1. VECTOR SPACES

1.1. Def and basic examples.

Definition 1.1. Fix a field F. A set V' with operations
+:VxV -V (addition), and -:FxV — V (scalar mult.),

is called a vector space (VS) (over ‘/’ F) if

1) (V,+) is an Abelian group
2) 1-v=vWevV
3) MA2) - v=A-(A2-V) VA, €F, vEV } associativity
4) Ma+b)=Xa+bVreF,abeV
)

} distributivity
5

(A1 + A2)a= Aa+ Aa

X + y is sum of vectors x,y € V,
a-xis product of a e F,x eV

x € V is called vector, a € F a scalar
neutral element in (V,+) is called 0-vector O
Exs of vector spaces
1) F* = {(a1,...,ay) : a1,...,ap, € F}
(ai,...,a,) n-tuple, a; elements or components of the tuple

F™ is VS over F with the operations
(al,...,an)+(b1,...,bn) = (a1 +b1,...,an—|—bn)

a-(ay,...,an) = (a-ay,...,a-a,) (a€F)
ai
az
vectors can be written as column vectors | = | or row vectors (a, . ..
Gn,

in particular (n = 1) F is a VS over itself
2) the generalization of both: a matrix m x n m-rows

n-columns

ail aiz2 - Alin
ag1 G2 -+ Qa2p A;j = a;; entries

a;; diagonal entries

OGm1 QAm2 =~ Amn

, Q)



Myxn(F) = {A: Ais an m x n matrix over F } is a VS over F with

(A + B)ZJ = Az’j —+ Bij matrix addition

(cA)i; = CcAjj scalar mult.

(neutral element in (M, (F),+) is the zero matrix 0;; = 0.)

3) S # @ non-empty set
F(S,F) = { functions f : S — F}
is a VS over F with
(f +9)(s) = f(s)+g(s), and (cf)(s) = c-(f(s))
VseS.

“function” can be replaced by “continuous f.” or “differentiable f.” (if F =
R).

4) polynomial over F.

P(F) = Flx] = {f(x) = Zaixi for some n €N, a; €F, a, # O}
i=0

deg f = n degree

a; if i <deg f

; (coefficient of z* in =
7l h { 0 otherwise

Define add and scalar mult by

[f+gli = [f]i +[g]i, [cf]i = c[fli-
Then P(F) is a VS over F.

Rem There is a little difference between polynomial (with abstract vari-
able) and a polynomial function, say =z € C SN f(x) € C.
5) sequence in F f:N=>F
(@i)2; = f = (a1,...,an,...) a; = f(i) sequence
for a = (a;) and b = (b;)
a+b = ((a+b);),, is defined by (a+b); = a; + b;

i

c-a= ((C a)i)zl is defined by (c-a)z- =c-a;.

Theorem 1.2. (cancellation law for vector addition)

If for some x,y,z€V,x+z=y+ 2z, thenx =Y.

Proof. similar to proof for F.

Corollary 1.3. The 0 vector is unique. The additive inverse —x of a vector X is

unique.



Theorem1.4. 0-x=0 VxeV
(—a)-x = —(a-x) VxeV,aeF
a-0=0 VacF

1.2. Subspaces.

Let V be a VS over F. A subset W C V is a subspace of V if
<W7 +’ )"
WxWw

this means

) is a VS over F.
FxW

Vx,y e W x+yeW W closed under addition
Va € F ax e W W closed under scalar mult.

Theorem 1.5. A subset W C V is a subspace <= it is closed under addition
and sc. mult. and W # &.

Proof. = clear0eW =W # g
< we have to prove
1)oew
2) VxeW —xeW
other properties of VS follows from those of V.
Take x € W. By closedness under sc. mult. (with0 e F)0=0-x€ W = 1)
For 2) next let x € W. J—1 € F the additive inverse of mult neutral element.

By closedness under sc. mult. W —-1-2= —(1-x) = —x O

1

assoc. of - in W W is VS
Exs of subspaces

Zero
0) {0} C W is always subspace (trivial subspace); W C W

1) symmetric matrices

Let A = (A;;)i2,"_; be m X n matrix.

