3. ELEMENTARY MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS

goal: computing rank of matrix
solving systems of linear equations

3.1. Elementary matrix operations and elementary matrices.

goal: transform a matrix by elementary operations
into a simpler one of same rank

Definition 3.1. An elementary row-column operation is

(1) interchanging two rows/columns
(2) multiplying a row /column by a non-zero scalar

(3) adding a scalar multiple of a row /column to another row /column

12 3 4 interchange 2 1 -1 3 nf ed fater
ExA=([2 1 -1 3 type 1: rows 1 and 2 1 2 3 4|=4
4 0 1 2 4 0 2
Rem If P — @ by elementary multiply 1 3
operation, then type 2 : second column by 3 2 -1 = Az
@ — P by el. oper. !
add 4x 17 2 7 12
type 3 : third row to first row 2 1 —-1 3| =43
4 0 1 2

Definition 3.2. An n xn elementary matrix is one obtained from I,, by performing

an elementary operation.

0O 1 0

1 0 0 exch. row 1 and 2
a

0 0 1

1 0 0
Ex 0 1 0
00 1 \ 1 0 -2
0 1 0 add —2- row 3 to row 1
0 0 1

[col.]

Theorem 3.3. Let A € M,,xn(F) A — B by elementary row operation.
= 3 elementary matriz E with B=FEA [B = AE].
with Id — E by the same elementary operation.

Ay = Ay =A As =

o = O
o O =
_ o O
N
o O =
o = O
_ O
N

0
0
1
0

S O O =
o O w O
— o O O

Theorem 3.4. Elementary matrices are invertible, and their inverses are of
the same type.
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3.2. Rank of matrix and matrix inverses.

Definition 3.5. A € M, (F) tk (A) :=1k(La : F* — F™).

Theorem 3.6. Let V., W be VS /F T :V — W linear transformation.
Ul Ul

B v OB
Then rk (T') = rk ([T]g)

Proof. The following diagram commutes.

T
Vv —— W
Pp(x) = [x]s
¢Bl l‘bw ®3, ¢~ isomorphism
Fr ——F > Fm™
Lyry
def of rank previous def
4 4
vk (T) - dim(ImT) - dim (-, (ImT)) - dim(Im(L(zy3)) = 1k <L[T]g) = 1k ([T]g>
def of rank ¢~ iso (1)
using

¢ (ImT) = Im(p-0T) - Im(Lryyos) = Liy; (Imgy) T Ligy; (F") = Im(Lyyy)

diagram commutes ¢p iso
(1)
Theorem 3.7. Let A € M, xn(F) P, Q invertible.
m m
Mme M’I’LXTL

Then 1k(PA)=r1k(A)=rk(4Q) =1k (PAQ). Lo onto
PTOOf. R(LAQ) = R(LA ¢) LQ) = LALQ(Fn) = LA(LQ(Fn)) iLA(F”) =
= R(La)
— 1k (AQ) = dim(R(L o)) = dim(R(LA)) = rk (A).
dim R(Lpa) = dim Lp(L4(F")) - dim(LA(F")) = dim R(L4) = rk (A).

I
rk (PA) Lp iso
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Corollary 3.8. Elementary row and column operations on a matriz are rank-

preserving.

Theorem 3.9. The rank of a matriz is the mazimal number of linearly independent
columns = dim(subspace generated by columns).

Proof. Let A € My, «n(F). Then
Ly :F*—F™ La(x) = A-x
La(e;) =A-e; i-th column of A.

L 4 linear

d
So Im(L4) = La(span({e;}))=span({La(e;)}) = span(columns of A). [

Example 3.10.

first two cols are linearly independent,

SN

Corollary 3.11. A € M, xn(F) is invertible <= rk(A) =m =n.

rk

w N =

4
)
6

© 00 3

Theorem 3.12. (important!) n—r
~~
1d, 0
A€ Myxn(F). Then A ﬁ { 0 0 = r =rk(4)
el. op. m—r
I
Ir,m,n

Proof. By example.

