2. LINEAR TRANSFORAMTIONS AND MATRICES

Motivation: want to study linear maps between VS
that “preserve” the VS structure
these occur in e  calculus
(differentiation, intergation)
e geometry (rotations, reflactions, projections)

= linear maps/transformations

Assumption: all VS considered over a common
field F. (Fixed one for the whole §2.)

2.1. linear transformations, null spaces, and ranges.

Recall T : V — W denotes function/map from V to W.

Definition 2.1. Let V, W be VS (/F)
T : V — W is a linear transformation (from V' to W)

limply linear if for all x,y € V, ce€ F:
(a) T(x+y) =T(x)+T(y) (additive)
(b) T'(ex) = T'(x)

(If F = Q, then (a)==(b), i.e., each additive map is linear, but not in general.)

Properties of a linear map 7'

(1) T(0)=0
(2) T linear <= Vce F, x,y eV
T(ex+y)=cT(x)+T(y)

(3) If T is linear, then T'(x —y) =T (x) — T'(y) for all x,y € V
(4) T linear <~ Vx1,...,x, €V, ¢1,...,¢c, € F,

T (ZCZXZ) = Z c; T'(x;)

Example 2.2. T : R? - R? T(a1,a2) = (2a1 + az,aq)

T(c(ar,a2)) = T(cai,caz) = (2car + caz,car) = ¢(2a1 + az,a1) = cI'(a1,a2)

T((ar,a2) + (b1,b2)) =T(a1 + bi,a2 + b2) = (2(a1 + b1) + (a2 + b2),a1 + b1) =
(2a1—|—a2,a1)—|—(2bl—|—bg,bl) = T(al,a2)+T(b1,b2)



3 important examples from geometry

Example 2.3. i.-.._ﬁ..i,. o
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rotation by 6
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T(al,ag) _ (bl,bg) by +bt = e (a1 + GQZ)
= (aj cosf — ay sin b, = (cos@+isinf)(as + agi)
a1 sin @ + ay cos 0) = (a1 cosf — agsinf)
+(asinf + ag cos6)i

Exercise: show that T is linear.

Example 2.4. T(a1,a2) = (a1, —az)
reflection (along z-axis)

it satisfies T? = Idy < identity

Example 2.5. T(aj,a2) = (a1,0)

projection (onto z-axis
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Example 2.6. (now matrices)
T : Myxn(F) = Myun(F) T(A) = AT
(A+B)T = AT + BT (cA)T = cAT = T is linear.

Example 2.7. V = {f : R—=R: feC>®} o V=P(R) =R[z].

T :V =V T(f)=f" The differential operator is linear.

xT

Example 2.8. T(f) = /f(t) dt
0

Definition 2.9. VW VS /F T :V — W linear

W

w
ker(T) = N(T) = {veV :T(v)=0} = T71(0) nullspace
or kernel

of T’
Im(T)=R(T) = {T(v)eW : v € V} C W range or image of T




Example 2.10. Let V=W and T =Idy 7T(v)=v identity map
Then kerT'= {0} ImT =V

Let T=0 T(v)=0eW VveV gzeromap
Then ker 7=V Im = {0}

Theorem 2.11. LetT : V — W linear
Then kerT' C V' and ImT C W are linear subspaces.

Theorem 2.12. Let T : V — W be linear
and let S C 'V be a subset.

Then  T(span(S)) = span(T'(.9)).
Corollary 2.13. in particular when S generating (<= span(S) =1V
then span(T'(S)) = ImT.

Corollary 2.14. S basis = dimIm7T < dim V

Definition 2.15. 7' : V — W linear
dim(ker(7")) =: nul(7") nullity
dim(Im(7")) =: vk (T') rank of T
Theorem 2.16. (Dimension theorem)

LetT : V. — W linear, dim(V) < oo.
Then nul(T) +rk(T) = dim(V). (1)

mjective

Theorem 2.17. T : V. - W 1-to-1 <= ker(T) = {Ov}.
Proof. 1) If T injective = [T 1(y)| <1Vy e W

Take y = Oy T-1(0)] <1,

but 0y € T~1(0w ) so T~ (0w ) = {0y }.