We define an n x m matrix A7, the transposed of A,

by (AT)L]' = Aj,z‘

1 2
1 -3 4
example -3 0 = 5 0 5]

i.e. transposition interchanges rows and columns.



now we call an n x n matrix A symmetic if A = AT,

1 3 0
e.g 3 2 =2
0 -2 5

{A n X n matrix over F: A = AT } C Myxn(F) subspace

2) Pp(F) == {PeP(F):degP <n}CP(F) subspace

3) {f: R—R: fcontinuous} C {f : R— R} is a subspace
VS over R
{f: R=>R: f(1l)=0}C...

4) A € Myxn(F) is a diagonal matrix if A4;; =0 for #j

0

then { diag. n x n matrices over F } C M,,«,(F)
is a subspace
5) when A = (A;;) € My xn(F), then the trace tr(A) € F is defined by sum of

diagonal entries
i=1

The space of traceless matrices is a subspace:

{A€ Myyn(F) : tr(A) =0} C Myyn(F).

6) {A € Myxn(F) : Ajj >0Vi,j} C Mpxn(F) (with F C R) is not a sub-
space

not closed under scalar mult.

{f:R>R: f(l)=1}c{f:R—>R}

is not a subspace (not closed under addition)

The following gives a way of constructing subspaces out of others.

Theorem 1.6. Let W1, Wy C V subspaces. Then

1) Wi NWsy is a subspace of V' (intersection)
2) Wi+ Wo = {wi+wo : wy €Wy, wo € Wa} (sum) is a subspace of V



1.3. Linear combinations and systems of linear equations.

consider two vectors in R3,

plane spanned by the vectors vi, v is of the form

{XGRg cAM A ER x= Avi + AoV }
/I\

linear combination of vi,va

Definition 1.7. V VSover F, A\1,..., A\, € F, vy,...,v, € V.

Then Y., A\iv; is called linear combination (l.c.) of v;. \; — coefficients of l.c.

Example 1.8. Since 0-v = 0 for all v € V, the 0 vector is the linear combination

of any non-empty set of vectors of V.

Sometimes it’s necessary to determine whether v € V is l.c. of vy,...,v, € V,
i.e. whether IX1,..., A, : v = >0 A\,

[ e.g. given x € R3, does x lie on the plane of x;,xs € R>. ]
Example 1.9. (2,6,8) l.c. of uw = (1,2,1), us = (0,2,3)
uy = (—2,-4,-2), uy=(2,0,-3)
Uy = (—3, 8, 16) ?
(2,6,8) = aiu; +agup+---+asus

= a1(1,2,1)+...—|—a5(—3,8716)
= (a1 — 2az + a4 — 3as, 2a; — 4as + 2a3 + 8as,
a1 — 2a2 + 3as — 3ayq + 16as)

compare COHIpOIlBHtS

a1 —2a9 +2a4 —3a; = 2 (1)
207 —4as +2as +8as = 6 (2) —2(1)
ay  —2ay +3a3 —3aq4 +16as = 8 (3) ' - (1)
a1 —2as +2a4 —3a5 = 2

2a3 —4ay +ldas = 2 (4) 02

3a3 —bay +19a5 = 6 (5) '—%(4)



a1 —2as +2a4 —3as = 2
a3 —2a4 +T7az = 1 i -3
3a3 —b5a4 +19a5 = 6
a1 —2a9 +2a4 —3a; = 2
2 Tas = 1
as ay +las T Lo |- 2
Qs —2a5 =
solution
=—4-— 2
a1 —2as +as = —4 “ G5 + 2a2
a9 = free
as +3a5 - 7 —
as = 7T — 3&5
aq —2&5 =
as=2as + 3
as = Iree

By the following operations

- interchange of two rows
- mult. of an equation by non-zero constant

- add a multiple of an equation to another equation
we achieve that

- first non-zero coefficient of each equation is 1

- if unknown is first unknown with non-zero coefficient in some equation,
then it does not occur in other equations

- the first unknown (with # 0 coefficient) in an equation has larger subscript

than first unknown in previous equation.

Definition 1.10. Let S be a non-empty set C V', VS over F

span(S) = { Z \iX; :\eF, x; €8 }
i=1

linear combination of x;

linear span or linear hull of S

Properties 1) span(@) = {0}
2) S C span(S) span is a
3) AC B = span(A) C span(B) hull
4) span(span(A)) = span(A) operation
5) A =span(A) <= A is a linear subspace of V'
I 3&s

(V O W subsp. D S = W D span(5))
Definition 1.11. If span(S) = V, we say the set S of vectors spans or linearly generates

V.




