
2. Linear transforamtions and matrices

Motivation: want to study linear maps between VS
that “preserve” the VS structure
these occur in • calculus

(differentiation, intergation)

• geometry (rotations, reflactions, projections)

=⇒ linear maps/transformations

Assumption: all VS considered over a common
field F. (Fixed one for the whole §2.)

2.1. linear transformations, null spaces, and ranges.

Recall T : V → W denotes function/map from V to W .

Definition 2.1. Let V,W be VS (/F)

T : V →W is a linear transformation (from V to W )

limply linear if for all x,y ∈ V, c ∈ F:

(a) T (x+ y) = T (x) + T (y) (additive)

(b) T (cx) = cT (x)

(If F = Q, then (a)=⇒(b), i.e., each additive map is linear, but not in general.)

Properties of a linear map T

(1) T (0) = 0

(2) T linear ⇐⇒ ∀c ∈ F, x,y ∈ V

T (cx+ y) = cT (x) + T (y)

(3) If T is linear, then T (x− y) = T (x)− T (y) for all x,y ∈ V

(4) T linear ⇐⇒ ∀x1, . . . ,xn ∈ V, c1, . . . , cn ∈ F,

T

(
n∑

i=1

cixi

)

=
n∑

i=1

ci T (xi)

Example 2.2. T : R2 → R2 T (a1, a2) = (2a1 + a2, a1)

T (c(a1, a2)) = T (ca1, ca2) = (2ca1 + ca2, ca1) = c(2a1 + a2, a1) = cT (a1, a2)

T ((a1, a2) + (b1, b2)) = T (a1 + b1, a2 + b2) = (2(a1 + b1) + (a2 + b2), a1 + b1)=

(2a1+a2, a1)+(2b1+b2, b1) = T (a1, a2)+T (b1, b2)
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3 important examples from geometry

Example 2.3. rotation by θ

T (a1, a2) = (b1, b2)

= (a1 cos θ − a2 sin θ,

a1 sin θ + a2 cos θ)

b1 + b2i = eiθ(a1 + a2i)

= (cos θ + i sin θ)(a1 + a2i)

= (a1 cos θ − a2 sin θ)

+(a sin θ + a2 cos θ)i

Exercise: show that T is linear.

Example 2.4. T (a1, a2) = (a1,−a2)

reflection (along x-axis)

it satisfies T 2 = IdV ← identity

Example 2.5. T (a1, a2) = (a1, 0)

projection (onto x-axis)

T 2 = T

Example 2.6. (now matrices)

T : Mn×n(F) → Mn×n(F) T (A) = AT

(A+B)T = AT +BT (cA)T = cAT =⇒ T is linear.

Example 2.7. V = { f : R→ R : f ∈ C∞ } or V = P(R) = R[z].

T : V → V T (f) = f ′. The differential operator is linear.

Example 2.8. T (f) =

x∫

0

f(t) dt

Definition 2.9. V,W VS /F T : V →W linear

ker(T ) = N(T ) = {v ∈ V : T (v) = 0 } = T−1(

W∋

0 ) nullspace

or kernel
of T

Im(T ) = R(T ) = {T (v) ∈W : v ∈ V } ⊂W range or image of T
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Example 2.10. Let V = W and T = IdV T (v) = v identity map

Then kerT = {0} ImT = V

Let T = 0 T (v) = 0 ∈ W ∀v ∈ V zero map

Then kerT = V Im = {0}

Theorem 2.11. Let T : V →W linear

Then kerT ⊂ V and ImT ⊂W are linear subspaces.

Theorem 2.12. Let T : V →W be linear

and let S ⊂ V be a subset.

Then T (span(S)) = span(T (S)).

Corollary 2.13. in particular when S generating (⇐⇒ span(S) = V )

then span(T (S)) = ImT .

Corollary 2.14. S basis ⇒ dim ImT ≤ dim V

Definition 2.15. T : V →W linear

dim(ker(T )) =: nul(T ) nullity

dim(Im(T )) =: rk (T ) rank of T

Theorem 2.16. (Dimension theorem)

Let T : V →W linear, dim(V ) <∞.

