5. DIAGONALIZATION

plan given 7" : V — V
Does there exist a basis § of V such that [T]s is diagonal
if so, how can it be found

— eigenvalues (EV), eigenvectors, eigenspaces

5.1. Eigenvalues and eigenvectors.

T:V->W B OB of V, v OB of W dimV =m
dimW =n

recall [T] i-th column is [T'(v;)], B= (Vi ey Vi)

Q= [Iv]g, change-of-
T:V—=V [Ty = [Iv]§[Tlslv]} = Q' T]sQ coordinate matrix

Definition 5.1. T : V -V dimV =n < oo linear map
T is diagonalizable if 3 OB § of V' with

[T] a diagonal matrix.

A square matrix A is diagonalizable if L 4 is.
B is called diagonalizing basis.

Now if 8 = {vy,...,v,} is a diagonalizing basis with [T']g = diag(Ai,..., An),
then T'(v;) = \jvy, so T(O a;vi) =) a;Av; and v; # 0.

Definition 5.2. 7' : V — V linear operator. Assume v # 0 and
Tv = A\v. Then we call v eigenvector

and A eigenvalue (EV). We say that an eigenvector

corresponds to an eigenvalue, and an eigenvalue corresponds

to the eigenvector.

Theorem 5.3. T : V — V is diagonalizable <= 3 basis of V of eigen-
vectors of T.
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Example 5.5. T : R? — R? rotation by 90°

0 -1
1 0 parallel

|
geomtetrically: no vector goes to a multiple one by 90° rotation

thus T" has no eigenvalues / eigenvectors = not diagonalizable

Example 5.6. V = C*°(R) C>-functions on R — R.
T(f)=f what are EV of T'7

Fr=Af = f=ceM£0

= all A\ € R are eigenvalues of T' (f are eigenfunctions)
(for A = 0 the eigenfunctions are the constant functions)

this cannot happen for operators on f.d. spaces

Theorem 5.7. A\ EV of A € M, x,(F
<= det(A—\ld,) =0

Proof. Av=Av <= Iv#0: (A—XNd,)v =0

<— A — \Id,, is not invertible
< det(A— Ald,)=0

Definition 5.8. Let A € M, (F). xa(t) := det(A —tld,) is
called characteristic polynomial of A

1 1
Example 5.9. A = (4 1) € Myx2(R).

1—t 1
det(A — tIdy) =

= (t—3)(t+1)

— eigenvalues of A are +3, —1.

Definition 5.10. Let 7" : V — V. Let 8 be OB of V.
x7(t) = det([T]sg —t1d,) is called characteristic polynomial
of T

Theorem 5.11. The definition of xT does not depend on the choice of basis [3.

Proof. Let 3,3’ be OB of V. Then we know
T)er = Q7'[T15Q Q= [Ivl
Then

[T)gr —tldy = [T —tldy]y = Q7'[T —tldy]sQ = Q7' ([T]s — t1d,)Q.



Thus F F
Y
det([T)g —t1d,) = det(Q71)-det([T]s—tId,)- detuzQ)
= glet(Q—l) - det(Q) - det([T]p — t Idy,)

det(Q*l-szet(Idn)zl
— det([T)s —t1dy). O

Example 5.12. V=P,(R) T :V >V T(f)=f+(x+1)f
B8 SOB {1,z,2?}

Write [.]% = ([.]5)"".

L1 o A=[T]p  T() = 1=1[100)"
T = 2z+1=[(1,2,0)]°
U R R (@) = 20+1=1[01,20)
0 0 3 T(z?) = 2x(x+1)+2? =
32% 4 2z = [(0,2,3)]°
1—-1t 1
det(A—tlds) = det| 0 2—t
0 0 33—t
= (1-2-tB-1
AEV —= A=1,2,3
Theorem 5.13. A € M,,«,(F)
xa(t) = det(A —t1d,) is a polynomial in t of degree n
with leading coefficient (—1)™:
a@®ln = ()" a1 = (-1)" " trd
[xa(®)]o = det(A). 0

Example 5.14. (How to find eigenvectors)

1 1
A= ( 1) A1 =3 Xy =—-1 (calculated before)