1.4. Linear independence.

n
in the previous calculation example we saw that in the presentation v = E a;vi,
i=1
the a; are not unique.

Definition 1.12. Let S C V' VS, S = {x1,...,%,} is linearly independent when
Vv € V 3 at most one (\;),: v = Z)‘ixi'
i=1

otherwise call S linearly dependent

Example 1.13. If 0 € S, then S is always linearly dependent, because A0 = 0
VA eF,

so uniqueness of \; fails for v = 0.

0
Example 1.14. S = 01, |1 C R3
0
0 3\
assume v €R? v = \ix1 + Aoxe = [ X\
A2
= M\ = )\/1
0 Ao =\,
v = Nx1+Axe = [\
A5 J
— linearly independent
0 0
Example 1.15. S = o, 1], |1 C R?® linearly dependent
2 0

Theorem 1.16. Let S C V be a linearly independent subset of V and x € V. Then
S U{x} is linearly independent <= x & span(J9).

1.5. Bases and dimension.

VVSover F, vi,....,vp, €V, X\,....,\, €F

called Z A;v; linear combination (of v; with coefficients \;)

S ={vi,...,v,} is linearly independent when
VveV Jatmost 1l (A,...,\,) : v= Z)‘ivi




S generates: <= (span(S) =V)
Vv eV 3J(atleast 1) (A1,...,An) 1 Vv = Z)‘ivi

Definition 1.17. If S is linearly independent and generating, then call S a basis
of V.

(= WeV (M. A v=) Avy)

Example 1.18. span(@) = {0} and @ is linearly independent = & is a basis of
{0}

Example 1.19. F" D {e;}}"; e;=(0,...,0,1,0,...,0)

standard basis

Example 1.20. M,,,(F).Let EY for 1<i<m
1 < j <n be the matrix

(Eij)kl = 57;]{;(5]'[ Eij == % s 1
——
Kronecker’s delta 0 0

then {EY}™) ;" is a basis for My, xn(F).

Example 1.21. P,(F) = { polynomials in P(F) of degree <n }

S = {1, x, 22,...,2"} standard basis.

Example 1.22. P(F) S={1,z,2%...,2", ... }.

n

Rem. when S is infinite, we define a linear combination of elements in S by Z A\;X; where

i=1

n is arbitrary large but < oo and {x1,...,X,} any subset of n elements of S.
Theorem 1.23. Let S = {x1,...,x,} be a finite generating set of V.S of V.
Then 3 basis S’ C S of V.
Proof. f V= {0}, then S’ = & C S basis.
So assume V' # {0}. Then 3x; 2 S x3 # 0 (order x; properly);
then S7 = {x1} is linearly independent.

We construct now sets S; with S CA{x1,...,%;}

then S’ := S, is the basis we sought. span(S;) = span({xi,...,X;})

S; linearly independent .



t=1done; Fori=1,...,n—1 do the following:

if Xit+1 € span(Si), set Si+1 = Si,
else set S;11 = 5; U {x;+1}

Claim 1 span(S;+1) = span({X1,...,X;41}).

pf. if x;41 € span(S;),
then span(xi,...,X;41) = span(span(xi,...,x;) U{x;+1})
= span(S;, Xi+1)

= span(5;) = span(Sit1).
/]\

Xit+1 € span(S;)

if x;41 ¢ span(.S;),
span(xi, ..., X;+1) = span(S; U {x;11}) = span(S;+1).

Claim 2 S;41 is linearly independent.

pf if x;41 € span(S;),
Si+1 = 5; linearly independent.

if x;41 & span(S;),
then S; U {x;4+1} linear independent by theorem 1.16. O

Theorem 1.24. (Replacement theorem)

Let V be a VS generated by G with |G| =n. Let L be a linearly independent subset
of V- with |L| = m.

Then m < n, and 3H C G with |H| = n —m such that span(LU H) = V.

Corollary 1.25. Let V' have a basis G and |G| = n < oo,
and let G' be a different basis = |G'| = n.

Proof. Take L = G’ in previous theorem
it asserts that |L| =m < n.

Reverserole of Gand G' = m>n = m=n O

Definition 1.26. Dimension of a VS V', dim(V) is cardinality of a basis if 3 finite

generating set; else dim(V') = oc.

when dim(V') = ooV is infinite dimensional
dim(V) < ooV is finite dimensional



10

Ex. dim{0} = 0.