Then nul(T ) + rk (T ) = dim(V ) . (1)

Theorem 2.17. T : V →W
injective
1-to-1 ⇐⇒ ker(T ) = {0V }.

Proof. 1) If T injective ⇒ |T−1(y)| ≤ 1 ∀y ∈W

Take y = 0W |T−1(0)| ≤ 1,

but 0V ∈ T−1(0W ) so T−1(0W ) = {0V }.

2) Assume ker(T ) = {0}. Let T (v) = T (v′) ∈W

for some v,v′ ∈ V ,

then because T is linear T (v− v′) = T (v)− T (v′) = 0,

so v − v′ ∈ kerT . But kerT = {0}, so v − v′ = 0

=⇒ v = v′. �

Theorem 2.18. T : V → W linear, n = dim(V ) = dim(W ) < ∞. The following

are equivalent.

(a) T injective (⇐⇒ nul(T ) = 0) ⇐⇒

(b) T surjective (⇐⇒ rk (T ) = n)

Proof. (a) T injective nul(T ) = dimkerT = dim{0} = 0

theorem 2.16 ⇒ rk (T ) = dimV = dimW = n (2)

(2)⇒ dim ImT = dimW ; ImT ⊆W subsp ⇒ ImT = W ⇒ T surjective
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(b) (a) ⇒ rk (T ) = n = dimV =⇒
Th 2.16

nul(T ) = 0 ⇒ kerT = {0} �

Example 2.19. T : P2(R)→ P3(R) f(x) = a0 + a1x+ a2x
2

T (f(x)) = 2f ′(x) +

x∫

0

3f(t) dt.

R(T ) = span{T (1), T (x), T (x2)}

= span
{

3x, 2 +
3

2
x2, 4x+ x3

︸ ︷︷ ︸

linearly independent

}

rk (T ) = dim

Im(T )

R(T ) = 3 < 4 = dimP3(R) (T not surjective)

nul(T ) + rk=

3

(T ) = dim=

3

P2(R)=

V =⇒ nul(T ) = 0 =⇒ T injective

Theorem 2.20. If V,W VS /F, S = {v1, . . . ,vn} basis of V ,

then for each (w1, . . . ,wn) ∈ Wn ∃! linear T : V →W

with T (vi) = wi.

Corollary 2.21. Let T, U : V →W be linear maps
S = {v1, . . . ,vn} be basis of V .

If T (vi) = U(vi)

T
∣

∣

∣

S

= U
∣

∣

∣

S

∀i = 1, . . . , n =⇒ T = U .

(Linear maps are identified by their images on a basis.)

2.2. Matrix representations of linear transformations.

fix ordered bases (OB) β = {v1, . . . ,vn} of V and γ = {w1, . . . ,wm} of W .

Example 2.22. (ei)
n
i=1 ordered basis of Fn; standard ordered basis (SOB).

Definition 2.23. If β = (vi)
n
i=1 is ordered basis of V

then ∀x ∈ V ∃!(a1, . . . , an) : x =
n∑

i=1

aivi .

(a1, . . . , an) is called coordinate vector [x]β of x w.r.t. the basis β.

Example 2.24. x = (1, 3, 2) ∈ R3 β = (ei)
3
i=1

x = e1 + 3e2 + 2e3 ⇒ [x]β = (1, 3, 2) = x.

x is equal to its coordinate vector w.r.t. β;

thus we denote elements in Fn by their coordinate vector w.r.t. the SOB
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Example 2.25. V = P2(R) S = (1, x, x2)

f(x) = 4 + 6x− 7x2

[f ]S = (4, 6,−7)

Now let T : V →W linear, and fix ordered bases β=

(vi)

, γ=

(wj)

of V , W .