4
1 1 3 0 -2 1
Bi=A-)\I = — =
4 1 0 3 4 =2
-2 = 1
X = (xl eigenvector to \; =3 <= R O x=t (t e R\ {0})
I 41 — 22 = 0 2
1 1 -1 0 2 1
By = A— X = — =
4 1 0 -1 4 2
4 2 = 1
x= (" eigenvector to Ap = —1 < e 0 —=x=1 (t e R\ {0})
To 2z1+x2 = 0 —2

eigenvector of linear operators



T(= La)

V. ———— V T:V—=V pOBofV A=1[T)s
qb/g\[ Jﬁb,ﬁ ¢p = [ ]/5
Lemma 5.15. v is an eigenvector of T with EV A\ <=
FP ————— % Fm [V]g is eigenvector of A with EV \.
A(=[T]p)
diag
commutes
1
Proof. “=7 Al[v]g = Adp(v) = ¢3(T'(v)) = ¢p(Av) = Agp(v) = Alv]s.
since ¢g is isomorphism, v # 0 = [v]g = ¢g(v) # 0
“«=" gimilar 0

so, to find eigenvectors of T', we can work in any OB £.

B n
(1):| = Zaivi forBZ{Vh---,Vn}-
=1

Write [.]% = (¢5)~t. Thus

An

Example 5.16. V =P,(R) T(f)=f+(x+1)f B={1,z,2%}

1 1 0
A=10 2 2 A = 1,2, 3 (calculated before)
0 0 3
0 1 0 1
Let \; =1 Bi=A—-M\MId=10 1 2 kerB; =<t]0
0 0 2 0

B
EVec of T for EV A\; =1 1is (0 =teR.
_|_

0
check: f=t T(f (x+1)f'=t+ x4+t =t=fV
-1 1 0 1
Let Ay =2 By=A—XId=| 0 0 2 kerBo=<t]1
0 0 1 0
B
1
EVec of T for EV A =21is |t- | 1 =t+tz (teR).
0

check: f=t+tex T(f)=f+(x+1)f ={t+tx)+ (z+ 1)+ tx)
=t+te+(x+1)t=2(t+tx)=2f ¢



A3 =3 B3 = -1 kerBs =<t 2 teR
0O O 1
—1
rref.=10 1 =2
0O O

EVec f =t(1 + 2z + 2?)
check:

T(f) = Tl +2z+2%)= t(1+ 2z + 2?) + t(1 + x) (22 + 2)
tl+2)2+tz+1)2x+2) = 3t(1+z)2=3f v

5.2. Diagonalizability.

T:V =V 3B with [T]s
- test whether operator can be diagonalized diagonal, find

- eigenbasis to find

Theorem 5.17. T : 'V — V Ay, ..., \; distinct eigenvalues with eigenvectors v;.
Then {v1,..., v} linearly independent.

Proof. Induction over k. When k =1, {v;} linearly independent <= wv; #0.
Now induction step
Let {vi,...,Vvk_1} linearly independent. (1)

k
0 = Z a;Vvj; (2)
=1

k k [ k—1 l/
0 = (T — M\I)O = (T — A1) <Zaivi> =S ah - v = Y

i=1 i=1 i=1
Now by induction assumption (1), we have a;(\; — A\x) = 0 i=1,...,k—1
but \; # A\; by assumption = a; = 0 i1=1,...,k—1

QO:akvk — qa; = 0.
v #0
= allag; =0 i=1,...,k = v; i=1,...,k linear independent. 0]

Corollary 5.18. IfT : V -V dimV =n If T has n distinct E'V, then

T diagonalizes.

Proof. {v1,...,v,} eigenvectors to A; are linearly independent = (eigen)basis. [

Remark 5.19. Converse is not true: Id has only one EV, but diagonalizable.
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I
Definition 5.20. A polynomial f(t) € P(F) splits over F if 3 ¢,a1,...,a, € F, c#0
(not necessarily
distinct)

f@@)=clt—a)(t—az) ... (t—ayp)
The algebraic multiplicity of a; in f is pe, (f) == #{Jj : aj = a; }.

with

Note that a; are the roots of f (f(a;) = 0) and using factorization, one can see

every polynomial splits <= every (non-const.) polynomial has a root

Definition 5.21. F is algebraically closed if every polynomial in P(F) splits in F.