2) Assume ker(T) = {0}. Let T(v) =T (V') e W
for some v,v' € V,

then because T is linear T'(v —v') =T(v) — T(v') = 0,

sov—v ekerT. But kerT = {0},sov—-v' =0

— v=v. O

Theorem 2.18. T : V — W linear, n = dim(V') = dim(W) < oco. The following
are equivalent.

(a) T injective (<= nul(T) =0) <~
(b) T surjective (<= rk(T)=mn)

Proof. (a) T injective nul(7) = dimker 7' = dim{0} = 0

theorem 2.16 = rk(7T)=dimV =dimW =n (2)
(2) = dimImT = dim W; ImT C W subsp = ImT = W = T surjective



(b) (a) = rk (T) =n = dim Vleifsmﬂ(T) =0 = kerT = {0} O

Example 2.19. T : Po(R) — P3(R) f(z) = ao + a1z + azx?

T(f(x)) = 2f'(z) + / 3£(t)
T(x

R(T) = span{T'(1), T (x),T(2*)}
= span{Bx,2+ 57 2 dx+ 23 }

linearly ir:aependent
Im(T)
tk (T) =dim R(T) = 3 < 4 = dimP3(R) (T not surjective)
P2(R)
I
nul(T) + rk(7) = dim V = nul(T") =0 = T injective

I I
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Theorem 2.20. If VW VS /F, S ={vi,...,v,} basis of V,
then for each (wq,...,wy,) € W™ I linear T : V — W
Corollary 2.21. Let T,U : V. — W be linear maps

S ={vi,...,vn} be basis of V.

IfT(v;) =U(vy) Vi=1,....n=T=1U.
T :U‘

(Linear maps are identified by their images on a basis.)

2.2. Matrix representations of linear transformations.

fix ordered bases (OB) = {v1,...,vp,} of Vand v = {wy,...,w,, } of W.

Example 2.22. (e;)!; ordered basis of F™; standard ordered basis (SOB).

Definition 2.23. If 5 = (v;)I; is ordered basis of V'
then Vx € V' (a1, ...,a,) @ x= D a;v;.
=1

(a1,...,an) is called coordinate vector [x]s of x w.r.t. the basis .

Example 2.24. x = (1,3,2) € R3 B= (&)
x =e; +3ex +2e3 = [x|g =(1,3,2) =

x is equal to its coordinate vector w.r.t. J;

thus we denote elements in F™ by their coordinate vector w.r.t. the SOB




Example 2.25. V =P3(R) S = (1,z,2?)
f(z) =4+ 6x — 72?
[f]s = (4767 _7)

Now let T' : V' — W linear, and fix ordered bases 5, v of V, W.
I
(vi) (w;)
T(vi) = Z;nzl ajiwj <= [T(vi)ly = (a;)7L, (note that a;;uniquely determine T')

Define the matrix A € M, xn(F) by Aj; = aji; i=1,....n j=1,...,m

Then A = [T]g is the matrix presentation of T" w.r.t. the ordered bases 8 of V,
v of W.
(If V =W and 8 = v, write [T] for [T]5.)

Example 2.26. T : R? — R3 (with 3, standard bases)
T(al, CLQ) = (a1 + 3as,0,2a; — 4a2)

a1 =1
T(e1) =T(1,0) = leg + 0ez +2e3 = (| 1,0,2)) a2 =0
aszl = 2
a1 = 3
T(GQ) = T(O, 1) = 361 + 062 - 463 = ( 3, 0, —4 ) az =0
J aza = —4
air a2 3
A= [T]g = az21 a2 — 0
asi aso 2 —4
If v/ = (e3, ez, €1), then
T(en)ly = (2,0,1) .
e N = s Uy — [T]g) — 00
[T(GQ)]W' = (_47073) 1 3
0O 1 0 O
Example 2.27. T : P3(R) — P2(R) T(f)=f [T];:==10 0 2 0
0O 0 0 3
B=(l,z,2% 2%, ~v=1,z,2%) T(x)=1 [T(x)]y = (1,0,0)
2\ _ PN
T(1)=0 = [T(), = (0,0,0) T17) =20 Sk =020
T(@%) =32 [T, = (0,0,3)

Definition 2.28. V, W VS over F.
LVVW)={T:V =W : T linear }

the space of linear maps between V and W.



When V =W set L(V,V) =: L(V).