T (vi) =
∑m

j=1 ajiwj ⇐⇒ [T (vi)]γ = (aji)
m
j=1 (note that aijuniquely determine T )

Define the matrix A ∈Mm×n(F) by Aji = aji i = 1, . . . , n j = 1, . . . ,m

Then A = [T ]γβ is the matrix presentation of T w.r.t. the ordered bases β of V ,

γ of W .

(If V = W and β = γ, write [T ]β for [T ]ββ.)

Example 2.26. T : R2 → R3 (with β, γ standard bases)

T (a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2)

T (e1) = T (1, 0) = 1e1 + 0e2 + 2e3 = ( 1,0,2

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

)

a11 = 1

a21 = 0

a31 = 2

T (e2) = T (0, 1) = 3e1 + 0e2 − 4e3 = ( 3, 0,−4

−
−
−
−
→

)

a12 = 3

a22 = 0

a32 = −4

A = [T ]γβ =






a11 a12

a21 a22

a31 a32




 =






1

0

2

3

0

−4






If γ′ = (e3, e2, e1), then

[T (e1)]γ′ = (2, 0, 1)

[T (e2)]γ′ = (−4, 0, 3)
=⇒ [T ]γ

′

β =






2 −4

0 0

1 3




 .

Example 2.27. T : P3(R)→ P2(R) T (f) = f ′ [T ]γβ :=






0 1 0 0

0 0 2 0

0 0 0 3






β = (1, x, x2, x3), γ = (1, x, x2) T (x) = 1 [T (x)]γ = (1, 0, 0)

T (x2) = 2x [T (x2)]γ = (0, 2, 0)
T (1) = 0 ⇒ [T (1)]γ = (0, 0, 0)

T (x3) = 3x2 [T (x3)]γ = (0, 0, 3)

Definition 2.28. V , W VS over F.

L(V,W ) =
{
T : V →W : T linear

}

the space of linear maps between V and W .
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When V = W set L(V, V ) =: L(V ).

Theorem 2.29. L(V,W ) is a VS over F with the operations

(T + U)(v) := T (v) + U(v) (v ∈ V )

(cT )(v) := cT (v)

Moreover, for fixed bases β, γ of V , W ,

we have
[T + U ]γβ = [T ]γβ + [U ]γβ

[cT ]γβ = c[T ]γβ

⇒ adding and adding and

scalar mult. of linear maps
corresponds to

scalar mult. of matrices

So matrices are a way to calculate with linear maps –

this is why they are useful!

2.3. composition of linear maps and matrix multiplication.

We learned T : V →W U : W → Z

∃U ◦ T : V → Z U ◦ T (x) = U(T (x))

Theorem 2.30. T : V →W U : W → Z are linear =⇒

U ◦ T : V → Z is linear

Proof. U ◦ T (a+ b) = U(T (a+ b)) =
↑

T is linear

U(T (a) + T (b)) =
↑

U is linear

U(T (a)) + U(T (b))

= U ◦ T (a) + U ◦ T (b) �

Theorem 2.31. V VS /F T , U1, U2 ∈ L(V ). Let TU = T ◦ U .

T (U1 + U2) = TU1 + TU2 (U1 + U2)T = U1T + U2T distributive

T (U1U2) = (TU1)U2 associative

TI = IT I = IdV multiplicative identity

a(U1U2) = (aU1)U2 = U1(aU2)

L(V ) is almost a field except that

1) multiplication is non-commutative

2) ∃U 6= 0 with no multiplicative inverse (unless dimV = 1 and L(V ) ≃ F)

L(V ) is “ring” (ex: Z is a ring),

but non-commutative

How to define matrix multiplication to correspond to composition of maps?
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T

bases

: V

α

=

{vi}
n
i=1

−→W

β

=

{wj}
m
j=1

U : W

β

−→ Z

γ

=

{zk}
p

k=1

A = [U ]γβ B = [T ]βα B = m× n-matrix

AB= = [UT ]γα A = p×m-matrix

C C = p× n-matrix

UT (vi) = U(T (vi)) = U
( m∑

j=1

Bjiwj

)

=

m∑

j=1

BjiU
(
wj

)
=

m∑

j=1

Bji

( p
∑

k=1

Akjzk

)

p
∑

k=1

( m∑

j=1

AkjBji

)

zk =

p
∑

k=1

Ckizk

where
Cki =

m∑

j=1

AkjBji

Definition 2.32. Let A ∈Mp×m(F) B ∈Mm×n(F), then define AB ∈Mp×n(F)

by

(AB)ij =

m∑

k=1

AikBkj 1 ≤ i ≤ p, 1 ≤ j ≤ n

This is called product AB of A and B.