Example 5.22. f(t) =t?+1 € P(R) does not split in R = R is not algebraically

closed
Theorem 5.23. (Fundamental Theorem of Algebra) C is algebraically closed.

Theorem 5.24. The characteristic polynomial of any diagonalizable operator (on
a f.d. VS) splits.

Proof. T : V-V
xr(t) = xr,(t) VB OBof V

so choose eigenbasis. Then [T']3 is diagonal diag(A1, ..., A,)

50 X115 (t) = (=1)" | | (t = A\i) = x splits. 0
i=1

Example 5.25. A <1 1

=1, 1) xa(t) = xra(t) = (t —1)? splits, A = 1 only EV

1 0

If A is diagonalizable, then [A]|g(= [Lalg) = <O 1) = A=1d}.

So xa splits, but A does not diagonalize.

Definition 5.26. T' : V — V linear operator E) = ker(T'— AId) A EV
is called eigenspace (of T for EV \)

Theorem 5.27. dim Ey < px(xr(t)) algebraic mult. of X in xr(t).

not always equal:

1 1
Example 5.28. A = <O 1) xa(t) = (t—1)2 X =1 has algebraic multiplicity u) = 2

1
dim E =7 <0> €cFi = dim>1

Ey\CR? dm<2 IfdmE),=2= E, =R?

Ly = Ad so if By = R?, then
Ex

LA:LA’ :Id( —Id}. SodimEy=1<2= .
R2 R2

Ex



Theorem 5.29. AssumeT : V. =V Aq,..., A\ distinct EV
Bi basis of Ex, ¥ EV \; of T
Then Sy U By U---U By (3) is linearly independent.

Proof. Similar to Theorem 5.17. 0

Theorem 5.30. T : V — V diagonalizable <= Y\, EV of T, i =1,...,k
dim Ey, = py, (x7) and

xr splits (or Zle dim Ey, =n)
Then (3) is an eigenbasis.

Proof. Theorem 5.27 + Theorem 5.29. OJ

— Test for diagonalization

- determine characteristic polynomial of T' find zeros = eigenvalues \; +
multiplicities py,

- for each distinct eigenvalue \;, solve (T'— A\, [)x =0
determine m; = dim E, = n —rk (T — \;1)

- if for all 4, m; = py,(x), then T diagonalizable, else not

(an application of diagonalization)

fi fi
Example 5.31. 5l =A| fa h 1
’ f= f f/ = fé fi :R=>R
f3 f3 0 r

linear differential equation system
If A diagonalizes, then 3Q : Q~1AQ = D D = diag()\;)

Q'f =D-Q7'f Q'-f(t)= (Cz‘emf (ci € R)

=1
3

= solution f(t) = Q- (cie’\it) .

(5.3 skip)

5.4. Invariant subspaces and Cayley-Hamilton theorem.

Definition 5.32. T': V=V W C V is (T-)invariant subspace if
T(W)C W, ie., T(w)eW Ywe W.

T arbitrary
Example 5.33. {0}, V, kerT, ImT, E) for any eigenvalue A of T'.

Example 5.34. T : R3 — R3 T(a,b,c) = (a+b,b+c,0)
W ={(2,y,0) : z,y € R} T-invariant

. only finitely
Definition 5.35. T : V -V xeV many are

Yr(x) = Span{ x, T(x), T?(x), ... } <J linearly independent
T-cyclic subspace of V' generated by x

Exercise: (a) W = ¥p(x) is T invariant, (b) if x € W’ and W’ is T-invariant, then W/ > W
“W is the smallest T-invariant subspace > x”
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Example 5.36. T : R3 — R3 T(a,b,c) = (=b+c,a+c,3c)

x = (1,0,0) = e;
T(e1) = (0,1,0) = ey
T?(e1) = T(ez) = (—1,0,0) = —e;
[ T%(e1) = —ea  T'(e1) = er| = W =span {e1,ea}
= {(2,90):z,yecR}
Rlz] R[]