ﬂ 2 4 2 2 @ p := pivot element row := pivot element col :=1
4 4 4 8 0
if all elements in pivot rectangle are 0 = end
8 2 0 10 2 row
6 32 9 1 ol 27
4 4 0 @ exchange rows and columns so that pivot # 0
0 2 2 (type 1)
8 2 10 2
6 3 9 1
1 0 @ divide row by pivot element so it gets = 1
0 2 2 2 (type 2)
8 2 10 2
6 3 9 1




\] @ zero out below pivot by type 3 row operations

@]
N |~
I
[\
= N N O

@ zero out right of pivot by type 3 col
operations (make () entries to 0)

- - —

o o o =
L[]
&[]
|~
o0

L o
o

NN O

1 0 0O 0 O @ move pivot one row down & one col right
0 2 1 1 —(1)
0 -6 -8 —6 2
0 -3 -4 -3 1
1 00 00 1 0000 1 1
0[]z 1 1|6y o100 0|C) 1 =) 1
00 4 0 8 0008 08
00 2 0 4 00 2 0 4 2 0
— 1374,5 done ]

Corollary 3.13. A € My,xn(F) 1k(A) =1 then

i1 P, @ products of elementry matricies :
m m
Mxm Mpxn A= PIr,m,nQ ’
Proof. P~' =FE;----- E product of elementary matrices E; for row operations in
! col
@ — @ Then P = Ek_1 ----- El_l, Ei_1 are elementary. 0

Corollary 3.14. Let A € M, xn(F).

(a) tk (AT) =1k (A)
(b) 1k (AT) = dim span(columns of A) = dim span(rows of A)

Corollary 3.15. A € M, «,(F) is invertible <= A is
a product of elementary matrices

In,n,n

I
cor. 3.13

Proof. “=" A invertible = rk(A)=n ="A=P [, Q= PQ,
P, @ products of elementary matrices

“«=" elementary matrices are invertible = their products are invertible [



Mme Mnxn
Corollary 3.16. Let A € M,«n(F) W

tk(A)=r <= 3 P , @Q invertible with A= PI, ,, ,Q.
Proof. “=" By Corollary 3.13, 4P, () products of elementary matrices.
elementary matrices are invertible = P, () invertible
“<=" assume A = PI, ,, ,@Q, P,Q invertible
by Corollary 3.15, P, () are products of elementary matrices
and rk (FA) =1k (A) = rk (AE’) when E, E’ elementary
so rk (A) = rk (Ply;m nQ) =tk (Iy pm.n) = 7. O

Proof of Cor 8.14. (a) When P is invertible, (PT)~t = (P~H)T,
SO A=Pl nnQ — 1k(A)=r

J
AT - QT Ir,n,m PT = rk (AT) =r.
T T
invertible  invertible
(b) follows from (a). O

Theorem 3.17. LetT : V. — W, U : W — Z linear transformations,
A, B matrices such that AB defined.

Then (a) tk (UT) < rk(U) (b) tk(AB) < rk(4)
rk (T") rk (B)
T(V)C W
(%) U(T(v)) C UW)
I i}
Proof. (a) tk(UT) = dim(U(T(V))) < dim(U(W)) = dimIm(U) = tk (U).
U:W = Z Let U = U‘T(V) L T(V) > Z
dim Im(U) 4 dim(ker(U)) = dim(T(V))
>0

dimIm(U) < dim(T(V))

(%) =dim(U(T(V))) < dim(T(V)) = dimIm(T") = vk (7)
(b) for matrices apply to La, Lp. O

The inverse of a matrix

(A|B)
I
Definition 3.18. A € M,,xn, B € Myuxp, (AB) € My (nyp) (A|B)

augmented matrix

Let A € M,,«n(F) consider (A|l,).

Assume A is invertible. Then A~! is product of elementary matrices
(Cor 3.15 above)
ATV =E,-...- E,.
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(A|B) — E(A|B) = (FA|EB) for an elementary matrix .
F is an elementary row operation

Now do this for Ey, Eq_1,...,Ey on (A|Id,).

(A|Idy) — AV (A|Id,) = (A"YA|A~'1d,) = (Id|A~Y).

Corollary 3.19. A is invertible <= there exists a sequence of row operations
that turn (A|Id,) into (Id,|B). In this case B = A™1,

Proof. “=" we proved that (A|Id,) — (Id,|A™!) by row operations.

Now assume it is possible.