Ex. (

1 2 1

0 4 −1

)

·






4

2

5




 =

(

1 · 4 + 2 · 2 + 1 · 5

0 · 4 + 4 · 2 + (−1) · 5

)

=

(

13

3

)

.

Theorem 2.33. Let V , W , Z be finite dim. VS with bases α, β, γ.

Let T : V →W U : W → Z be linear.

Then [UT ]γα = [U ]γβ [T ]βα .

Corollary 2.34. (when V = W = Z) V VS /F finite dim.

T, U ∈ L(V ) [UT ]β = [U ]β [T ]β

Ex. U : P3(R) → P2(R) T : P2(R)→ P3(R)

U(f) = f ′ T (f) =
x∫

0

f(t) dt
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Let α and β be SOB of P3 and P2 resp.

[UT ]β = [U ]βα[T ]
α
β =






0 1 0 0

0 0 2 0

0 0 0 3




 ·









0 0 0

1 0 0

0 1/2 0

0 0 1/3









=






1 0 0

0 1 0

0 0 1




 = [I]β

Definition 2.35. In ∈Mn×n(F) with (In)ij =

Kronecker’s delta→
δij is called identity matrix

I1 = (1) , I2 =

(
1 0

0 1

)

, I3 =






1 0 0

0 1 0

0 0 1






Theorem 2.36. V , W f.d. VS /F β, γ ordered bases,
β = {v1, . . . ,vm}

u ∈ V

[T (u)]γ = [T ]γβ [u]β

In particular, the i-th column of [T ]γβ is [T (vi)]γ .

Definition 2.37. A ∈Mm×n(F) define

LA : Fn −→ Fm defined by LA(x) = Ax

left-multiplication transformation

example A =

(
1 2 1

0 1 2

)

2× 3 matrix LA : R3 → R2

let β be SOB of R3, γ SOB of R2.

LA

[(1, 0, 0)]β=

(1, 0, 0) =

(

1 2 1

0 1 2

)

·







1

0

0






=

(
1

0

)

LA(0, 1, 0) =

(

1 2 1

0 1 2

)

·







0

1

0






=

(
2

1

)

LA(0, 0, 1) =

(

1 2 1

0 1 2

)

·







0

0

1






=

(
1

2

)

=

[(
1

2

)]

γ

⇒ [LA]
γ
β =

(
1 2 1

0 1 2

)

= A

Let A ∈Mm×n(F). Then LA : Fn → Fm linear. If β, γ SOB (順基底) of Fn, Fm.

Theorem 2.38. (a) [LA]
γ
β = A

(b) LA = LB ⇐⇒ A = B

(c) LA+B = LA + LB and LaA = aLA for all a ∈ F.

(d) If T : Fn → Fm is linear, T = L[T ]γ
β
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(e) If E ∈Mn×p(F)
(
LE : Fp → Fn

)

then LAE = LALE

(f) If m = n, then LIn = IdFn

Corollary 2.39. Let A,B,C be matrices, such that A(BC) is defined. Then

(AB)C is also defined, and A(BC) = (AB)C.

Proof. By part (e) of Theorem 2.38, and associativity of ◦ for maps

LA(BC) = LA ◦ LBC = LA ◦ (LB ◦ LC) = (LA ◦ LB) ◦ LC = LAB ◦ LC = L(AB)C

now by part (b) of Theorem 2.38 =⇒ �

2.4. Invertibility and isomorphism.

Definition 2.40. A linear map T : V →W is invertible if
∃ U : W → V with TU = IdW and UT = IdV .