Theorem 2.29. L(V,W) is a VS over F with the operations

(T+U)(v) = T(v)+U(v) (veV)
(cT)(v) = cT'(v)
Moreover, for fixed bases 3, v of V., W,
we have
T+Uly = [T);+[Ul;
[Ty = [T];
= adding and adding and
corresponds to
scalar mult. of linear maps scalar mult. of matrices

So matrices are a way to calculate with linear maps —

this is why they are useful!

2.3. composition of linear maps and matrix multiplication.

We learned T : V — W U:-W-—=Z2
AU T : V27 UoT(x)=U(T(x))

Theorem 2.30. T : V- W U : W — Z are linear =
UoT :V — Z is linear

Proof. UoT(a+b) = U(T(a+b)) = U(T(a) + T (b)) = U(T(a)) + U(T (b))

T is linear U is linear

— UoT(a)+UoT(b)

Theorem 2.31. V VS /F T, Uy, Uy € L(V). Let | TU =T o U |.

TU,+Us) =TU +TUy (U +Ux)T = UyT +UsT  distributive
T(U,Uz) = (TU,)Us  associative

TI=1T I =1dy multiplicative identity

a(U1Usz) = (aUy)Us = Uy(aUs)

L(V) is almost a field except that

1) multiplication is non-commutative

2) 3U # 0 with no multiplicative inverse (unless dimV =1 and £L(V) ~ F)

L(V) is “ring” (ex: Z is a ring),

but non-commutative

How to define matrix multiplication to correspond to composition of maps?



T 'V — W U:W— 7

bases « B B Y
I | |
{vitic: {w; i {zr iy
A=[U]), B= (T2 B = m x n-matrix
AB =[UT]] A = p x m-matrix
I
C C = p X n-matrix
UT(vi) = U(T(vi)) = U(Z Bﬂw])
j=1
m m p
=S " BuU(w)) = ZBJ-Z-(Z Akak>
j=1 j=1 k=1
p m P
Z(Z Aijjz>Zk = Zokzzk
k=1 j=1 k=1
where m
Ckz - ZAk:]B]z
j=1

Definition 2.32. Let A € M, (F) B € M,,xn(F), then define AB € My, (F)
by

(AB);; :ZAik;Bk;j I1<:<p, 1<j<n
k=1

This is called product AB of A and B.

4
B9 g | tatze2eis ) _ (18
0 4 —1 - 0-444-24(-1)-5 3/
Theorem 2.33. Let V, W, Z be finite dim. VS with bases «, 3,~.

LetT : V=W U : W — Z be linear.
Then [UT)], = [U]} [T]4.

Corollary 2.34. (when V=W =2)V VS /F finite dim.

T,UeL(V) [UTlp = [Uls[T]s
Ex. U : Pg(R) — P2(R) T PQ(R) —)Pg(R)

U =f T = ff(t) dt



8

Let a and 8 be SOB of P3 and P> resp.

0 0 0
01 0 0 Lo o
[UT)s = UEME =10 0 2 0 0 1 o —
000 3 2
001/3
1 00
01 0| =[]
0 0 1

Kronecker’s delta

1
Definition 2.35. I,, € M,,«,(F) with (I,,);; = d;; is called identity matrix

1 0
-[1:(]-)7 -[2: 0 1 ) I3:

o O =
oS = O
= o O

Theorem 2.36. V, W f.d. VS /F (3, v ordered bases, u € V
B=Avi,...,Vvm}
[T(w)]y = [T]3[u]s
In particular, the i-th column of [T} is [T(vi)], -

Definition 2.37. A € M,,«,(F) define
Ly : F" — F" defined by La(x) = Ax
left-multiplication transformation

12 1 _
exampleA:<0 X 2)2><3matr1xLA:R3—>]R2
let B be SOB of R3, v SOB of R2.
[(1,0,0)]5 )
Il
1
LA(l,O,O):<1 2 1)- 0 :( )
0O 1 2 0
0
1 2 1 0 2 1 2 1
LA(O,l,O):< ) | :( ) ;»[LA]g,z( ):A
0 2 1 0 1 2
0
0
1 1
o= 2 ) (2)-C)-[(0)
0 2 2 2
1 v

Let A € My,xn(F). Then Ly : F" — F™ linear. If 3,7 SOB (L) of F, F™.