(A|Id,) — (Id,|X) by row operations (2)
row operations on (A|X) preserve X "1 A:
(FA|EX) (A|X)
1 1

(X 'E-Y)(FA) = XA
Thus if (2), then X 'Id, =Id; 1A = A=X"1
= X=A""
“="1f (A|ld,,) — (Id,|B) by row operations, then
forget right block: A — Id,, by row operations,
so rk (A) =rk(Id,) =n = A is invertible. O

this means: if A is non-invertible, any attempt to
turn (A|ld,) — (Id,|B) will produce a left

block with a zero row/column.

How to find row operations for (A|Id,) — (Id,|B)?
(this is the first method to compute B = A~1; we

may see another)
~1

0 2 4
Ex 2 4 2 = 7 (We start as in the algorithm to determine rank.)
3 3 1
2 1 0
(A|T) = (2 4 1 )
3 3 0 1
@ exch row 1 and 2 = pivot# 0
4 200 1 0 if pivot + all below pivot=0
0 2 4 then stop. column:=0 =-
3 3 110 matrix not invertible




@ multiply first row by lp = pivot=1

1 2 1/0 1 0
._3£024100
33 10 0 1

1 9 1o 1 0 @ zero out below pivot & above pivot (if pivot
2

0 0
-3 —2]0 -3k 1

is in column > 1)

(@)
&}
S
—_

comes first important difference to
row-column reduction:
cannot zero out right of pivot

by column operation!

@ change shape of pivot rectangle

\V}
H
]

Ih 0
0 0

_3/2 1

(now what is above pivot is also

DO
S
—_

in rectangle)

|
w

|
()
o

unnecessary

&)

divide by 2 = pivot=1

Vol v

zero above and below pivot

change pivot

skip

0 1|3 =3k I

& O O

0 0] 85 —5% 3 0 2 4 L s
L0 _1/4 3/4 —1/2 —> done 2 4 2 = _i %
0 1| 38 =3 I 3 3 1 g 3

3.3. Systems of linear equations - Theoretical aspects.

el

=
N[



ailxi+ +a1n,Ty = bl

Am1T1+ FamnTn = bm

_ \ym n : :
A= (a;)t"-, coefficient matrix.

X1 b1

T bm

(3) <= Ax=b.

aij, b; € F field const
z; € F unknowns

system of m linear equations

with n unknowns over F

/I\
we had this before!
given vi,...,Vn, X,

find A\; with > \iv; = x.
Now we do this more systematically

linear equation system (LES)

s € F" solution <= As=Db

consistent

(3
inconsistent : <= solution set = &

: <= solution set # &

{'solutions } =: solution set

$1+(E2=3 2(E1+3$2—|—ZL’3:1 :IZl—l—IQZO
Tl —To = —1 T1 — X9+ 223 =206 T1+x9 =1
. (z1,22,23) = sol. no sol. inconsistent
unique sol (8, —4,-3)
How do we find solution?
homogeneous ifb =0

Definition 3.20. A system Ax = b is {

Theorem 3.21. K sol. set of Ax = 0.

Ly : F* — F™

nonhomogeneousifb # 0

K =ker(Ly) =: ker A.
dim K =n —rk(La)

Proof. dimker(L,) = dim F” —dimIm(Ly4).

fewer eqn than variables

1
Corollary 3.22. If m < n, then K # {0}.

Theorem 3.23. Let Ax =b (4) be a (consistent) LES and Ax =0 (5) be the

homogeneous system corresponding to (4). Then

K(4) = S+K(5) = {S+k : kEK(5)},

where s is a concrete solution of (4).

As=Db
As’'=b

Proof. Let s € K(4)
s’ e K(4)

= K(4) - S+K(5).

A(s—s')=0=s"—sc K
=8 =(—s+5s)+s
——

€es+ K(5).
GK(5)



Nowlets' € s+K;5 s'=s+k Ak =0
As' = As + Ak = ASZbﬁS/GK@L) $S+K(5) QK(4). O

Example 3.24.

— 2x9 — = 0 -1 2 -1
T1+ 220 — T3 . A:( ) 1k (A) = 2

Tr1+ X2 — T3 =

dim(ker A) = dim(R3) —rk (4) = 1.