U = T−1 inverse

Theorem 2.41. T invertible ⇐⇒ T is bijective

in this case T−1 is unique

moreover, (TU)−1 = U−1T−1 and (T−1)−1 = T .

Theorem 2.42. T : V →W invertible linear
then T−1 : W → V is linear

Theorem 2.43. T : V →W linear dim(V ) <∞

T invertible ⇐⇒ rk (T ) = dim(V ) = dim(W )

Proof. Use rk (T ) + nul(T ) = dim(V ). �

Definition 2.44. A ∈Mn×n(F) is invertible :⇐⇒ ∃B ∈Mn×n(F) with AB = BA = Idn.

Then B = A−1 inverse matrix.

(Remark: If one of AB = Id or BA = Id, then also the other holds.)

Theorem 2.45. T : V →W invertible, β, γ OB of V , W

then [T−1]βγ =
(

[T ]γβ

)
−1←

−
−

matrix inverse
(note: [T ]γβ is square mtx)

Proof. In = [IdV ]β = [T−1T ]β = [T−1]βγ [T ]
γ
β. �

Definition 2.46. F : V →W linear bijective is called (linear) isomorphism. And

V , W are isomorphic V ≃W .

Theorem 2.47. V,W finite dimensional (f.d.) VS /F V ≃W ⇐⇒ dim(V ) =

dim(W ).
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Corollary 2.48. V f.d. VS /F Fn ≃ V n = dim V .

Example 2.49. P3(R) → R4 f
F
7−→ (f(1), f(2), f(3), f(4))

dim of P3(R), R
4 same, F is linear, injective:

if f(1) = f(2) = f(3) = f(4) = 0 then

(x− 1)(x− 2)(x− 3)(x− 4) | f, but if deg f ≤ 3, then
f ≡ 0 =⇒ f isomorphism.

How do we realize the isomorphism Fn ≃ V in corollary 2.48?

Definition 2.50. Let V be VS /F, dimV = n, β OB.

Then φβ : V → Fn given by φβ(x) = [x]β is

standard representation of V w.r.t. β.

Theorem 2.51. φβ is an isomorphism.

=⇒ Fn ≃ V depends on the choice of basis (not canonical)

Theorem 2.52. Let

dim=

n

V ,

dim=
m

W VS /F β, γ OB. (|γ| = m, |β| = n).

The map Φ : L(V,W ) → Mm×n(F)

given by Φ(T ) = [T ]γβ is an isomorphism.

Corollary 2.53. dim L(V,W ) = mn.

2.5. change of coordinates.

What happens to [v]β and [T ]γβ when changing β to β′?

Theorem 2.54. Let β, β′ be OB of f.d. vector space

V , let Q = [IV ]
β
β′ . Then

(a) Q is invertible

(b) For any v ∈ V , [v]β = Q · ([v]β′)

Proof. (a) [IV ]
β′

β [IV ]
β
β′ = [IV ]

β′

β′ = Id �

(b) [v]β = [IV (v)]β = [IV ]
β
β′ [v]β′ = Q · [v]β′ �

Theorem 2.55. Under the assumption of theorem 2.54

and for T ∈ L(V ), we have

[T ]β′ = Q−1[T ]βQ change of basis
corresponds to
conjugating the
coordinate matrix

Proof. Q[T ]β′ = [IV ]
β
β′ [T ]

β′

β′

= [IV · T ]
β
β′ = [T ]ββ′

=

[T ]βQ = [T ]ββ [IV ]
β
β′ = [T · IV ]

β
β′ = [T ]ββ′ �
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Definition 2.56. (G, ·) is group g−1bg is g-conjugate of b.

{T ∈ L(V ) : T invertible } is a group, also {M ∈Mn×n(F) : M invertible
↑

how do I see this?
determinants;

later

}

thus we can speak of conjugate matrix

(in book Q−1AQ are called similar; not conjugate)


