Ch. 1

Exercises

- 1. Prove the following "laws of algebra" for \mathbb{R} , using only axioms (1)–(5):
 - (a) If x + y = x, then y = 0.
 - (b) $0 \cdot x = 0$. [Hint: Compute $(x + 0) \cdot x$.]
 - (c) -0 = 0.
 - (d) -(-x) = x.
 - (e) x(-y) = -(xy) = (-x)y.
 - (f) (-1)x = -x.
 - (g) x(y-z) = xy xz.
 - (h) -(x + y) = -x y; -(x y) = -x + y.
 - (i) If $x \neq 0$ and $x \cdot y = x$, then y = 1.
 - (j) x/x = 1 if $x \neq 0$.
 - (k) x/1 = x.
 - (1) $x \neq 0$ and $y \neq 0 \Rightarrow xy \neq 0$.
 - (m) (1/y)(1/z) = 1/(yz) if $y, z \neq 0$.
 - (n) (x/y)(w/z) = (xw)/(yz) if $y, z \neq 0$.
 - (o) (x/y) + (w/z) = (xz + wy)/(yz) if $y, z \neq 0$.
 - (p) $x \neq 0 \Rightarrow 1/x \neq 0$.
 - (q) $1/(w/z) = z/w \text{ if } w, z \neq 0.$
 - (r) (x/y)/(w/z) = (xz)/(yw) if y, w, $z \neq 0$.
 - (s) (ax)/y = a(x/y) if $y \neq 0$.
 - (t) (-x)/y = x/(-y) = -(x/y) if $y \neq 0$.
- 2. Prove the following "laws of inequalities" for \mathbb{R} , using axioms (1)–(6) along with the results of Exercise 1:
 - (a) x > y and $w > z \Rightarrow x + w > y + z$.
 - (b) x > 0 and $y > 0 \Rightarrow x + y > 0$ and $x \cdot y > 0$.
 - (c) $x > 0 \Leftrightarrow -x < 0$.
 - (d) $x > y \Leftrightarrow -x < -y$.
 - (e) x > y and $z < 0 \Rightarrow xz < yz$.
 - (f) $x \neq 0 \Rightarrow x^2 > 0$, where $x^2 = x \cdot x$.
 - (g) -1 < 0 < 1.
 - (h) $xy > 0 \Leftrightarrow x$ and y are both positive or both negative.
 - (i) $x > 0 \Rightarrow 1/x > 0$.
 - (j) $x > y > 0 \Rightarrow 1/x < 1/y$.
 - (k) $x < y \Rightarrow x < (x + y)/2 < y$.
- 3. (a) Show that if A is a collection of inductive sets, then the intersection of the elements of A is an inductive set.
 - (b) Prove the basic properties (1) and (2) of \mathbb{Z}_+ .
- **4.** (a) Prove by induction that given $n \in \mathbb{Z}_+$, every nonempty subset of $\{1, \ldots, n\}$ has a largest element.
 - (b) Explain why you cannot conclude from (a) that every nonempty subset of \mathbb{Z}_+ has a largest element.

is also a finite intersection of elements of S, so it belongs to B.

Exercises

- 1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.
 - **2.** Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.
 - 3. Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

- **4.** (a) If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?
 - (b) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
 - (c) If $X = \{a, b, c\}$, let

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\} \quad \text{and} \quad \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}.$$

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .

- 5. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.
- **6.** Show that the topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.
- 7. Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology,

 \mathcal{T}_2 = the topology of \mathbb{R}_K ,

 T_3 = the finite complement topology,

 \mathcal{T}_4 = the upper limit topology, having all sets (a, b] as basis,

 \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$