1 1
check that (2) € ker A ker A = {t . (2) i te R}
3 3

/]\
( | how to find — later | )
1
—T1 4+ 229 — 23 = -3 1
! 2 s 1 special solution
r1 + To — x3 = -2 4

1 1 .
= K = 1|+t 2] :teR solution
4 5 set

One special case

Theorem 3.25. Let Ax =b be a LES with A € M,,«,.
Then Ax = b has exactly one solution <= A is invertible
In that case the solution is x = A~ 'b.

Proof. “<=" Let A be invertible x = A71b is a solution.

{sol.of Ax=b} = A"'b+ {solof Ax=0} = {A b}
D ——
ker A = {0}

T

A invertible = injective

“—>" Let s be the unique solution of Ax = b.

S unique

)
{ solutions to Ax =b} = s+ {sol of Ax =0 }={s}.

ker A
= ker(A) = {0}
= A injective = A : F" — F" bijective = A invertible OJ
Ex. 200 +4x3 = 3 1 I8 =58 3 3
201 +4x0 +22x3 = 3 o | = A7'b = —1/4 3/4 _1/2 3| =
3x1+3r2s+2x3 = 1 3 3% =3k

Definition 3.26. ( A|b) the augmented matrix of LES Ax = b.
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Theorem 3.27. Ax = b is consistent LES <=  rk(A|b) = rk(A).

dx : Ax=b <= becIm(A) = span( columns of A )
I
(ImL4)
1% w

A N

épan(columns of A U{b} ) = span(columns of A )

—
— <= dim(span(col of A ) ) = dim(span(col of A U{b} ))
I I

if VO W, then
V=W < dimV =dimW

= rk (A) = rk (Alb) O
Example 3.28. + = 1 1 1 1 1 1 1
P S A= b = (A[b) = :
r1+x92 = 0 1 1 0 1 1 0
rk(A) =1 rk(A|b) = 2
= inconsistent
3 1 1
Example 3.29. Is | 3 | a linear combination of [ 1], | -1 | 7
2 1 0
3 1 1 r1+xre =
3| =z 1| +22| -1 r1—x2 = 3 no solution = no
2 1 0 1 _

closed economic model (Application)

producer  : Farmer (food), Tailor (cloth), carpenter (house)
& consumer

no capital enters and exits (closed model)

Food Clothing Housing

Farmer 0.4 0.2 0.2 .
consumption
Tailor 0.1 0.7 0.2
Carpenter 0.5 0.1 0.6
( 1.0 1.0 1.0 )

e.g. Farmer consumes 40% of food and 20% of cloth.

Qu How much must F,T,C produce to attain an
equilibrium ( income = spending = society survives )7

food cloth house
Let p1, p2 , ps Dbeincomes of farmer/tailor/carpenter

when farmer must buy 20% of housing,
he spends 0.2p3
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consumption matrix

spending income 1
- ~ < PN
04 0.2 0.2
0.4p1 +0.2p2 +0.2p3 = p1 A= |01 07 02
0.1p1 +0.7p2 +0.2p3 = po 05 0.1 0.6
0.5p1 +0.1p2 +0.6ps = p3 i
P= | p2 Ap=p
Pp3
0.25
In this example p = | 0.35 p € ker(A — Id) <= equilibrium condition
04

so income of farmer : taylor: carpenter= 5:7:8

Rem. what we want is p > 0 (positive; all entries p; > 0)

n—1 1
—
B |c } n—1
Thm. If A= with C, D > 0, then
(B.Noble 1971) D E 1

(I — A)x = 0 has a 1-dimensional dolsution set
generated by a non-negative vector.

open model outside demand d; food dq
d2 cloth d= d2
ds house ds

win(carpenter)
"

income(carpenter) = spending(carpenter) + outside demand (housej
farmer farmer food
taylor taylor cloth

!

d+Ap=p=p=(I—-A4)"d (and again p must be non-negative)

3.4. LES - computational aspects.

/ 1. one sol
\ 2. basis of sol. set of Ax =0

we know: to solve Ax = b we need

we use row operations to accomplish 1 & 2 by transforming Ax = b into

a simple system where we see solutions

Definition 3.30. (A|b) <= (A’|b’) equivalent if x sol. of Ax = b <= x sol.
of A’x =Db'.
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Theorem 3.31. C € M,,«., invertible, A€ Myuxn, beF™
(CA|Cb) < (A|b) (same solutions)

Corollary 3.32. Row operations on (A|b) give equivalent system.