Theorem 2.38. (a) [La]j = A
(b)La=1Lp — A=B
(¢) Lay+p=La+ Lp and Lys = alL 4 for all a € F.
(A)IE T : B — F™ is linear, T = Ligyy



(e) If E € My,(F) (Lg : FP - F")
then Lagp = LaLEg
(f) If m = n, then L;, = Idpn

Corollary 2.39. Let A, B,C be matrices, such that A(BC) is defined. Then
(AB)C' is also defined, and A(BC) = (AB)C.

Proof. By part (e) of Theorem 2.38, and associativity of o for maps
Lapey=LaoLpc=Lao(LpoLc)=(LaoLp)oLc=1LagoLc=Lpyc

now by part (b) of Theorem 2.38 = [

2.4. Invertibility and isomorphism.

Definition 2.40. A linear map T : V — W is invertible if
dU : W — V with TU = Idyw and UT = Idy.

U =T inverse

Theorem 2.41. T invertible <= T is bijective

in this case T—' is unique
moreover, (TU)™ ' =UT~! and (T-1)"1 =T.

Theorem 2.42. T : V — W invertible linear
then T~Y : W — V is linear

Theorem 2.43. T : V — W linear dim(V') < oo
T invertible <= 1k (T) = dim(V') = dim (W)

Proof. Use rk (T') + nul(T") = dim(V). O

Definition 2.44. A € M,,«,,(F) isinvertible: <= 3B € M,,«,(F) with AB = BA = Id,.
Then B = A~! inverse matrix.

(Remark: If one of AB = Id or BA = Id, then also the other holds.)

Theorem 2.45. T : V — W invertible, B,y OB of V, W
-1

then [T~1]8 = ([T]g) T

matriz inverse
(note: [T]} is square mtzx)

Proof. I, = [Idv]s = [T~'T]g = [T~2[T]3. O

Definition 2.46. F' : V — W linear bijective is called (linear) isomorphism. And
V., W are isomorphic V ~ W.

Theorem 2.47. V,W finite dimensional (f.d.) VS /F VoW < dim(V) =
dim(W).
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Corollary 2.48. V f.d. VS /F F"~V n=dmV.

Example 2.49. P5(R) = R[5 (/(1), /(2). f(3), /(4))
dim of P3(R), R* same, F is linear, injective:

i £(1)= f(2) = £(3) = f(4) =0 then
(x—=1)(z—2)(x—3)(x—4)| f, butif deg f < 3, then
f =0 = f isomorphism.

How do we realize the isomorphism F” ~ V in corollary 2.487

Definition 2.50. Let V be VS /F, dimV = n, 8 OB.
Then ¢p : V — F" given by ¢g(x) = [x]s is
standard representation of V' w.r.t. 5.

Theorem 2.51. ¢g is an isomorphism.

=—> F” ~ V depends on the choice of basis (not canonical)

dim dim
I

n m

Theorem 2.52. Let V., W VS /F B,y OB. (|y| =m, |5 =n).
The map ® : L(V,W) — Myxn(F)
given by ®(T') = [T]) is an isomorphism.

Corollary 2.53. dim L(V,W) = mn.

2.5. change of coordinates.

What happens to [v] and [T]} when changing 3 to 3’7

Theorem 2.54. Let 3, 5’ be OB of f.d. vector space
V. let Q = [Iv]},. Then
(a) @ is invertible
(b) Forany v V, [v]s = Q- (W]s)

Proof. (a) [Iv]] [Iv]}, = [Iv]3, = Id
(b) Vs = Iv(V)]s = V]GVl = Q- [V
Theorem 2.55. Under the assumption of theorem 2.5
and for T € L(V'), we have
[T]s = Q1 [T)5Q change of basis
corresponds to
conjugating the
coordinate matrix
Proof. Q[T]s = [Iv]5,[T15,
— [1y-11} = (11},
I
[T1sQ = [T [Iv]5 = [T V)5 = [T]p O

O O



Definition 2.56. (G,-) is group g 'bg is g-conjugate of b.

{T € L(V) : T invertible } is a group, also { M € M,,«,(F) : M invertible }
/I\

how do I see this?
determinants;
later

thus we can speak of conjugate matrix

(in book Q~*AQ are called similar; not conjugate)
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