Ex. dim F* = n

Ex. dim M,,«,(F) = mn
Ex. dim P,(F) = n+1

Ex. dim¢ C = 1 (basis {1})
dimg C = 2 (basis {1,i})
dimgR = 1 but dimgR = oo (not easy to prove)

dimg R = oo is related to the existence of transcendental numbers
« € R transcendental : <= P(a) # 0 for all P € P(Q).

« transcendental <= {1,a,a?,...} C R is linearly independent over Q

Rem « is irrational <= P(a) # 0 for all P € P;(Q)
<= {1,a} C R is linearly independent over Q

It is known, e.g., that = and e are transcendental; /2 is irrational but not

transcendental.

Proposition 1.27. dimP(F) = oo.

Proof. Assume dim P(F) = n < co.

Then as a consequence of Replacement theorem, any linearly independent set .S C
P(F) has m < n < oo elements.

But P(F) has the linearly independent set S = {1,z,22,...} with |S| = oo /.
So dim P(F) = oo. O

Remark 1.28. We prove that when dim(V') < oo, then V has a basis. This is true
also when dim (V') = oo, but its proof depends on deep logic (Axiom of choice) and

I will not do it in class (see §1.7 in book).

Corollary 1.29. V VS over F, n =dim(V) < co.

(a) any finite generating set S of V' has |S| > n,
S is a basis < |S|=n
(b) a linearly independent set S of V' has |S| < n.
S is a basis <= |S|=n
(c) every linearly independent set S can be extended to a basis

Recall: (d) every spanning subset S can be reduced to a basis

Example 1.30. show that 2% + 3z — 2, 222 + 52 — 3, 22 —4x + 4
is a basis of Pa(R).

dim P3(R) = |S| = 3, so enough to prove S is generating
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az? +bxr +c¢ = (—8a+ 5b+ 3c)(z? + 3z — 2)
+ (4a — 2b —¢) (222 + 52 — 3)
+ (—a+b+c)(—x% — 4o+ 4)
/]\

how to find this we discussend when we talked about linear eqn systems

M1 M2 M3 M4

11 1 1 1 0 0 1
Example 1.31. show that S = , ) ;
1 0 0 1 1 1 1 1

is a basis of My o(F) (assume char(F) # 3).

Proof. we prove S generates 4 =S| = dim Mo

options: 1) solve linear eqn system
) y E1 E2 E3 E4

2) (better) bt 0 0 0 0 0 1 1 0 c (9)
etter) enou 0 prove , , , span
s P 0 1 1 0 0 0 0 0 P

N J/
-~

Sl

because S’ C span(S) =
V = span(S’) C span(span(S)) = span(S) C V
= span(S) = V.

3 3
My + Ms + Ms + My = <3 3)

1 0 -1
Mg—g(M1+M2+M3+M4): 0 0

-~

ae-( )

1
E; :_(Mi_g(M1+M2+M3+M4)) O

- 7

Le. of M,

Dimension of subspaces

Theorem 1.32. Let V be a VS over ¥, W CV subspace
Then dim(W) <dim(V) & (if dimV < o0!) “=" «—= V =W.

Proof. A basis S’ of W is linearly independent in V', thus by corollary 1.29, part c)
35 D 5’ basis of V.

dim(V) = 8] > |S'| = dim(W).

Assume |S|=|S'|. Then SO 5" = S =5
so S’ = S is a basis of V.

W = span(S’) = span(S) =V O
T T T

S’ basisof W S =5’ S basis of V
Ex.
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al 0
1) { diag matrices diag(ay,...,a,) = } C Mpsn(F).
I 0 a,
DMy xn(F)

basis for DM,,«,(F) { E® : 1<i<n}.
Il

then dim DM,,,(F) = n <n? = dim M,,x,(F)
2) {M € Mypsn(F) : M =MT} C Myun(F)
symmetric matrices
basis {E%Y + E7', 1<i<j<n}U{E":1<i<n}
”("; D < 02 = dim My (F)

|basis| =

Lagrange interpolation

co,C1,--.,Ccn € F scalars. consider
T (=)
—Ck
filz) = ySTRY
1 =)
k#i
fi(c;) = 6;; = f; are linearly independent

reason is : given f : F > F

consider Zf(ci)fi = feP.(F) (6)

f and f have the same values in {¢;}7,
I

f approximates f

T T
polynomial arbitrary function (6) is called Lagrange interpolation