Qu: How to find proper row operations? ‘ Gaussian elimination
by example 31 +2x9 +3x3 —2x4 = 1
x1 +x2 43 = 3 (6)

r1 +2r2+x3 —w4 =

I part| |Forward pass

@ move pivot right as long as pivot +

@ make pivot to 1

121—12
1 3

312 3 —2 1

1 1 1 3

1 2 1 —-1|2 (but not down)
1 1 )

3 2 3 =21
@ zero out below pivot

@ skip

@ make pivot =1 (- — 1 second row)

@ pivot + below is zero — move right

o
|
w0
|
©

( 0 0

0]-4 0 1] -5 @ move pivot 1 right & 1 down
0
0

2 1
0 @ 0 -1} —1 we achieved now that the first
0 0 O @ 3 non-zero entry in each row = 1
& always right of first entry in the
previous row
IT part zero out above@ using row operations of type

3 from right to left
(so that in columns With@ this is the only non-zero entry)

Backward pass

(but not above)

below =0

can divide by 3 but better exch row 1 & 3
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o O =
O
o O =
o O
N Ot
v

1] 3
1 0 1 1 T +x3 = 1
0 2 — (7 o 2
0 0 1] 3 s = 3

Definition 3.33. A matrix is in reduced row echelon form (r.r.e. form, RREF) if

the following conditions are satisfied:

(a) any non-zero row lies above any zero row
(b) first (=leftmost) non-zero entry in a row is the only non-zero entry in its
column

(c) first (=leftmost) non-zero entry in a row is = 1 and occurs in a column
(above)

right to leftmost entry in previous row

What is the solution of a LES in r.r.e. form?

e for every variable that does not occur leftmost in an equation take arbitrary

value;

in our example x3 =t

e then solve in terms of ¢
xlzl—.fl?g:l—t xgzt

Ty = 2 Ty = 3
1—t 1 -1
luti 2 2
solution _ _ Lt 0 teR
set of (7) ¢ 0 1
| 3 3 0
solution teR
set of (6)
T Is
Example 3.34. @ 0 2 0 —2|3 21 4225 —2us
0 @ -1 0 1|1 To —3 +Is5
00 0(1)-2 2 24 —215
0O 0 0 0 0]O0

entries that do not occur first in a row: x3 and xs
I3 = S, Iy = t

and solve for x1, zs, x4
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1 3+ 2t—2s
Ty=2+42x5 = 2+ 2t To 1—t+s
To=1—25+23 =1—1t+s - 3 | = s
r1=3+2x5 —2x3 = 3+ 2t — 2s T4 242t
Ts t
3 —2 2
1 1 -1 general
= 10| +s 1 |+t-]10 solution
2 0 2 (s,t € R arbitrary)
0 0 1

Theorem 3.35. (A|b) LES in r.r.e. form with r non-zero equations.

(a) Tk (A) =r

(b) the above procedure gives the general solution
T =x9+ sTr1 +txe +uxrs +--- s,tyu,--- €R
where xg is one solution of non-homogeneous system €&

sxy1 + txg + - -+ is the general solution of corresponding homogeneous
system

if (AJb) consistent

(¢) (A|b) is inconsistent <= 3 zero row in A with non-zero element in b;
00---0 | #0

Rem r.r.e. form is unique. (Why?)

An interpretation of r.r.e.f.

Let A be a matrix and B be the r.r.ef. of A
Let@ be the leftmost non-zero entries in each row of B.

#@ = rk B = # non-zero rows in B

0
0
r.r.e.f. = column of #k @are 1|« k-throw = €.
I 0
Jk 0
. . . . . invertible mtx
Claim 1: jq,..., jr-columns of A are linearly independent 1
because cia1 + -+ crajy 0 B = MA

I <=1l

0 = ¢=0

Cc1 Majl + -4 Majr
Il Il

el e,

because A — B by row

operations
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Let A be invertible x = A~ 1b is a solution.