Il I
Example 5.37. T : P(R) — P(R) T(f)=f

x =22 Yp(x) = span{z?,22,2} = P2(R) C P(R)

Theorem 5.38. T": V — V W invariant subspace. Then

X | X,

Proof. v OB of W B270OBofV

[T]f(Bl Bz) e = [ Bt P

0 | Bs 0 | Bs —t1d
= det(B1 —1 Id) -det(B3 —1 Id) O
X1y (1) eF i)

Theorem 5.39. LetT : V -V W =3%p(v), k=dimW. Then

(a) {v, T(v),...,T*"1(v)} is a basis of W
() If agv + a1 T(v) + -+ ar_1T* Y (v) + T*(v) = 0,
then XTIW(t) = (=1)*(ag + art + -+ + ap_1t* 71 + t¥).
Proof. (a) Let j be largest positive integer such that 8 = {v, T(v),...,T7"}(v)}
is linearly independent.
= T7(v) € spanfl = spanf3 is T-invariant
=——=¥r(v) Cspanf CXr(v) = “="

exercise

def of 8 def of k

f is basis of ¥ (v) 18] = j = dim Xp(v) ik

— j=k = (a)
Now (b). Work in OB f

0 -~ 0 —ag
1 0 —a
[T];18 = 1 ! X, =D ...0). O
. : T|
0 1 —ak—1

Example 5.40. (continue example 5.36)

T:R>—R3 T(a,b,c) = (=b+c,a+ ¢, 3c)



W = ET(el) T(el) = €9 T2(e1) = —€q
— k=2

— [1]- 7%(e1) +0-T(er) +(D-er = 0
Th:5.>39x :(_1)2(®+0.t+.t2):t2—|—1.ii

check using determinant Tl
B = {91, 82}
0 —1 -t -
[Twls (1 0 ) i, _—

Definition 5.41. If P = Y a;t' € P(F)and T : V — V, A € M, x,(F), then

1=0
define

P(T): ZaiTi7 With TOZId, T]':T, and Tn:To...oT
1=0 N——’
n times

_ = A . 0 _ 1 _ matrix
P(A) = 3 il with A® = I, A = 4, etc. ( natri )

Theorem 5.42. Let P € P(F) andT : V =V, n=dimV < co.

(a) If P(T) =0, then for each eigenvalue X\ of T" we have P(\) = 0.
(b) If for each eigenvalue \ of T we have P()\) = 0, and T is diagonalizable,
then P(T') = 0.

proof is exercise

Example 5.43. A projection T satisfies T? = T. Thus P(T) = 0 for P(t) = t> —t.

Thus all possible eigenvalues of a projection are A =0 and A = 1.

Example 5.44. A reflection T satisfies T? = Id. Thus P(T) = 0 for P(t) = > — 1.

Thus all possible eigenvalues of a reflection are A =1 and A = —1.

Remark 5.45. It is not claimed (and not true in general) that all roots of P occur
as EV of T'!

Theorem 5.46. (Cayley-Hamilton theorem,)

A linear operator T : V. — V satisfies its characteristic equation
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Proof. Let v # 0. We prove

xr(T)(v) = 0.
Let W = Xp(v) k=dimW

Th 539() Ja; with agv + a1 T(v) + ...+ a1 T Y (v) +T*(v) =0
Th5-:39(b) XT| — (_1)k(a0 + alt et ak_ltk—l +tk)
w
= XT| (T)(v) = (=)*(apld+ a1 T + -+ + ap_1T* 1 +T*)(v) = 0.
w

Now XT| | X, by theorem 5.38, so

w

—o0. O
X (T)(v) =0
Example 5.47. T : R? — R? B=(e,e) [Tp
I 1 9
T(a,b) = (a + 2b, —2a + b) A = ( ) 1)
1—t 2
t) = = (1—-t)2+4=1t>-2t+5
xa(t) o 14 (1—1)

) (1 2 ’ 2 4 5 0
xa(A) = A2 — 24 +51d = (_2 1) - (_4 2>+<0 5)
(—3 4) (—2 —4) (5 0) (0 0>
= + + = .
4 -3 4 -2 05 0 0



