis = {(x, 0) : x < 0}
IV : negative vertical axis = {(0, y) : y < 0}

✲

✻
I

II

III

IV

angle θ used in trigonometry is angle between radius
of unit circle and positive horizontal axis measured
counter clock wise naturally θ ∈ [0◦, 360◦)

✲

✻
θ

✲

✻
θ

θ ∈ [0◦, 90◦]

✲

✻
θ

θ ∈ [90◦, 180◦]

✲

✻
θ

θ ∈ [180◦, 270◦]

Negative Angles θ are measured
by −θ clockwise direction from
positive horizontal axis thus same
radius can give 2 different angles

✲

✻

θ

θ ∈ [−90◦, 0◦]

✲

✻

θ

θ ∈ [−180◦,−90◦]

thus same radius can give 2 different angles
depending on positive or negative:

(θ − β = 360◦)

✲

✻

β

θ θ = 225◦

β = −135◦

Angles> 360◦

✲

✻
θ

θ = 225◦ + 360◦ = 585◦

θ > 360◦ is obtained by
going once (or several times) around the circle
(counterclockwise; for negative θ clockwise)
The same radius corresponds to angles differing by

n · 360◦.
Length of Circular arc

circumference= 2π

l

2π
=

θ◦

360◦
−→ l =

θπ

180

✲

✻
θ
l

an angle of l radians is one with unit circle arc of length l
(later more about radians)
Special Points on Unit Circle



• θ = 30◦ ✲

✻
•
•

(x, y) = (
√

3
2

, 1
2
)

y = 1
2 → x =

√
3
2

◦ θ = 60◦ ✲

✻
◦

( 1
2
,
√

3
2

)

θ radian θ degree (x, y)

0◦ 0 (1, 0)

π
6 30◦ (

√
3
2 , 1

2 )

π
4 45◦ ( 1√

2
, 1√

2
)

π
3 60◦ (12 ,

√
3
2 )

π
2 90◦ (0, 1)

π 180◦ (−1, 0)

Cosine and Sine

✲

✻
θ

(cos θ, sin θ) Definition: The cosine of an angle θ, cos θ, is defined to be the
first coordinate of the end point of a radius of unit
circle at angle θ with positive horizontal axis.
The sine of θ, sin θ, is the end point’s second
coordinate.

Thus the coordinates of the end point are (cos θ, sin θ).

Ex.

θ degree cos θ sin θ

0◦ 1 0

30◦
√
3
2

1
2

45◦ 1√
2

1√
2

60◦ 1
2

√
3
2

90◦ 0 1

180◦ −1 0

The signs of Cosine and Sine

coordinate axes divide R2 into quadrants(사분면).
quadrant determines sign of sin θ, cos θ



✲

✻

sin θ>0
cos θ>0

cos θ>0
sin θ<0

cos θ<0
sin θ<0

cos θ>0
sin θ<0

θ ∈ (0, π2 ) sin θ > 0, cos θ > 0
θ ∈ (π2 , π) cos θ < 0, sin θ > 0
θ ∈ (π, 3π

2 ) sin θ < 0, cos θ < 0
θ ∈ (3π2 , 2π) cos θ > 0, sin θ < 0

The Key Equation Connecting Cosine and Sine

(x, y) = (cos θ, sin θ) end point of radius ∈ circle x2 + y2 = 1
→ cos2 θ + sin2 θ = 1

Periodicity(주기성) of sin and cos
the same radius determines angles up to multiples of 2π
Thus:
cos(x+ 2π) = cos(x)
sin(x+ 2π) = sin(x)
Definition: f : R→ R periodic if ∃d > 0 (period) with

f(x+ d) = f(x) ∀x ∈ R

(∀x ∈ dom(f) x+ d ∈ dom(f) also ok)
cos, sin are periodic functions with (minimal) period 2π.

The graph of Cosine and Sine

cos2 θ + sin2 θ = 1 → cos2 θ, sin2 θ ≤ 1
→ | cos θ|, | sin θ| ≤ 1

Thus
−1 ≤ cos θ ≤ 1
−1 ≤ sin θ ≤ 1

y

x

✻

✲

f = sinx

g = cosx

Domain and range of cosine and sine:
dom(cosine)=dom(cos)=R

range(sin)=range(cos)=[−1, 1]

Polar coordinates

(x, y) ∈ R2 \ {(0, 0)} ∼= z = x+ iy ∈ C \ {0} ∼= (r, θ) ∈ (0,∞)× [0, 2π)

(x, y) Cartesian (rectangular) coordinates
(r, θ) polar coordinates

r = |z| norm of z ∈ C

θ = arg(z) argument of z, θ ∈ [0, 2π) (or R/2πZ)

polar coordinates behave more naturally w.r.t. complex mult.
arg(z · w) = arg z + argw |z · w| = |z| · |w|

complex exponential and log



eiθ = cos(θ) + i sin(θ) (θ ∈ R)

thus

ex+iy = ex (cos(y) + i sin(y))

Since | cos(y) + i sin(y)| = 1 and arg(cos(y) + i sin(y)) = y (up to 2πZ), we
have for z = x+ iy,

|ex+iy| = ex and arg(ex+iy) = y , or
|ez| = eℜez and arg(ez) = ℑmz .

One can again define a complex log as

log(w) = z when ez = w (w 6= 0) .

But log(w) is defined only in C/2πiZ.

complex roots

Let n ∈ N, n > 1. The multiplication formula gives

zn = |z|n
(
cos(n arg(z)) + i sin(n arg(z))

)
.

Thus when w 6= 0, there are n distinct n-th roots of w, i.e., complex num-
bers z with zn = w.

The are given by the formula

zk+1 = n

√

|w|·
(

cos

(
arg(w) + 2πk

n

)

+ i sin

(
arg(w) + 2πk

n

))

, k = 0, . . . , n−1

In case of real roots n
√
w, w ∈ R, there is a natural choice (take the positive

number for n
√
w if n is even – and w > 0), but for mathematicians there is

no canonical choice of complex roots.

Thus the expression n
√
w for w ∈ C is ambiguous,

and when you work with complex roots, you must say which one you mean!

0.8.3 Algebraic closedness

One main reason for importance of complex numbers is that C is algrabically closed.
Def F is algrabically closed field if every polynomial

P = z0 + z1t+ z2t
2 + . . .+ znt

n, zi ∈ F zn 6= 0,

splits
P = zn · (t− t0) · (t− t1) · . . . · (t− tn) , ti ∈ F

ti – root or zero of P .



multiplicity of ti = |{ j : tj = ti } | ≥ 1

(if mult= 0, not a root)
if mult= 1, ti is simple root
if mult= 2, ti is double root
if mult= 3, ti is triple root

0.8.4 Quaternions H

H = {a+ bi+ cj + dk : a, b, c, d ∈ R }

i, j, k formal symbols (c = d = 0 =⇒ complex nrs) =⇒ H ⊃ C

·Æ i j k

i −1 −k j

j k −1 −i
k −j i −1

z = a+ bi+ cj + dk
z = a− bi− cj − dk z · z = |z|2 = a2 + b2 + c2 + d2

⇒ z−1 =
1

|z|2 · z

H forms a skew-field (like field but multiplication is non-commutative)