{sol.of Ax=b} = A"'b+ {solof Ax=0} = {A b}
N e’
ker A = {0}

/I\

A invertible = injective

di
Claim 2: when by, = Cf)r (8) 1is te k-th column of B then
0
ap = Z d;a;, is the k-th column of A
i=1 i.e., all other # j;-th columns
r of A are linear combinations of a;,
because by, = Zdiei, SO
i=1

r b, —e; r r
ar = M_lbk; (_E) ]\4_1 (Z dlel> = ZdiM_lbji = Zdiaji
i=1 i=1 i=1
— all columns of A are linear combinations of a;,
— {aj,,...,a;, } are a basis of the image of A

Theorem 3.36. Let A € M,,xn, tk(A) =71 (r>0) and let. Then
B be r.r.e.f. of A

a) The number of non-zero rows in B is r.

(a)
(b) Vi=1,2,...,r 3 a column bj, of B s.t. bj, =e;
(c)
(d) For each k=1,2,...,n: column k of B is

by = die;1 +...+dye, < a, = dia;, +...+d,a;,

aj,,...,a; (columns of A numbered ji,...,j,) are linearly independent

Corollary 3.37. r.r.e.f of A is unique.

Proof. gofromk=1,k=2,....k=n

Let [ be the number of linearly independent columns 1,... &k — 1.
k-th column ay of A is not lin. combination of previous columns

<= k-th column of B is not linear combination of previous columns

B r.r.e.f.
<" by = €11

if so, 1 4+ [ is uniquely determined: it is the number in order of such &

if not, a;,,...,a;, is linearly independent
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!
so 3 uniquely determined d; with Z dma;,, = ai

m=1
di
da
l
then d,b; =by=|d%
Z m j’IVL k 0
=1 I _
€em :
0

Applications: @ choose a basis from a generating set

complete a linearly independent set to a basis

Example 3.38. 2 4 6 2 4 2 0 4 0
123 11 0 0 @ ~1 0
A — B =
2 4 8 0 0 0 00 O
3 6 7 5 9 0 00 0 O
b1, bs, by linearly independent, by = 2b;, by = 4b; — bs
aj, as, as linearly independent, as = 2a;, a; = 4a; — ag
{a1, a3, a5} basis of span{ay,... a5}
S
x1 *2 *3
2 4 6 2 4
1 2 1 1
@ Question: find a basis of span , , s , ,
- 2 4 8 0 0
3 6 7 5 9

which is a subset of S: answer {x1, %2, *3}.

Solution: — write the vectors in S as columns of a matrix A
— find reduced r.e.f. B of A
— choose the columns of A which correspond to
columns of B With®

@ Question: Complete a linearly independent set of vectors S C V to a basis of V.
— write S as columns of a matrix A
— append to A on the right as columns some generating
set H of A, A’ = (A|H)
— find reduced r.e.f. B of A’
— choose the columns of A’ which correspond to
columns With@ of B:
SU{...} is a basis
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Example 3.39. V = { (.261, .. .,375) e R : T, + 7T + Dy — 4wy + 205 = 0}
S ={(-2,0,0,-1,-1), (1,1,-2,—-1,-1), (=5,1,0,1,1)}
can check using@ that S is linearly independent

i.e. if we write vectors in S into a matrix A
then every column in r.r.e.f. B of A has a :

2 1 -5 @00
11 0(1)0
2 0 . oo@

1o-1 1 00 0

1 -1 1 00 0
A B

find a generating set H of V = {1 = —Txy — bxs + 4x4 — 225}

(.25‘1,332,$3,.CC4,335) = (—7t1 — bty + 4tz — 2t4,t1,t2,t3,t4) =

-7 -5 4 -2
1 0 0 0
=1t1] 0 +ia] 1 +t3| 0] +24] O

0 0 1 0

0 0 0 1 H = {x1,%2, %3, x4}

x1 *2 *3 x4
:_—_2_5 ,_1_:,:5: —7 —5[4]-2
0111 o0lofo
0—200 tlolo| _
“1i-1i1no0 o010
“1isin1ito o0 lo] 1
@ 0 0'1 1 0 -1
0 @ 010 —lh 0 0
0 0 @ 1 1% 0 0 = é’ r.r.e.f.
0 0 010 0 1
0 0 0.0 0 0 0

answer: basis of V O S is

Su{(4,0,0,1,0)}

summary: we can determine rank
determine inverse
solve a LES
complete a linearly independent set to a basis

choose a basis from a generating set



